1
|
Lu C, Meng J, Song J, Xu K, Wang T, Zhu H, Sun QQ, Zhang DW, Chen L. Reconfigurable Selector-Free All-Optical Controlled Neuromorphic Memristor for In-Memory Sensing and Reservoir Computing. ACS NANO 2024; 18:29715-29723. [PMID: 39418668 DOI: 10.1021/acsnano.4c09199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Recently, the rising demand for data-based applications has driven the convergence of image sensing, memory, and computing unit interfaces. While specialized electronic hardware has spurred advancements in the in-memory and in-sensor computing, integrating the entire signal-processing chain into a single device still faces significant challenges. Here, a reconfigurable all-optical controlled memristor with the selector-free feature is demonstrated. The conductance of the device can be controlled within the pure light domain, which enables it to integrate sensing, memory, and computing together. The integrate-and-fire behavior is also realized through electrical stimuli. Furthermore, the device exhibits an excellent rectifying ratio and nonlinearity to overcome the sneak current. Finally, an in-memory sensing and computing architecture is realized through reservoir computing based on neuron and synaptic functions mimicked by the proposed device. Such an all-in-one paradigm facilitates the computing architecture with low energy consumption, low latency, and reduced hardware complexity.
Collapse
Affiliation(s)
- Chen Lu
- School of Microelectronics, State Key Laboratory of Integrated Chips and Systems, Fudan University, Shanghai 200433, P. R. China
| | - Jialin Meng
- School of Microelectronics, State Key Laboratory of Integrated Chips and Systems, Fudan University, Shanghai 200433, P. R. China
| | - Jieru Song
- School of Microelectronics, State Key Laboratory of Integrated Chips and Systems, Fudan University, Shanghai 200433, P. R. China
| | - Kangli Xu
- School of Microelectronics, State Key Laboratory of Integrated Chips and Systems, Fudan University, Shanghai 200433, P. R. China
| | - Tianyu Wang
- School of Integrated Circuits, Shandong University, Jinan 250100, China
- National Integrated Circuit Innovation Center, Shanghai 201203, China
| | - Hao Zhu
- School of Microelectronics, State Key Laboratory of Integrated Chips and Systems, Fudan University, Shanghai 200433, P. R. China
| | - Qing-Qing Sun
- School of Microelectronics, State Key Laboratory of Integrated Chips and Systems, Fudan University, Shanghai 200433, P. R. China
| | - David Wei Zhang
- School of Microelectronics, State Key Laboratory of Integrated Chips and Systems, Fudan University, Shanghai 200433, P. R. China
- National Integrated Circuit Innovation Center, Shanghai 201203, China
| | - Lin Chen
- School of Microelectronics, State Key Laboratory of Integrated Chips and Systems, Fudan University, Shanghai 200433, P. R. China
- National Integrated Circuit Innovation Center, Shanghai 201203, China
| |
Collapse
|
2
|
Kim SJ, Im IH, Baek JH, Choi S, Park SH, Lee DE, Kim JY, Kim SY, Park NG, Lee D, Yang JJ, Jang HW. Linearly programmable two-dimensional halide perovskite memristor arrays for neuromorphic computing. NATURE NANOTECHNOLOGY 2024:10.1038/s41565-024-01790-3. [PMID: 39424951 DOI: 10.1038/s41565-024-01790-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Accepted: 07/23/2024] [Indexed: 10/21/2024]
Abstract
The exotic properties of three-dimensional halide perovskites, such as mixed ionic-electronic conductivity and feasible ion migration, have enabled them to challenge traditional memristive materials. However, the poor moisture stability and difficulty in controlling ion transport due to their polycrystalline nature have hindered their use as a neuromorphic hardware. Recently, two-dimensional (2D) halide perovskites have emerged as promising artificial synapses owing to their phase versatility, microstructural anisotropy in electrical and optoelectronic properties, and excellent moisture resistance. However, their asymmetrical and nonlinear conductance changes still limit the efficiency of training and accuracy of inference. Here we achieve highly linear and symmetrical conductance changes in Dion-Jacobson 2D perovskites. We further build a 7 × 7 crossbar array based on analogue perovskite synapses, achieving a high device yield, low variation with synaptic weight storing capability, multi-level analogue states with long retention, and moisture stability over 7 months. We explore the potential of such devices in large-scale image inference via simulations and show an accuracy within 0.08% of the theoretical limit. The excellent device performance is attributed to the elimination of gaps between inorganic layers, allowing the halide vacancies to migrate homogeneously regardless of grain boundaries. This was confirmed by first-principles calculations and experimental analysis.
Collapse
Affiliation(s)
- Seung Ju Kim
- Department of Materials Science and Engineering, Research Institute of Advanced Materials, Seoul National University, Seoul, Republic of Korea
- Ming Hsieh Department of Electrical and Computer Engineering, University of Southern California, Los Angeles, CA, USA
| | - In Hyuk Im
- Department of Materials Science and Engineering, Research Institute of Advanced Materials, Seoul National University, Seoul, Republic of Korea
| | - Ji Hyun Baek
- Department of Materials Science and Engineering, Research Institute of Advanced Materials, Seoul National University, Seoul, Republic of Korea
| | - Sungkyun Choi
- Department of Materials Science and Engineering, Research Institute of Advanced Materials, Seoul National University, Seoul, Republic of Korea
| | - Sung Hyuk Park
- Department of Materials Science and Engineering, Research Institute of Advanced Materials, Seoul National University, Seoul, Republic of Korea
| | - Da Eun Lee
- Department of Materials Science and Engineering, Research Institute of Advanced Materials, Seoul National University, Seoul, Republic of Korea
| | - Jae Young Kim
- Department of Materials Science and Engineering, Research Institute of Advanced Materials, Seoul National University, Seoul, Republic of Korea
| | - Soo Young Kim
- Department of Materials Science and Engineering, Institute of Green Manufacturing Technology, Korea University, Seoul, Republic of Korea
| | - Nam-Gyu Park
- School of Chemical Engineering, Center for Antibonding Regulated Crystals, Sungkyunkwan University, Suwon, Republic of Korea
| | - Donghwa Lee
- Department of Materials Science and Engineering, Pohang University of Science and Technology, Pohang, Republic of Korea.
| | - J Joshua Yang
- Ming Hsieh Department of Electrical and Computer Engineering, University of Southern California, Los Angeles, CA, USA.
| | - Ho Won Jang
- Department of Materials Science and Engineering, Research Institute of Advanced Materials, Seoul National University, Seoul, Republic of Korea.
- Advanced Institute of Convergence Technology, Seoul National University, Suwon, Republic of Korea.
| |
Collapse
|
3
|
Zhou Z, Wu Y, Pan K, Zhu D, Li Z, Yan S, Xin Q, Wang Q, Qian X, Xiu F, Huang W, Liu J. A memristive-photoconductive transduction methodology for accurately nondestructive memory readout. LIGHT, SCIENCE & APPLICATIONS 2024; 13:175. [PMID: 39043644 PMCID: PMC11266504 DOI: 10.1038/s41377-024-01519-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 06/11/2024] [Accepted: 07/01/2024] [Indexed: 07/25/2024]
Abstract
Crossbar resistive memory architectures enable high-capacity storage and neuromorphic computing, accurate retrieval of the stored information is a prerequisite during read operation. However, conventional electrical readout normally suffer from complicated process, inaccurate and destructive reading due to crosstalk effect from sneak path current. Here we report a memristive-photoconductive transduction (MPT) methodology for precise and nondestructive readout in a memristive crossbar array. The individual devices present dynamic filament form/fuse for resistance modulation under electric stimulation, which leads to photogenerated carrier transport for tunable photoconductive response under subsequently light pulse stimuli. This coherent signal transduction can be used to directly detect the memorized on/off states stored in each cell, and a prototype 4 * 4 crossbar memories has been constructed and validated for the fidelity of crosstalk-free readout in recall process.
Collapse
Affiliation(s)
- Zhe Zhou
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211816, China
| | - Yueyue Wu
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211816, China
| | - Keyuan Pan
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211816, China
| | - Duoyi Zhu
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211816, China
| | - Zifan Li
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211816, China
| | - Shiqi Yan
- Shandong Technology Center of Nanodevices and Integration, School of Microelectronics, Shandong University, Jinan, 250100, China
| | - Qian Xin
- Shandong Technology Center of Nanodevices and Integration, School of Microelectronics, Shandong University, Jinan, 250100, China
| | - Qiye Wang
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211816, China
| | - Xinkai Qian
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211816, China
| | - Fei Xiu
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211816, China
| | - Wei Huang
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211816, China
- Shaanxi Institute of Flexible Electronics (SIFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, China
| | - Juqing Liu
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211816, China.
| |
Collapse
|
4
|
Loizos M, Rogdakis K, Luo W, Zimmermann P, Hinderhofer A, Lukić J, Tountas M, Schreiber F, Milić JV, Kymakis E. Resistive switching memories with enhanced durability enabled by mixed-dimensional perfluoroarene perovskite heterostructures. NANOSCALE HORIZONS 2024; 9:1146-1154. [PMID: 38767026 PMCID: PMC11195346 DOI: 10.1039/d4nh00104d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Accepted: 05/03/2024] [Indexed: 05/22/2024]
Abstract
Hybrid halide perovskites are attractive candidates for resistive switching memories in neuromorphic computing applications due to their mixed ionic-electronic conductivity. Moreover, their exceptional optoelectronic characteristics make them effective as semiconductors in photovoltaics, opening perspectives for self-powered memory elements. These devices, however, remain unexploited, which is related to the variability in their switching characteristics, weak endurance, and retention, which limit their performance and practical use. To address this challenge, we applied low-dimensional perovskite capping layers onto 3D mixed halide perovskites using two perfluoroarene organic cations, namely (perfluorobenzyl)ammonium and (perfluoro-1,4-phenylene)dimethylammonium iodide, forming Ruddlesden-Popper and Dion-Jacobson 2D perovskite phases, respectively. The corresponding mixed-dimensional perovskite heterostructures were used to fabricate resistive switching memories based on perovskite solar cell architectures, showing that the devices based on perfluoroarene heterostructures exhibited enhanced performance and stability in inert and ambient air atmosphere. This opens perspectives for multidimensional perovskite materials in durable self-powered memory elements in the future.
Collapse
Affiliation(s)
- Michalis Loizos
- Department of Electrical & Computer Engineering, Hellenic Mediterranean University (HMU), Heraklion 71410, Crete, Greece.
| | - Konstantinos Rogdakis
- Department of Electrical & Computer Engineering, Hellenic Mediterranean University (HMU), Heraklion 71410, Crete, Greece.
- Institute of Emerging Technologies (i-EMERGE) of HMU Research Center, Heraklion 71410, Crete, Greece
| | - Weifan Luo
- Adolphe Merkle Institute, University of Fribourg, Fribourg 1700, Switzerland.
| | - Paul Zimmermann
- Institute of Applied Physics, University of Tübingen, Tübingen 72076, Germany
| | | | - Jovan Lukić
- Adolphe Merkle Institute, University of Fribourg, Fribourg 1700, Switzerland.
| | - Marinos Tountas
- Department of Electrical & Computer Engineering, Hellenic Mediterranean University (HMU), Heraklion 71410, Crete, Greece.
| | - Frank Schreiber
- Institute of Applied Physics, University of Tübingen, Tübingen 72076, Germany
| | - Jovana V Milić
- Adolphe Merkle Institute, University of Fribourg, Fribourg 1700, Switzerland.
| | - Emmanuel Kymakis
- Department of Electrical & Computer Engineering, Hellenic Mediterranean University (HMU), Heraklion 71410, Crete, Greece.
- Institute of Emerging Technologies (i-EMERGE) of HMU Research Center, Heraklion 71410, Crete, Greece
| |
Collapse
|
5
|
Liu Y, Chen Q, Guo Y, Guo B, Liu G, Liu Y, He L, Li Y, He J, Tang M. Enhancing the Uniformity of a Memristor Using a Bilayer Dielectric Structure. MICROMACHINES 2024; 15:605. [PMID: 38793178 PMCID: PMC11123252 DOI: 10.3390/mi15050605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 04/24/2024] [Accepted: 04/28/2024] [Indexed: 05/26/2024]
Abstract
Resistive random access memory (RRAM) holds great promise for in-memory computing, which is considered the most promising strategy for solving the von Neumann bottleneck. However, there are still significant problems in its application due to the non-uniform performance of RRAM devices. In this work, a bilayer dielectric layer memristor was designed based on the difference in the Gibbs free energy of the oxide. We fabricated Au/Ta2O5/HfO2/Ta/Pt (S3) devices with excellent uniformity. Compared with Au/HfO2/Pt (S1) and Au/Ta2O5/Pt (S2) devices, the S3 device has a low reset voltage fluctuation of 2.44%, and the resistive coefficients of variation are 13.12% and 3.84% in HRS and LRS, respectively, over 200 cycles. Otherwise, the bilayer device has better linearity and more conductance states in multi-state regulation. At the same time, we analyze the physical mechanism of the bilayer device and provide a physical model of ion migration. This work provides a new idea for designing and fabricating resistive devices with stable performance.
Collapse
Affiliation(s)
- Yulin Liu
- School of Materials Science and Engineering, Xiangtan University, Xiangtan 411105, China;
- Department of Micro and Nano Electronics, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200241, China; (Y.G.); (B.G.)
| | - Qilai Chen
- Aerospace Science & Industry Shenzhen (Group) Co., Ltd., Shenzhen 518000, China;
| | - Yanbo Guo
- Department of Micro and Nano Electronics, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200241, China; (Y.G.); (B.G.)
| | - Bingjie Guo
- Department of Micro and Nano Electronics, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200241, China; (Y.G.); (B.G.)
| | - Gang Liu
- Department of Micro and Nano Electronics, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200241, China; (Y.G.); (B.G.)
| | - Yanchao Liu
- Shi Changxu Class of the School of Materials Science and Engineering, Xiangtan University, Xiangtan 411105, China; (Y.L.); (L.H.); (Y.L.); (J.H.)
| | - Lei He
- Shi Changxu Class of the School of Materials Science and Engineering, Xiangtan University, Xiangtan 411105, China; (Y.L.); (L.H.); (Y.L.); (J.H.)
| | - Yutong Li
- Shi Changxu Class of the School of Materials Science and Engineering, Xiangtan University, Xiangtan 411105, China; (Y.L.); (L.H.); (Y.L.); (J.H.)
| | - Jingyan He
- Shi Changxu Class of the School of Materials Science and Engineering, Xiangtan University, Xiangtan 411105, China; (Y.L.); (L.H.); (Y.L.); (J.H.)
| | - Minghua Tang
- School of Materials Science and Engineering, Xiangtan University, Xiangtan 411105, China;
| |
Collapse
|
6
|
Niu K, Wang C, Zeng J, Wang Z, Liu Y, Wang L, Li C, Jin Y. Ion Migration in Lead-Halide Perovskites: Cation Matters. J Phys Chem Lett 2024; 15:1006-1018. [PMID: 38298156 DOI: 10.1021/acs.jpclett.3c03451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2024]
Abstract
Metal halide perovskites exhibit remarkable properties for optoelectronic applications, yet their susceptibility to ion migration poses challenges for device stability. Previous research has predominantly focused on the migration of the halide ions. However, the migration of cations, which also has a significant influence on the device performance, is largely overlooked. In this Perspective, we review the migration of cations and their impacts on perovskite materials and devices. Special attention shall be devoted to recent insights into the migration of L-site organic cations in 2D/3D perovskites. We outline inspirations and directions for further research into the cation migration of perovskites, highlighting new possibilities in advancing perovskite optoelectronics.
Collapse
Affiliation(s)
- Kai Niu
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, Key Laboratory of Excited-State Materials of Zhejiang Province, Department of Chemistry, Zhejiang University, Hangzhou 310058, China
| | - Chenyang Wang
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, Key Laboratory of Excited-State Materials of Zhejiang Province, Department of Chemistry, Zhejiang University, Hangzhou 310058, China
| | - Jiejun Zeng
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, Key Laboratory of Excited-State Materials of Zhejiang Province, School of Material Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Zirui Wang
- Key Laboratory of Excited-State Materials of Zhejiang Province, Department of Chemistry, Zhejiang University, Hangzhou 310058, China
| | - Yang Liu
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, Key Laboratory of Excited-State Materials of Zhejiang Province, Department of Chemistry, Zhejiang University, Hangzhou 310058, China
- Wenzhou Key Laboratory of Novel Optoelectronic and Nano Materials, Institute of Wenzhou, Zhejiang University, Wenzhou 325006, China
| | - Linjun Wang
- Key Laboratory of Excited-State Materials of Zhejiang Province, Department of Chemistry, Zhejiang University, Hangzhou 310058, China
| | - Cheng Li
- School of Electronic Science and Engineering, Xiamen University, Xiamen 361005, P. R. China
- Future Display Institute of Xiamen, Xiamen 361005, P. R. China
| | - Yizheng Jin
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, Key Laboratory of Excited-State Materials of Zhejiang Province, Department of Chemistry, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
7
|
He S, Yu X, Wang J, Zhong W, Cheng B, Zhao J. Attaining inhibition of sneak current and versatile logic operations in a singular halide perovskite memristive device by introducing appropriate interface barriers. NANOSCALE 2024; 16:1102-1114. [PMID: 38008998 DOI: 10.1039/d3nr04633h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2023]
Abstract
Emerging resistive switching devices hold the potential to realize densely packed passive nanocrossbar arrays, suitable for deployment as random access memory devices (ReRAMs) in both embedded and high-capacity storage applications. In this study, we have engineered ReRAMs comprising ITO/(UVO-treated) amorphous ZnO (a-ZnO)/MAPbI3/Ag which effectively mitigate cross-talk currents without additional components. Significantly, we successfully executed a comprehensive set of 12 distinct 2-input sequential logic functions in a single halide perovskite ReRAM unit for the first time. Furthermore, these logic functions are devoid of any dependency on external light sources, entail merely 1 or 2 logic steps, and showcase symmetrical operability. A superior resistive switching behavior was achieved by harmonizing the charge transport within the bulk MAPbI3 and the tunneling barriers at the interfaces. The outcomes indicate progress in mitigating cross-talk and executing multiple logic functions within a single halide perovskite ReRAM unit, offering a new perspective for the advancement of halide perovskite ReRAMs.
Collapse
Affiliation(s)
- Song He
- School of Physics Materials, Nanchang University, Jiangxi 330031, P. R. China.
| | - Xingyu Yu
- School of Physics Materials, Nanchang University, Jiangxi 330031, P. R. China.
| | - Juanjuan Wang
- School of Physics Materials, Nanchang University, Jiangxi 330031, P. R. China.
| | - WenKang Zhong
- School of Physics Materials, Nanchang University, Jiangxi 330031, P. R. China.
| | - Baochang Cheng
- School of Physics Materials, Nanchang University, Jiangxi 330031, P. R. China.
- Nanoscale Science and Technology Laboratory, Institute for Advanced Study, Nanchang University, Jiangxi 330031, P. R. China
| | - Jie Zhao
- School of Physics Materials, Nanchang University, Jiangxi 330031, P. R. China.
| |
Collapse
|
8
|
Tsai JY, Chen JY, Huang CW, Lo HY, Ke WE, Chu YH, Wu WW. A High-Entropy-Oxides-Based Memristor: Outstanding Resistive Switching Performance and Mechanisms in Atomic Structural Evolution. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2302979. [PMID: 37378645 DOI: 10.1002/adma.202302979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 06/11/2023] [Indexed: 06/29/2023]
Abstract
The application of high-entropy oxide (HEO) has attracted significant attention in recent years owing to their unique structural characteristics, such as excellent electrochemical properties and long-term cycling stability. However, the application of resistive random-access memory (RRAM) has not been extensively studied, and the switching mechanism of HEO-based RRAM has yet to be thoroughly investigated. In this study, HEO (Cr, Mn, Fe, Co, Ni)3 O4 with a spinel structure is epitaxially grown on a Nb:STO conductive substrate, and Pt metal is deposited as the top electrode. After the resistive-switching operation, some regions of the spinel structure are transformed into a rock-salt structure and analyzed using advanced transmission electron microscopy and scanning transmission electron microscopy. From the results of X-ray photoelectron spectroscopy and electron energy loss spectroscopy, only specific elements would change their valence state, which results in excellent resistive-switching properties with a high on/off ratio on the order of 105 , outstanding endurance (>4550 cycles), long retention time (>104 s), and high stability, which suggests that HEO is a promising RRAM material.
Collapse
Affiliation(s)
- Jing-Yuan Tsai
- Department of Materials Science and Engineering, National Yang Ming Chiao Tung University, Hsinchu, 30010, Taiwan
| | - Jui-Yuan Chen
- Department of Materials Science and Engineering, National United University, Miaoli, 360, Taiwan
| | - Chun-Wei Huang
- Department of Materials Science and Engineering, Feng Chia University, Taichung, 407, Taiwan
| | - Hung-Yang Lo
- Department of Materials Science and Engineering, National Yang Ming Chiao Tung University, Hsinchu, 30010, Taiwan
| | - Wei-En Ke
- Department of Materials Science and Engineering, National Yang Ming Chiao Tung University, Hsinchu, 30010, Taiwan
| | - Ying-Hao Chu
- Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu, 300, Taiwan
| | - Wen-Wei Wu
- Department of Materials Science and Engineering, National Yang Ming Chiao Tung University, Hsinchu, 30010, Taiwan
- Center for the Intelligent Semiconductor Nano-system Technology Research, Hsinchu, 30078, Taiwan
| |
Collapse
|
9
|
Wang J, Zhao Y, Li S, Shen L, Zhang H, Ding C, Wei C, Wang Y, Li Y, Hong W, Li M. Composition and sequence-controlled conductance of crystalline unimolecular monolayers. SCIENCE ADVANCES 2023; 9:eadh0667. [PMID: 37327333 DOI: 10.1126/sciadv.adh0667] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 05/12/2023] [Indexed: 06/18/2023]
Abstract
Understanding how the charge travels through sequence-controlled molecules has been a formidable challenge because of simultaneous requirements in well-controlled synthesis and well-manipulated orientation. Here, we report electrically driven simultaneous synthesis and crystallization as a general strategy to study the conductance of composition and sequence-controlled unioligomer and unipolymer monolayers. The structural disorder of molecules and conductance variations on random positions can be extremely minimized, by uniform synthesis of monolayers unidirectionally sandwiched between electrodes, as an important prerequisite for the reproducible measurement on the micrometer scale. These monolayers show tunable current density and on/off ratios in four orders of magnitude with controlled multistate and massive negative differential resistance (NDR) effects. The conductance of monolayer mainly depends on the metal species in homo-metal monolayers, while the sequence becomes a matter in hetero-metal monolayers. Our work demonstrates a promising way to release an ultra-rich variety of electrical parameters and optimize the functions and performances of multilevel resistive devices.
Collapse
Affiliation(s)
- Jinxin Wang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- University of Science and Technology of China, Hefei 230026, China
| | - Yongjie Zhao
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Shumu Li
- Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing Mass Spectrum Center, Beijing 100190, China
| | - Lingyun Shen
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- University of Science and Technology of China, Hefei 230026, China
| | - Hao Zhang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Caijun Ding
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- University of Science and Technology of China, Hefei 230026, China
| | - Chang Wei
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- University of Science and Technology of China, Hefei 230026, China
| | - Yanfang Wang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Yongfang Li
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- University of Science and Technology of China, Hefei 230026, China
| | - Wenjing Hong
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Mao Li
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
10
|
Zhai S, Gong J, Feng Y, Que Z, Mao W, He X, Xie Y, Li X, Chu L. Multilevel resistive switching in stable all-inorganic n-i-p double perovskite memristor. iScience 2023; 26:106461. [PMID: 37091246 PMCID: PMC10119588 DOI: 10.1016/j.isci.2023.106461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 03/13/2023] [Accepted: 03/17/2023] [Indexed: 04/08/2023] Open
Abstract
Memristors are promising information storage devices for commercial applications because of their long endurance and low power consumption. Particularly, perovskite memristors have revealed excellent resistive switching (RS) properties owing to the fast ion migration and solution fabrication process. Here, an n-i-p type double perovskite memristor with "ITO/SnO2/Cs2AgBiBr6/NiOx/Ag" architecture was developed and demonstrated to reveal three resistance states because of the p-n junction electric field coupled with ion migration. The devices exhibited reliable filamentary with an on/off ratio exceeding 50. The RS characteristics remained unchanged after 1000 s read and 300 switching cycles. The synaptic functions were examined through long-term depression and potentiation measurements. Significantly, the device still worked after one year to reveal long-term stability because of the all-inorganic layers. This work indicates a novel idea for designing a multistate memristor by utilizing the p-n junction unidirectional conductivity during the forward and reverse scanning.
Collapse
Affiliation(s)
- Shuaibo Zhai
- School of Electronic and Optical Engineering & School of Science & School of Materials Science and Engineering, Nanjing University of Posts and Telecommunications, Nanjing, 210023, China
| | - Jiaqi Gong
- School of Electronic and Optical Engineering & School of Science & School of Materials Science and Engineering, Nanjing University of Posts and Telecommunications, Nanjing, 210023, China
| | - Yifei Feng
- School of Electronic and Optical Engineering & School of Science & School of Materials Science and Engineering, Nanjing University of Posts and Telecommunications, Nanjing, 210023, China
| | - Zhongbao Que
- School of Electronic and Optical Engineering & School of Science & School of Materials Science and Engineering, Nanjing University of Posts and Telecommunications, Nanjing, 210023, China
| | - Weiwei Mao
- School of Electronic and Optical Engineering & School of Science & School of Materials Science and Engineering, Nanjing University of Posts and Telecommunications, Nanjing, 210023, China
| | - Xuemin He
- School of Electronic and Optical Engineering & School of Science & School of Materials Science and Engineering, Nanjing University of Posts and Telecommunications, Nanjing, 210023, China
| | - Yannan Xie
- School of Electronic and Optical Engineering & School of Science & School of Materials Science and Engineering, Nanjing University of Posts and Telecommunications, Nanjing, 210023, China
- Corresponding author
| | - Xing’ao Li
- School of Electronic and Optical Engineering & School of Science & School of Materials Science and Engineering, Nanjing University of Posts and Telecommunications, Nanjing, 210023, China
- Corresponding author
| | - Liang Chu
- Institute of Carbon Neutrality and New Energy, School of Electronics and Information, Hangzhou Dianzi University, Hangzhou 310018, China
- The MOE Key Laboratory of Special Machine and High Voltage Apparatus, Shenyang University of Technology, Shenyang, 110870, China
- Corresponding author
| |
Collapse
|
11
|
Seok H, Son S, Jathar SB, Lee J, Kim T. Synapse-Mimetic Hardware-Implemented Resistive Random-Access Memory for Artificial Neural Network. SENSORS (BASEL, SWITZERLAND) 2023; 23:3118. [PMID: 36991829 PMCID: PMC10058286 DOI: 10.3390/s23063118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 03/11/2023] [Accepted: 03/13/2023] [Indexed: 06/19/2023]
Abstract
Memristors mimic synaptic functions in advanced electronics and image sensors, thereby enabling brain-inspired neuromorphic computing to overcome the limitations of the von Neumann architecture. As computing operations based on von Neumann hardware rely on continuous memory transport between processing units and memory, fundamental limitations arise in terms of power consumption and integration density. In biological synapses, chemical stimulation induces information transfer from the pre- to the post-neuron. The memristor operates as resistive random-access memory (RRAM) and is incorporated into the hardware for neuromorphic computing. Hardware composed of synaptic memristor arrays is expected to lead to further breakthroughs owing to their biomimetic in-memory processing capabilities, low power consumption, and amenability to integration; these aspects satisfy the upcoming demands of artificial intelligence for higher computational loads. Among the tremendous efforts toward achieving human-brain-like electronics, layered 2D materials have demonstrated significant potential owing to their outstanding electronic and physical properties, facile integration with other materials, and low-power computing. This review discusses the memristive characteristics of various 2D materials (heterostructures, defect-engineered materials, and alloy materials) used in neuromorphic computing for image segregation or pattern recognition. Neuromorphic computing, the most powerful artificial networks for complicated image processing and recognition, represent a breakthrough in artificial intelligence owing to their enhanced performance and lower power consumption compared with von Neumann architectures. A hardware-implemented CNN with weight control based on synaptic memristor arrays is expected to be a promising candidate for future electronics in society, offering a solution based on non-von Neumann hardware. This emerging paradigm changes the computing algorithm using entirely hardware-connected edge computing and deep neural networks.
Collapse
Affiliation(s)
- Hyunho Seok
- SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, Suwon 16419, Republic of Korea
- Department of Nano Science and Technology, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Shihoon Son
- SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, Suwon 16419, Republic of Korea
- Department of Nano Science and Technology, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Sagar Bhaurao Jathar
- SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, Suwon 16419, Republic of Korea
- Department of Nano Science and Technology, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Jaewon Lee
- School of Mechanical Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Taesung Kim
- SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, Suwon 16419, Republic of Korea
- Department of Nano Science and Technology, Sungkyunkwan University, Suwon 16419, Republic of Korea
- School of Mechanical Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| |
Collapse
|
12
|
Huang CY, Li H, Wu Y, Lin CH, Guan X, Hu L, Kim J, Zhu X, Zeng H, Wu T. Inorganic Halide Perovskite Quantum Dots: A Versatile Nanomaterial Platform for Electronic Applications. NANO-MICRO LETTERS 2022; 15:16. [PMID: 36580150 PMCID: PMC9800676 DOI: 10.1007/s40820-022-00983-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 10/31/2022] [Indexed: 05/19/2023]
Abstract
Metal halide perovskites have generated significant attention in recent years because of their extraordinary physical properties and photovoltaic performance. Among these, inorganic perovskite quantum dots (QDs) stand out for their prominent merits, such as quantum confinement effects, high photoluminescence quantum yield, and defect-tolerant structures. Additionally, ligand engineering and an all-inorganic composition lead to a robust platform for ambient-stable QD devices. This review presents the state-of-the-art research progress on inorganic perovskite QDs, emphasizing their electronic applications. In detail, the physical properties of inorganic perovskite QDs will be introduced first, followed by a discussion of synthesis methods and growth control. Afterwards, the emerging applications of inorganic perovskite QDs in electronics, including transistors and memories, will be presented. Finally, this review will provide an outlook on potential strategies for advancing inorganic perovskite QD technologies.
Collapse
Affiliation(s)
- Chien-Yu Huang
- School of Materials Science and Engineering, University of New South Wales, Sydney, 2052, Australia
| | - Hanchen Li
- School of Materials Science and Engineering, University of New South Wales, Sydney, 2052, Australia
| | - Ye Wu
- MIIT Key Laboratory of Advanced Display Materials and Devices, Institute of Optoelectronics and Nanomaterials, College of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing, 210094, People's Republic of China
| | - Chun-Ho Lin
- School of Materials Science and Engineering, University of New South Wales, Sydney, 2052, Australia
| | - Xinwei Guan
- School of Materials Science and Engineering, University of New South Wales, Sydney, 2052, Australia
| | - Long Hu
- School of Materials Science and Engineering, University of New South Wales, Sydney, 2052, Australia
| | - Jiyun Kim
- School of Materials Science and Engineering, University of New South Wales, Sydney, 2052, Australia
| | - Xiaoming Zhu
- School of Materials Science and Engineering, University of New South Wales, Sydney, 2052, Australia
| | - Haibo Zeng
- MIIT Key Laboratory of Advanced Display Materials and Devices, Institute of Optoelectronics and Nanomaterials, College of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing, 210094, People's Republic of China.
| | - Tom Wu
- School of Materials Science and Engineering, University of New South Wales, Sydney, 2052, Australia.
| |
Collapse
|
13
|
Zhan Z, Lin D, Cai J, Lu Y, Chen A, Zhang T, Chen K, Liu P, Wang X, Xie W. A Perovskite Photodetector Crossbar Array by Vapor Deposition for Dynamic Imaging. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2207106. [PMID: 36193774 DOI: 10.1002/adma.202207106] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 09/20/2022] [Indexed: 06/16/2023]
Abstract
With the development of perovskite photodetectors, integrating photodetectors into array image sensors is the next target to pursue. The major obstacle to integrating perovskite photodiodes for dynamic imaging is the optoelectrical crosstalk among the pixels. Herein, a perovskite photodiode-blocking diode (PIN-BD) crossbar array with pixel-wise rectifying property by the vapor deposition method is presented. The PIN-BD shows a large rectification ratio of 3.3 × 102 under illumination, suppressing electrical crosstalk to as small as 8.0% in the imaging array. The fast response time of 72.8 ns allows real-time image acquisition by over 25 frames per second. The imaging sensor exhibits excellent imaging capability with a large linear dynamic range of 112 dB with 4096 gray levels and weak light sensitivity under 1.2 lux.
Collapse
Affiliation(s)
- Zhenye Zhan
- Siyuan Laboratory, Guangdong Provincial Engineering Technology Research Center of Vacuum Coating Technologies and New Energy Materials, Department of Physics, Jinan University, Guangzhou, Guangdong, 510632, P.R. China
| | - Dongxu Lin
- Siyuan Laboratory, Guangdong Provincial Engineering Technology Research Center of Vacuum Coating Technologies and New Energy Materials, Department of Physics, Jinan University, Guangzhou, Guangdong, 510632, P.R. China
| | - Juntao Cai
- Guangzhou Research Institute of Optical, Mechanical and Electronical Technologies Co., Ltd, Guangzhou, Guangdong, 510663, P.R. China
| | - Yueheng Lu
- Siyuan Laboratory, Guangdong Provincial Engineering Technology Research Center of Vacuum Coating Technologies and New Energy Materials, Department of Physics, Jinan University, Guangzhou, Guangdong, 510632, P.R. China
| | - Aidi Chen
- Siyuan Laboratory, Guangdong Provincial Engineering Technology Research Center of Vacuum Coating Technologies and New Energy Materials, Department of Physics, Jinan University, Guangzhou, Guangdong, 510632, P.R. China
| | - Tiankai Zhang
- Siyuan Laboratory, Guangdong Provincial Engineering Technology Research Center of Vacuum Coating Technologies and New Energy Materials, Department of Physics, Jinan University, Guangzhou, Guangdong, 510632, P.R. China
- Department of Physics, Chemistry and Biology (IFM), Linköping University, Linköping, 58183, Sweden
| | - Ke Chen
- Siyuan Laboratory, Guangdong Provincial Engineering Technology Research Center of Vacuum Coating Technologies and New Energy Materials, Department of Physics, Jinan University, Guangzhou, Guangdong, 510632, P.R. China
| | - Pengyi Liu
- Siyuan Laboratory, Guangdong Provincial Engineering Technology Research Center of Vacuum Coating Technologies and New Energy Materials, Department of Physics, Jinan University, Guangzhou, Guangdong, 510632, P.R. China
- Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Jinan University, Guangzhou, Guangdong, 510632, P.R. China
| | - Xiaomu Wang
- School of Electronic Science and Technology, Nanjing University, Nanjing, Jiangsu, 210093, P. R. China
| | - Weiguang Xie
- Siyuan Laboratory, Guangdong Provincial Engineering Technology Research Center of Vacuum Coating Technologies and New Energy Materials, Department of Physics, Jinan University, Guangzhou, Guangdong, 510632, P.R. China
- Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Jinan University, Guangzhou, Guangdong, 510632, P.R. China
| |
Collapse
|
14
|
Baek KY, Lee W, Lee J, Kim J, Ahn H, Kim JI, Kim J, Lim H, Shin J, Ko YJ, Lee HD, Friend RH, Lee TW, Lee J, Kang K, Lee T. Mechanochemistry-driven engineering of 0D/3D heterostructure for designing highly luminescent Cs–Pb–Br perovskites. Nat Commun 2022; 13:4263. [PMID: 35871221 PMCID: PMC9308791 DOI: 10.1038/s41467-022-31924-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Accepted: 07/06/2022] [Indexed: 11/16/2022] Open
Abstract
Embedding metal-halide perovskite particles within an insulating host matrix has proven to be an effective strategy for revealing the outstanding luminescence properties of perovskites as an emerging class of light emitters. Particularly, unexpected bright green emission observed in a nominally pure zero-dimensional cesium–lead–bromide perovskite (Cs4PbBr6) has triggered intensive research in better understanding the serendipitous incorporation of emissive guest species within the Cs4PbBr6 host. However, a limited controllability over such heterostructural configurations in conventional solution-based synthesis methods has limited the degree of freedom in designing synthesis routes for accessing different structural and compositional configurations of these host–guest species. In this study, we provide means of enhancing the luminescence properties in the nominal Cs4PbBr6 powder through a guided heterostructural configuration engineering enabled by solid-state mechanochemical synthesis. Realized by an in-depth study on time-dependent evaluation of optical and structural properties during the synthesis of Cs4PbBr6, our target-designed synthesis protocol to promote the endotaxial formation of Cs4PbBr6/CsPbBr3 heterostructures provides key insights for understanding and designing kinetics-guided syntheses of highly luminescent perovskite emitters for light-emitting applications. While emission and stability of metal–halide perovskites can be enhanced through heterostructural encapsulation, a controlled synthesis route to such structures is not trivial to realize. Here, the authors design a mechanochemistry-driven protocol for synthesizing highly luminescent CsPbBr3/Cs4PbBr6 heterostructures.
Collapse
|
15
|
Thien GH, Ab Rahman M, Yap BK, Tan NML, He Z, Low PL, Devaraj NK, Ahmad Osman AF, Sin YK, Chan KY. Recent Advances in Halide Perovskite Resistive Switching Memory Devices: A Transformation from Lead-Based to Lead-Free Perovskites. ACS OMEGA 2022; 7:39472-39481. [PMID: 36385870 PMCID: PMC9648113 DOI: 10.1021/acsomega.2c03206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 09/15/2022] [Indexed: 06/16/2023]
Abstract
Due to their remarkable electrical and light absorption characteristics, hybrid organic-inorganic perovskites have recently gained popularity in several applications such as optoelectronics, lasers, and light-emitting diodes. Through this, there has recently been an increase in the use of halide perovskites (HPs) in resistive switching (RS) devices. However, lead-based (Pb-based) perovskites are notorious for being unstable and harmful to the environment. As a result, lead-free (Pb-free) perovskite alternatives are being investigated in achieving the long-term and sustainable use of RS devices. This work describes the characteristics of Pb-based and Pb-free perovskite RS devices. It also presents the recent advancements of HP RS devices, including the selection strategies of perovskite structures. In terms of resistive qualities, the directions of both HPs appear to be identical. Following that, the possible impact of switching from Pb-based to Pb-free HPs is examined to determine the requirement in RS devices. Finally, this work discusses the opportunities and challenges of HP RS devices in creating a stable, efficient, and sustainable memory storage technology.
Collapse
Affiliation(s)
- Gregory
Soon How Thien
- Centre
for Advanced Devices and Systems, Faculty of Engineering, Multimedia University, Persiaran Multimedia, 63100 Cyberjaya, Selangor, Malaysia
| | - Marlinda Ab Rahman
- Nanotechnology
and Catalysis Research Centre (NANOCAT), Universiti Malaya, 50603 Kuala Lumpur, Malaysia
| | - Boon Kar Yap
- Electronic
and Communications Department, College of Engineering, Universiti Tenaga Nasional, 43000 Kajang, Selangor Malaysia
- Institute
of Sustainable Energy, Universiti Tenaga
Nasional, 43000 Kajang, Selangor, Malaysia
- International
School of Advanced Materials, South China
University of Technology, 381 Wushan Road, Tianhe District, 510640 Guangzhou, Guangdong People’s Republic of China
| | - Nadia Mei Lin Tan
- Key Laboratory
of More Electric Aircraft Technology of Zhejiang Province, University of Nottingham Ningbo China, 315100 Ningbo, People’s Republic of China
- Institute
of Power Engineering, Universiti Tenaga
Nasional, 43000 Kajang, Selangor, Malaysia
| | - Zhicai He
- Institute
of Polymer Optoelectronic Materials and Devices, School of Materials
Science & Engineering, South China University
of Technology, 381 Wushan
Road, Tianhe District, 510640Guangzhou, Guangdong Province People’s Republic of China
| | - Pei-Ling Low
- Centre
for Advanced Devices and Systems, Faculty of Engineering, Multimedia University, Persiaran Multimedia, 63100 Cyberjaya, Selangor, Malaysia
| | - Nisha Kumari Devaraj
- Centre
for Advanced Devices and Systems, Faculty of Engineering, Multimedia University, Persiaran Multimedia, 63100 Cyberjaya, Selangor, Malaysia
| | - Ahmad Farimin Ahmad Osman
- Centre
for Advanced Devices and Systems, Faculty of Engineering, Multimedia University, Persiaran Multimedia, 63100 Cyberjaya, Selangor, Malaysia
| | - Yew-Keong Sin
- Centre
for Advanced Devices and Systems, Faculty of Engineering, Multimedia University, Persiaran Multimedia, 63100 Cyberjaya, Selangor, Malaysia
| | - Kah-Yoong Chan
- Centre
for Advanced Devices and Systems, Faculty of Engineering, Multimedia University, Persiaran Multimedia, 63100 Cyberjaya, Selangor, Malaysia
| |
Collapse
|
16
|
Gou R, Ouyang Z, Xu C, He S, Cheng S, Shi C, Zhao J, Xiao Y, Lei S, Cheng B. Actual origin and precise control of asymmetrical hysteresis in an individual CH 3NH 3PbI 3 micro/nanowire for optical memory and logic operation. NANOSCALE HORIZONS 2022; 7:1095-1108. [PMID: 35913084 DOI: 10.1039/d2nh00209d] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Although CH3NH3PbI3 can present an excellent photoresponse to visible light, its application in solar cells and photodetectors is seriously hindered due to hysteresis behaviour. Moreover, for its origin, there exist different opinions. Herein, we demonstrate a route to realize precise control for the electrical transport of a single CH3NH3PbI3 micro/nanowire by constructing a two-terminal device with asymmetric Ag and C electrodes, and its hysteresis can be clearly identified as a synergistic effect of the redox reaction at the interface of the Ag electrode and the injection and ejection of holes in the interfacial traps of the C electrode rather than its bulk effect. The device can show superior bias amplitude and illumination intensity dependence of hysteresis loops with typical bipolar resistive switching features. Thus, an excellent multilevel nonvolatile optical memory can be effectively realized by the modulation of the illumination and bias, and moreover a logic OR gate operation can be successfully implemented with voltage and illumination as input signals as well. This work clearly reveals and provides a new insight of hysteresis origin that can be attributed to a synergistic effect of two asymmetrical electrode interfaces, and therefore precisely controlling its electrical transport to realize an outstanding application potential in multifunctional devices integrated with optical nonvolatile memory and logic OR gate operation.
Collapse
Affiliation(s)
- Runna Gou
- School of Physics and Materials, Nanchang University, Jiangxi, 330031, P. R. China.
| | - Zhiyong Ouyang
- Nanoscale Science and Technology Laboratory, Institute for Advanced Study, Nanchang University, Jiangxi, 330031, P. R. China
| | - Changsen Xu
- Nanoscale Science and Technology Laboratory, Institute for Advanced Study, Nanchang University, Jiangxi, 330031, P. R. China
| | - Song He
- School of Physics and Materials, Nanchang University, Jiangxi, 330031, P. R. China.
| | - Shouduan Cheng
- School of Physics and Materials, Nanchang University, Jiangxi, 330031, P. R. China.
| | - Cencen Shi
- Nanoscale Science and Technology Laboratory, Institute for Advanced Study, Nanchang University, Jiangxi, 330031, P. R. China
| | - Jie Zhao
- School of Physics and Materials, Nanchang University, Jiangxi, 330031, P. R. China.
| | - Yanhe Xiao
- School of Physics and Materials, Nanchang University, Jiangxi, 330031, P. R. China.
| | - Shuijin Lei
- School of Physics and Materials, Nanchang University, Jiangxi, 330031, P. R. China.
| | - Baochang Cheng
- School of Physics and Materials, Nanchang University, Jiangxi, 330031, P. R. China.
- Nanoscale Science and Technology Laboratory, Institute for Advanced Study, Nanchang University, Jiangxi, 330031, P. R. China
| |
Collapse
|
17
|
Park Y, Lee JS. Metal Halide Perovskite-Based Memristors for Emerging Memory Applications. J Phys Chem Lett 2022; 13:5638-5647. [PMID: 35708321 DOI: 10.1021/acs.jpclett.2c01303] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
There is an increased demand for next-generation memory devices with high density and fast operation speed to replace conventional memory devices. Memristors are promising candidates for next-generation memory devices because of their scalability, stable data retention, low power consumption, and fast operation. Among the various types of memristors, halide perovskites exhibit potential as emerging materials for memristors by using hysteresis based on the movement of defects or ions in halide perovskites. However, research on the implementation of perovskite materials as memristors is in its early stages; some challenges and problems must be solved to enable the practical application of halide perovskites for next-generation memory devices. From this perspective, we highlight the recent progress in memristors that use halide perovskites. Moreover, we introduce a strategy to enhance the performance and analyze the operation mechanism of memory devices that use halide perovskites. Finally, we summarize the challenges in the development of device technology to use halide perovskites in next-generation memory devices.
Collapse
Affiliation(s)
- Youngjun Park
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Jang-Sik Lee
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| |
Collapse
|
18
|
Zhu W, Wang S, Zhang X, Wang A, Wu C, Hao F. Ion Migration in Organic-Inorganic Hybrid Perovskite Solar Cells: Current Understanding and Perspectives. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2105783. [PMID: 35038213 DOI: 10.1002/smll.202105783] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 11/29/2021] [Indexed: 06/14/2023]
Abstract
Organic-inorganic hybrid perovskite (OIHPs) solar cells are the most promising alternatives to traditional silicon solar cells, with a certified power conversion efficiency beyond 25%. However, the poor stability of OHIPs is one of the thorniest obstacles that hinder its commercial development. Among all the factors affecting stability, ion migration is prominent because it is unavoidable and intrinsic in OHIPs. Therefore, it is important to understand the mechanism for ion migration and regulation strategies. Herein, the types of ions that may migrate in OHIPs are first discussed; afterward, the migrating channels are demonstrated. The effects of ion migration are further elaborated. While ion migration can facilitate the p-i-n structure in some cases, the current hysteresis and other adverse effects such as phase segregation in OHIPs attract widespread attention. Based on these, several recent strategies to suppress the ion migration are enumerated, including the introduction of alkali cations, organic additives, grain boundaries passivation, and employment of low-dimensional perovskites. Finally, the prospect for further modulating the ion migration and more stable perovskite solar cells is proposed.
Collapse
Affiliation(s)
- Weike Zhu
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - Shurong Wang
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - Xin Zhang
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - Aili Wang
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - Cheng Wu
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - Feng Hao
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu, 611731, China
| |
Collapse
|
19
|
Liu Q, Gao S, Xu L, Yue W, Zhang C, Kan H, Li Y, Shen G. Nanostructured perovskites for nonvolatile memory devices. Chem Soc Rev 2022; 51:3341-3379. [PMID: 35293907 DOI: 10.1039/d1cs00886b] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Perovskite materials have driven tremendous advances in constructing electronic devices owing to their low cost, facile synthesis, outstanding electric and optoelectronic properties, flexible dimensionality engineering, and so on. Particularly, emerging nonvolatile memory devices (eNVMs) based on perovskites give birth to numerous traditional paradigm terminators in the fields of storage and computation. Despite significant exploration efforts being devoted to perovskite-based high-density storage and neuromorphic electronic devices, research studies on materials' dimensionality that has dominant effects on perovskite electronics' performances are paid little attention; therefore, a review from the point of view of structural morphologies of perovskites is essential for constructing perovskite-based devices. Here, recent advances of perovskite-based eNVMs (memristors and field-effect-transistors) are reviewed in terms of the dimensionality of perovskite materials and their potentialities in storage or neuromorphic computing. The corresponding material preparation methods, device structures, working mechanisms, and unique features are showcased and evaluated in detail. Furthermore, a broad spectrum of advanced technologies (e.g., hardware-based neural networks, in-sensor computing, logic operation, physical unclonable functions, and true random number generator), which are successfully achieved for perovskite-based electronics, are investigated. It is obvious that this review will provide benchmarks for designing high-quality perovskite-based electronics for application in storage, neuromorphic computing, artificial intelligence, information security, etc.
Collapse
Affiliation(s)
- Qi Liu
- School of Information Science and Engineering & Shandong Provincial Key Laboratory of Network Based Intelligent Computing, University of Jinan, Jinan 250022, China.
| | - Song Gao
- School of Information Science and Engineering & Shandong Provincial Key Laboratory of Network Based Intelligent Computing, University of Jinan, Jinan 250022, China.
| | - Lei Xu
- School of Information Science and Engineering & Shandong Provincial Key Laboratory of Network Based Intelligent Computing, University of Jinan, Jinan 250022, China.
| | - Wenjing Yue
- School of Information Science and Engineering & Shandong Provincial Key Laboratory of Network Based Intelligent Computing, University of Jinan, Jinan 250022, China.
| | - Chunwei Zhang
- School of Information Science and Engineering & Shandong Provincial Key Laboratory of Network Based Intelligent Computing, University of Jinan, Jinan 250022, China.
| | - Hao Kan
- School of Information Science and Engineering & Shandong Provincial Key Laboratory of Network Based Intelligent Computing, University of Jinan, Jinan 250022, China.
| | - Yang Li
- School of Information Science and Engineering & Shandong Provincial Key Laboratory of Network Based Intelligent Computing, University of Jinan, Jinan 250022, China. .,State Key Laboratory for Superlattices and Microstructures Institute of Semiconductors & Chinese Academy of Sciences and Center of Materials Science and Optoelectronic Engineering, University of Chinese Academy of Sciences, Beijing 100083, China.
| | - Guozhen Shen
- State Key Laboratory for Superlattices and Microstructures Institute of Semiconductors & Chinese Academy of Sciences and Center of Materials Science and Optoelectronic Engineering, University of Chinese Academy of Sciences, Beijing 100083, China.
| |
Collapse
|
20
|
Lian H, Cheng X, Hao H, Han J, Lau MT, Li Z, Zhou Z, Dong Q, Wong WY. Metal-containing organic compounds for memory and data storage applications. Chem Soc Rev 2022; 51:1926-1982. [PMID: 35083990 DOI: 10.1039/d0cs00569j] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
With the upcoming trend of Big Data era, some new types of memory technologies have emerged as substitutes for the traditional Si-based semiconductor memory devices, which are encountering severe scaling down technical obstacles. In particular, the resistance random access memory (RRAM) and magnetic random access memory (MRAM) hold great promise for the in-memory computing, which are regarded as the optimal strategy and pathway to solve the von Neumann bottleneck by high-throughput in situ data processing. As far as the active materials in RRAM and MRAM are concerned, organic semiconducting materials have shown increasing application perspectives in memory devices due to their rich structural diversity and solution processability. With the introduction of metal elements into the backbone of molecules, some new properties and phenomena will emerge accordingly. Consequently, the RRAM and MRAM devices based on metal-containing organic compounds (including the small molecular metal complexes, metallopolymers, metal-organic frameworks (MOFs) and organic-inorganic-hybrid perovskites (OIHPs)) have been widely explored and attracted intense attention. In this review, we highlight the fundamentals of RRAM and MRAM, as well as the research progress of the applications of metal-containing organic compounds in both RRAM and MRAM. Finally, we discuss the challenges and future directions for the research of organic RRAM and MRAM.
Collapse
Affiliation(s)
- Hong Lian
- MOE Key Laboratory of Advanced Display and System Applications, Shanghai University, 149 Yanchang Road, Jingan District, Shanghai 200072, China.,School of Mechanical & Electronic Engineering and Automation, Shanghai University, 99 Shangda Road, Baoshan District, Shanghai 200444, China. .,MOE Key Laboratory of Interface Science and Engineering in Advanced Materials, Taiyuan University of Technology, 79 Yingze West Street, Taiyuan, 030024, China
| | - Xiaozhe Cheng
- MOE Key Laboratory of Advanced Display and System Applications, Shanghai University, 149 Yanchang Road, Jingan District, Shanghai 200072, China.,MOE Key Laboratory of Interface Science and Engineering in Advanced Materials, Taiyuan University of Technology, 79 Yingze West Street, Taiyuan, 030024, China.,Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, China.
| | - Haotian Hao
- MOE Key Laboratory of Interface Science and Engineering in Advanced Materials, Taiyuan University of Technology, 79 Yingze West Street, Taiyuan, 030024, China
| | - Jinba Han
- MOE Key Laboratory of Interface Science and Engineering in Advanced Materials, Taiyuan University of Technology, 79 Yingze West Street, Taiyuan, 030024, China
| | - Mei-Tung Lau
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, China. .,The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen 518057, China
| | - Zikang Li
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, China. .,The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen 518057, China
| | - Zhi Zhou
- School of Chemistry and Materials Science, Hunan Agricultural University, Changsha 410128, China.
| | - Qingchen Dong
- MOE Key Laboratory of Advanced Display and System Applications, Shanghai University, 149 Yanchang Road, Jingan District, Shanghai 200072, China.,School of Mechanical & Electronic Engineering and Automation, Shanghai University, 99 Shangda Road, Baoshan District, Shanghai 200444, China. .,MOE Key Laboratory of Interface Science and Engineering in Advanced Materials, Taiyuan University of Technology, 79 Yingze West Street, Taiyuan, 030024, China
| | - Wai-Yeung Wong
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, China. .,The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen 518057, China
| |
Collapse
|
21
|
Light-induced halogen defects as dynamic active sites for CO2 photoreduction to CO with 100% selectivity. Sci Bull (Beijing) 2022; 67:1137-1144. [DOI: 10.1016/j.scib.2022.01.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 12/23/2021] [Accepted: 01/06/2022] [Indexed: 11/23/2022]
|
22
|
Li L, Chen Y, Cai C, Ma P, Ji H, Zou G. Single Crystal Halide Perovskite Film for Nonlinear Resistive Memory with Ultrahigh Switching Ratio. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2103881. [PMID: 34816558 DOI: 10.1002/smll.202103881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 10/11/2021] [Indexed: 06/13/2023]
Abstract
Morre's law is coming to an end only if the memory industry can keep stuffing the devices with new functionality. Halide perovskite acts as a promising candidate for application in next-generation nonvolatile memory. As is well known, the switching ratio is the key device requirement of resistive memory to improve recognition accuracy. Here, the authors introduce an all-inorganic halide perovskite CsPbBr3 single crystal film (SCF) into resistive memory as an active layer. The Ag/CsPbBr3 /Ag memory cells exhibit reproducible resistive switching with an ultrahigh switching ratio (over 109 ) and a fast switching speed (1.8 µs). It is studied that the Schottky barrier of metal/CsPbBr3 SCF contact follows the tendency of Schottky-Mott theory, and the Fermi level pinning effect is effectively reduced. The interface S parameter of metal/CsPbBr3 SCF contact is 0.50, suggesting a great interface contact is formed. The great interface contact contributes to the steady high resistance state (HRS), and then the steady HRS leads to an ultrahigh resistive switching ratio. This work demonstrates high performance from halide perovskite SCF-based memory. The introduction of halide perovskite SCF in resistive random access memory provides great potential as an alternative in future computing systems.
Collapse
Affiliation(s)
- Lutao Li
- College of Energy, Soochow Institute for Energy and Materials Innovations, Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, Soochow University, Suzhou, 215000, China
| | - Yuan Chen
- College of Energy, Soochow Institute for Energy and Materials Innovations, Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, Soochow University, Suzhou, 215000, China
| | - Changming Cai
- Suzhou O-Light Optical Technology Co., Ltd., Suzhou, 215000, China
| | - Peipei Ma
- College of Energy, Soochow Institute for Energy and Materials Innovations, Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, Soochow University, Suzhou, 215000, China
| | - Huayong Ji
- Suzhou O-Light Optical Technology Co., Ltd., Suzhou, 215000, China
| | - Guifu Zou
- College of Energy, Soochow Institute for Energy and Materials Innovations, Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, Soochow University, Suzhou, 215000, China
| |
Collapse
|
23
|
Abstract
Resistive switching random access memory (RRAM), also known as memristor, is regarded as an emerging nonvolatile memory and computing-in-memory technology to address the intrinsic physical limitations of conventional memory and the bottleneck of von Neumann architecture. In particular, halide perovskite RRAMs have attracted widespread attention in recent years because of their ionic migration nature and excellent photoelectric properties. This Perspective first provides a condensed overview of halide perovskite RRAMs based on materials, device performance, switching mechanism, and potential applications. Moreover, this Perspective attempts to detail the challenges, such as the quality of halide perovskite films, the compatible processing of device fabrication, the reliability of memory performance, and clarification of the switching mechanism, and further discusses how the outstanding challenges of halide perovskite RRAMs could be met in future research.
Collapse
Affiliation(s)
- Kaijin Kang
- Key Laboratory of Optoelectronic Technology and System of Ministry of Education, College of Optoelectronic Engineering, Chongqing University, Chongqing 400044, China
| | - Wei Hu
- Key Laboratory of Optoelectronic Technology and System of Ministry of Education, College of Optoelectronic Engineering, Chongqing University, Chongqing 400044, China
| | - Xiaosheng Tang
- Key Laboratory of Optoelectronic Technology and System of Ministry of Education, College of Optoelectronic Engineering, Chongqing University, Chongqing 400044, China
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
24
|
Powell D, Hansen KR, Flannery L, Whittaker-Brooks L. Traversing Excitonic and Ionic Landscapes: Reduced-Dimensionality-Inspired Design of Organometal Halide Semiconductors for Energy Applications. Acc Chem Res 2021; 54:4371-4382. [PMID: 34841870 DOI: 10.1021/acs.accounts.1c00492] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
At the very heart of the global semiconductor industry lies the omnipresent push for new materials discovery. New materials constantly rise and fall out of fashion in the scientific literature, with those passing an initial phase of research scrutiny becoming hotbeds of characterization and optimization efforts. Yet, innumerable hours of painstaking research have been devoted to materials that have ultimately fallen by the wayside after crossing over an indefinable threshold, whereupon historical optimism is met with newfound skepticism. Materials have to perform well, and they have to do it quickly. In the past decade, metal-halide perovskites (MHPs) have garnered widespread attention. The hegemonic view in both academic and industrial circles is that these materials could be engineered to meet the demands of the semiconductor industry. Their promise as inexpensive solar cell devices is highly attractive, and it has been nothing short of remarkable that efficiencies have risen from 3.8% in 2009 to more than 25.5% in 2021. Moreover, MHPs are poised to be revolutionary materials in more ways than one. The highest MHP LED efficiency was recently reported (23.4%), and MHPs have demonstrated promise in photodetectors, memristors, and transistors. However, the many excellent properties of MHPs are contrasted by longstanding stability and reproducibility limitations that have hindered their commercialization. Overcoming the limitations of MHPs is ultimately a materials engineering problem, which should be solved by mapping more precise relationships between structure, composition, and device performance. In 1958, Francis Crick famously developed the central dogma of molecular biology which describes the unidirectional flow of information in biological systems. In the words of Crick, "nature has devised a unique instrument in which an underlying simplicity is used to express great subtlety and versatility." In this Account, taking inspiration from the hierarchical organization of nature, we describe a hierarchical approach to materials engineering of organic metal-halide semiconductors. We demonstrate that organo-metal halide semiconductors' dimensionality, composition, and morphology dictate their optoelectronic properties and can be exploited in defining more explicit relationships between structure and function. Here, we traverse three-dimensional (3D), two-dimensional (2D), and one-dimensional (1D) organo-metal halide semiconductors, detailing the morphological and compositional differences in each and the implications that can be drawn within each domain on the engineering process. Control over ion migration pathways via morphology engineering as well as control over charge formation in organic-inorganic semiconductors is demonstrated. Fundamental insights into the amount of static and dynamic disorder in the MHP lattice are provided, which can be continuously tuned as a function of composition and morphology. Using electroabsorption spectroscopy on 2D MHPs, a disorder-induced dipole moment in the exciton proportional to the summed value of static and dynamic disorder is measured. Spectroscopic isolation of exciton features in 2D MHP electroabsorption spectra allows us to obtain precise, model-independent measurements of exciton binding energies to study the effect of chemical substitutions, such as Sn2+ → Pb2+, on the value of the exciton binding energy. Finally, we conclude that this multidimensional platform, with the aid of machine learning and robotics, will be foundational in accurately predicting structure-property-device relationships in organo-metal halide semiconductors in the future.
Collapse
Affiliation(s)
- Daniel Powell
- Department of Chemistry, University of Utah, Salt Lake City, Utah 84112, United States
| | - Kameron R. Hansen
- Department of Chemistry, University of Utah, Salt Lake City, Utah 84112, United States
| | - Laura Flannery
- Department of Chemistry, University of Utah, Salt Lake City, Utah 84112, United States
| | | |
Collapse
|
25
|
Sun C, Luo F, Ruan L, Tong J, Yan L, Zheng Y, Han X, Zhang Y, Zhang X. Enhanced Memristive Performance of Double Perovskite Cs 2 AgBiBr 6-x Cl x Devices by Chloride Doping. Chempluschem 2021; 86:1530-1536. [PMID: 34791820 DOI: 10.1002/cplu.202100404] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 11/04/2021] [Indexed: 11/12/2022]
Abstract
Mixed halide perovskites are promising memristive materials because of their excellent electronic-ionic properties. In this work, lead-free Cs2 AgBiBr6-x Clx (x=0, 0.2, 0.4, 0.6, 0.8, 1.0) double perovskite films were fabricated using a one-step solution spin-coating method in air. Moreover, the ITO/Cs2 AgBiBr6-x Clx /Al sandwich-like devices are fabricated to investigate the memristive behaviors. The present memristors exhibit nonvolatile and bipolar resistive switching behaviors without electroforming process. Interestingly, as the chloride content increases, the ON/OFF ratio of the device increases from 103 to 104 , the average SET voltage and the RESET voltage decrease from -0.40 V to -0.21 V and from 1.55 V to 1.34 V, respectively. In addition, resistance states of devices can be maintained after 100 switching cycles and 104 s of reading. This study provides new possibility for the development of low-power and environmentally friendly memristors.
Collapse
Affiliation(s)
- Caixiang Sun
- Key Laboratory for Anisotropy and Texture of Materials (Ministry of Education), School of Material Science and Engineering, Northeastern University, Shenyang, 110819, P. R. China
| | - Feifei Luo
- Key Laboratory for Anisotropy and Texture of Materials (Ministry of Education), School of Material Science and Engineering, Northeastern University, Shenyang, 110819, P. R. China
| | - Liuxia Ruan
- Key Laboratory for Anisotropy and Texture of Materials (Ministry of Education), School of Material Science and Engineering, Northeastern University, Shenyang, 110819, P. R. China
| | - Junwei Tong
- Key Laboratory for Anisotropy and Texture of Materials (Ministry of Education), School of Material Science and Engineering, Northeastern University, Shenyang, 110819, P. R. China
| | - Linwei Yan
- Key Laboratory for Anisotropy and Texture of Materials (Ministry of Education), School of Material Science and Engineering, Northeastern University, Shenyang, 110819, P. R. China
| | - Yadan Zheng
- Key Laboratory for Anisotropy and Texture of Materials (Ministry of Education), School of Material Science and Engineering, Northeastern University, Shenyang, 110819, P. R. China
| | - Xiaoli Han
- Taian Weiye Electromechanical Technology Co., Ltd, Taian, 271000, P. R. China
| | - Yanlin Zhang
- Taian Weiye Electromechanical Technology Co., Ltd, Taian, 271000, P. R. China
| | - Xianmin Zhang
- Key Laboratory for Anisotropy and Texture of Materials (Ministry of Education), School of Material Science and Engineering, Northeastern University, Shenyang, 110819, P. R. China
| |
Collapse
|
26
|
Li P, Zhang Y, Guo Y, Jiang L, Zhang Z, Xu C. Resistance Switching Behavior of a Perhydropolysilazane-Derived SiO x-Based Memristor. J Phys Chem Lett 2021; 12:10728-10734. [PMID: 34710322 DOI: 10.1021/acs.jpclett.1c03031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
SiOx is an important dielectric material layer for resistive switching memory due to its compatibility with complementary metal-oxide semiconductor (CMOS) technology. Here we propose a solution process for a SiOx dielectric layer based on perhydropolysilazane (PHPS). A series of SiOx layers with different compositions are prepared by controlling the conversion process from PHPS, then the resistance switching behaviors of typical Ag/SiOx/Au memristors are analyzed. The effect of oxygen vacancies and Si-OH groups on the formation and rupture of Ag conducting filaments (CFs) in the SiOx layer was thoroughly investigated. Ultimately, we achieved a high-performance memristor with a coefficient of variation (σ/μ) as low as 0.16 ± 0.08 and an on/off ratio as high as 106, which can rival the performance of the SiOx memristors based on the high-vacuum and high-cost vapor deposition methods. These findings demonstrate the high promise of the PHPS-derived SiOx dielectric layer in the field of memristors.
Collapse
Affiliation(s)
- Pengfei Li
- Key Laboratory of Science and Technology on High-Tech Polymer Materials, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
| | - Yulin Zhang
- Key Laboratory of Science and Technology on High-Tech Polymer Materials, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100149, People's Republic of China
| | - Yunlong Guo
- Key Laboratory of Science and Technology on High-Tech Polymer Materials, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
| | - Lang Jiang
- Key Laboratory of Science and Technology on High-Tech Polymer Materials, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
| | - Zongbo Zhang
- Key Laboratory of Science and Technology on High-Tech Polymer Materials, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
| | - Caihong Xu
- Key Laboratory of Science and Technology on High-Tech Polymer Materials, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100149, People's Republic of China
| |
Collapse
|
27
|
Zhang C, Li Y, Ma C, Zhang Q. Recent Progress of Organic–Inorganic Hybrid Perovskites in RRAM, Artificial Synapse, and Logic Operation. SMALL SCIENCE 2021. [DOI: 10.1002/smsc.202100086] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Affiliation(s)
- Cheng Zhang
- Jiangsu Key Laboratory of Micro and Nano Heat Fluid Flow Technology and Energy Application School of Physical Science and Technology Suzhou University of Science and Technology Suzhou Jiangsu 215009 China
| | - Yang Li
- Jiangsu Key Laboratory of Micro and Nano Heat Fluid Flow Technology and Energy Application School of Physical Science and Technology Suzhou University of Science and Technology Suzhou Jiangsu 215009 China
| | - Chunlan Ma
- Jiangsu Key Laboratory of Micro and Nano Heat Fluid Flow Technology and Energy Application School of Physical Science and Technology Suzhou University of Science and Technology Suzhou Jiangsu 215009 China
| | - Qichun Zhang
- Department of Materials Science and Engineering City University of Hong Kong Kowloon Hong Kong SAR 999077 China
- Center of Super-Diamond and Advanced Films (COSDAF) City University of Hongkong Hong Kong SAR 999077 China
| |
Collapse
|
28
|
Luo F, Ruan L, Tong J, Wu Y, Sun C, Qin G, Tian F, Zhang X. Enhanced resistive switching performance in yttrium-doped CH 3NH 3PbI 3 perovskite devices. Phys Chem Chem Phys 2021; 23:21757-21768. [PMID: 34550133 DOI: 10.1039/d1cp02878b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
In this study, yttrium-doped CH3NH3PbI3 (Y-MAPbI3) and pure CH3NH3PbI3 (MAPbI3) perovskite films have been fabricated using a one-step solution spin coating method in a glove box. X-ray diffractometry and field-emission scanning electron microscopy were used to characterize the crystal structures and morphologies of perovskite films, respectively. It was found that the orientation of the crystal changed and the grains became more uniform in Y-MAPbI3 film, compared with the pure MAPbI3 perovskite film. The films were used to prepare the resistive switching memory devices with the device structure of Al/Y-MAPbI3 (MAPbI3)/ITO-glass. The memory performance of both devices was studied and showed a bipolar resistive switching behavior. The Al/MAPbI3/ITO device had an endurance of about 328 cycles. In contrast, the Al/Y-MAPbI3/ITO device exhibited an enhanced performance with a long endurance up to 3000 cycles. Moreover, the Al/Y-MAPbI3/ITO device also showed a higher ON/OFF ratio of over 103, long retention time (≥104 s), lower operation voltage (±0.5 V) and outstanding reproducibility. Additionally, the conduction mechanism of the high resistance state transformed from space-charge limited current for a Y free device to the Schottky emission after Y doping. The present results indicate that the Al/Y-MAPbI3/ITO device has a great potential to be used in high-performance memory devices.
Collapse
Affiliation(s)
- Feifei Luo
- Key Laboratory for Anisotropy and Texture of Materials (Ministry of Education), School of Material Science and Engineering, Northeastern University, Shenyang 110819, China.
| | - Liuxia Ruan
- Key Laboratory for Anisotropy and Texture of Materials (Ministry of Education), School of Material Science and Engineering, Northeastern University, Shenyang 110819, China.
| | - Junwei Tong
- Key Laboratory for Anisotropy and Texture of Materials (Ministry of Education), School of Material Science and Engineering, Northeastern University, Shenyang 110819, China.
| | - Yanzhao Wu
- Key Laboratory for Anisotropy and Texture of Materials (Ministry of Education), School of Material Science and Engineering, Northeastern University, Shenyang 110819, China.
| | - Caixiang Sun
- Key Laboratory for Anisotropy and Texture of Materials (Ministry of Education), School of Material Science and Engineering, Northeastern University, Shenyang 110819, China.
| | - Gaowu Qin
- The State Key Lab of Rolling and Automation, Northeastern University, Shenyang 110819, China
| | - Fubo Tian
- State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun 130012, China
| | - Xianmin Zhang
- Key Laboratory for Anisotropy and Texture of Materials (Ministry of Education), School of Material Science and Engineering, Northeastern University, Shenyang 110819, China.
| |
Collapse
|
29
|
Guo SN, Wu H, Wang D, Wang JX. Cost-Effective Strategy for the Synthesis of Air-Stable CH 3NH 3PbX 3 (X = Cl, Br, and I) Quantum Dots with Bright Emission. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:11520-11525. [PMID: 34555896 DOI: 10.1021/acs.langmuir.1c01773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Lead halide perovskite quantum dots (QDs) are known as prospective optoelectronic device materials because of their excellent luminescence, extraordinary photoelectric performance, and specific octahedron framework. Herein, we report a cost-effective approach for synthesizing highly stable CH3NH3PbBr3 QDs in low-polarity binary solvents without nitrogen protection. The CH3NH3PbBr3 QDs are tunable from 1.2 to 4.2 nm by adjusting the proportion of oleic acid and oleylamine as capping ligands. The photoluminescence quantum yield of CH3NH3PbBr3 QDs can reach 87.4%. The fluorescence can maintain over 80% of its earliest emission intensity under the atmosphere after 5 days, which is much better than that (∼10%) of QDs with ligand-assisted reprecipitation. The possible reaction mechanism of preparing CH3NH3PbBr3 QDs was also addressed. Notably, such a strategy can be applied extensively in the preparation of other lead halide perovskite QDs. Furthermore, the as-prepared thick PMMA-coated CH3NH3PbBr3 QDs were further conjoined with a red luminescence powder on a blue InGaN chip to obtain a powerful efficiency (45.4 lm W-1) warm white light-emitting diode.
Collapse
Affiliation(s)
- Sai-Nan Guo
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, P.R. China
- Research Center of the Ministry of Education for High Gravity Engineering and Technology, Beijing University of Chemical Technology, Beijing 100029, P.R. China
| | - Hao Wu
- Research Center of the Ministry of Education for High Gravity Engineering and Technology, Beijing University of Chemical Technology, Beijing 100029, P.R. China
| | - Dan Wang
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, P.R. China
- Research Center of the Ministry of Education for High Gravity Engineering and Technology, Beijing University of Chemical Technology, Beijing 100029, P.R. China
| | - Jie-Xin Wang
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, P.R. China
- Research Center of the Ministry of Education for High Gravity Engineering and Technology, Beijing University of Chemical Technology, Beijing 100029, P.R. China
| |
Collapse
|
30
|
Wang L, Zhu H, Wen D. Bioresistive Random-Access Memory with Gold Nanoparticles that Generate the Coulomb Blocking Effect Can Realize Multilevel Data Storage and Synapse Simulation. J Phys Chem Lett 2021; 12:8956-8962. [PMID: 34505773 DOI: 10.1021/acs.jpclett.1c02815] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Gold nanoparticles (Au NPs) have good biocompatibility and special quantum effects. In this Letter, we embedded Au NPs into silkworm hemolymph (SH) to improve the performance of the device and fabricated Al/SH:Au NPs/indium tin oxide (ITO)/glass resistive random access memory. The device exhibits a bipolar switching behavior with a retention time of 104 s. Compared with the Al/SH/ITO device without Au NPs, the device has a higher ON/OFF current ratio (>105) and a smaller Vreset. The improvement in device performance is attributed to the fact that Au NPs act as the electron-trapping center in the device; a Coulomb blockade occurs after electrons are trapped, thereby increasing the resistance of the device in the high-resistance state. Using optimized devices can realize multilevel data storage and can also simulate synaptic characteristics such as potentiation and depression. The device is expected to be applied to high-density, low-cost, degradable, and biocompatible storage devices and neuromorphic computing in the future.
Collapse
Affiliation(s)
- Lu Wang
- School of Electronic Engineering, HLJ Province Key Laboratory of Senior-Education for Electronic Engineering, Heilongjiang University, Harbin 150080, China
| | - Hongyu Zhu
- School of Electronic Engineering, HLJ Province Key Laboratory of Senior-Education for Electronic Engineering, Heilongjiang University, Harbin 150080, China
| | - Dianzhong Wen
- School of Electronic Engineering, HLJ Province Key Laboratory of Senior-Education for Electronic Engineering, Heilongjiang University, Harbin 150080, China
| |
Collapse
|
31
|
Kwak KJ, Lee DE, Kim SJ, Jang HW. Halide Perovskites for Memristive Data Storage and Artificial Synapses. J Phys Chem Lett 2021; 12:8999-9010. [PMID: 34515487 DOI: 10.1021/acs.jpclett.1c02332] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Halide perovskites have been noted for their exotic properties such as fast ion migration, tunable composition, facile synthetic routes, and flexibility in addition to large light absorption coefficients, long carrier diffusion lengths, and high defect tolerance. These properties have made halide perovskites promising materials for memristors. Applications in the field of resistive switching memory devices and artificial synapses for neuromorphic computing are especially noteworthy. This Perspective covers state-of-the-art perovskite-based memristive devices. Moreover, the fundamental mechanisms and characteristics of perovskite-based memristors are elucidated. Interesting opportunities to improve the performance of perovskite-based memristors for commercialization are provided, including improving film uniformity and air stability, controlling the stoichiometry, finding new all-inorganic and lead-free halide perovskites, and making perovskites into single crystals or quantum dots. We expect our Perspective to be the foundation of realizing next-generation halide perovskite-based memristors.
Collapse
Affiliation(s)
- Kyung Ju Kwak
- Department of Materials Science and Engineering, Research Institute of Advanced Materials, Seoul National University, Seoul 08826, Republic of Korea
| | - Da Eun Lee
- Department of Materials Science and Engineering, Research Institute of Advanced Materials, Seoul National University, Seoul 08826, Republic of Korea
| | - Seung Ju Kim
- Department of Materials Science and Engineering, Research Institute of Advanced Materials, Seoul National University, Seoul 08826, Republic of Korea
| | - Ho Won Jang
- Department of Materials Science and Engineering, Research Institute of Advanced Materials, Seoul National University, Seoul 08826, Republic of Korea
- Advanced Institute of Convergence Technology, Seoul National University, Suwon 16229, Republic of Korea
| |
Collapse
|
32
|
Hammedi K, Dkhili M, Khalifa M, Alvarez‐Galvan C, Ouertani R, Aouida S, Ezzaouia H. Effect of Annealing Temperature on Structural and Optical Properties of ZnTiO
3
Perovskite Layers Deposited on Silicon for Photocatalytic Applications. ChemistrySelect 2021. [DOI: 10.1002/slct.202100215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Khadija Hammedi
- Groupe de recherche des semi-conducteurs,des Nanostructures et des Technologies Avancées (SNTA),Laboratoire de photovoltaïque (LPV) Centre de Recherches et des Technologies de l'Energie (CRTEn) Borj-Cedria B.P N° 952050- Hammam Lif. Tunisia
- Faculty of Mathematical Physical and Natural Sciences of Tunis ElManar University of Tunis El Manar Tunisia
| | - Marwa Dkhili
- Groupe de recherche des semi-conducteurs,des Nanostructures et des Technologies Avancées (SNTA),Laboratoire de photovoltaïque (LPV) Centre de Recherches et des Technologies de l'Energie (CRTEn) Borj-Cedria B.P N° 952050- Hammam Lif. Tunisia
- Faculty of Mathematical Physical and Natural Sciences of Tunis ElManar University of Tunis El Manar Tunisia
| | - Marouan Khalifa
- Groupe de recherche des semi-conducteurs,des Nanostructures et des Technologies Avancées (SNTA),Laboratoire de photovoltaïque (LPV) Centre de Recherches et des Technologies de l'Energie (CRTEn) Borj-Cedria B.P N° 952050- Hammam Lif. Tunisia
| | - Consuelo Alvarez‐Galvan
- Institute of Catalysis and Petrochemical, CSIC Marie Curie, 2, Cantoblanco 28049 Madrid Spain
| | - Rachid Ouertani
- Groupe de recherche des semi-conducteurs,des Nanostructures et des Technologies Avancées (SNTA),Laboratoire de photovoltaïque (LPV) Centre de Recherches et des Technologies de l'Energie (CRTEn) Borj-Cedria B.P N° 952050- Hammam Lif. Tunisia
| | - Selma Aouida
- Groupe de recherche des semi-conducteurs,des Nanostructures et des Technologies Avancées (SNTA),Laboratoire de photovoltaïque (LPV) Centre de Recherches et des Technologies de l'Energie (CRTEn) Borj-Cedria B.P N° 952050- Hammam Lif. Tunisia
| | - Hatem Ezzaouia
- Groupe de recherche des semi-conducteurs,des Nanostructures et des Technologies Avancées (SNTA),Laboratoire de photovoltaïque (LPV) Centre de Recherches et des Technologies de l'Energie (CRTEn) Borj-Cedria B.P N° 952050- Hammam Lif. Tunisia
| |
Collapse
|
33
|
Gogoi HJ, Bajpai K, Mallajosyula AT, Solanki A. Advances in Flexible Memristors with Hybrid Perovskites. J Phys Chem Lett 2021; 12:8798-8825. [PMID: 34491743 DOI: 10.1021/acs.jpclett.1c02105] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Hybrid organic-inorganic metal halide perovskite (HOIP)-based memristors have captured strong attention not only as an emerging candidate for next-generation high-density information storage technology but also for use in healthcare technology and the Internet of Things (IoT) because of their unique properties: low weight, flexibility, compatibility, stretchability, and low power consumption. In this Perspective, we review the recent advances of various aspects of flexible memristors focusing on the selection of the flexible substrates, materials, interfaces, several resistive switching mechanisms, and different methodologies of perovskite growth. The current state of the art of the memristor as an artificial synapse, light-induced resistive switching, and logic gates is comprehensively and systematically reviewed. Finally, we briefly discuss the stability factors of perovskites and present the conclusion with a broad outlook on the progress and challenges in the field of perovskite-based flexible memristors.
Collapse
Affiliation(s)
- Himangshu Jyoti Gogoi
- Department of Electrical Engineering, Indian Institute of Technology Guwahati, Guwahati 781039, India
| | - Kunal Bajpai
- Department of Physics, School of Technology, Pandit Deendayal Energy University, Gandhinagar 382421, India
| | - Arun Tej Mallajosyula
- Department of Electrical Engineering, Indian Institute of Technology Guwahati, Guwahati 781039, India
| | - Ankur Solanki
- Department of Physics, School of Technology, Pandit Deendayal Energy University, Gandhinagar 382421, India
| |
Collapse
|
34
|
Younis A, Lin CH, Guan X, Shahrokhi S, Huang CY, Wang Y, He T, Singh S, Hu L, Retamal JRD, He JH, Wu T. Halide Perovskites: A New Era of Solution-Processed Electronics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2005000. [PMID: 33938612 DOI: 10.1002/adma.202005000] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 10/29/2020] [Indexed: 05/26/2023]
Abstract
Organic-inorganic mixed halide perovskites have emerged as an excellent class of materials with a unique combination of optoelectronic properties, suitable for a plethora of applications ranging from solar cells to light-emitting diodes and photoelectrochemical devices. Recent works have showcased hybrid perovskites for electronic applications through improvements in materials design, processing, and device stability. Herein, a comprehensive up-to-date review is presented on hybrid perovskite electronics with a focus on transistors and memories. These applications are supported by the fundamental material properties of hybrid perovskite semiconductors such as tunable bandgap, ambipolar charge transport, reasonable mobility, defect characteristics, and solution processability, which are highlighted first. Then, recent progresses on perovskite-based transistors are reviewed, covering aspects of fabrication process, patterning techniques, contact engineering, 2D versus 3D material selection, and device performance. Furthermore, applications of perovskites in nonvolatile memories and artificial synaptic devices are presented. The ambient instability of hybrid perovskites and the strategies to tackle this bottleneck are also discussed. Finally, an outlook and opportunities to develop perovskite-based electronics as a competitive and feasible technology are highlighted.
Collapse
Affiliation(s)
- Adnan Younis
- School of Materials Science and Engineering, University of New South Wales, Sydney, NSW, 2052, Australia
- Department of Physics, College of Science, University of Bahrain, P.O. Box 32038, Sakhir Campus, Zallaq, Kingdom of Bahrain
| | - Chun-Ho Lin
- School of Materials Science and Engineering, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Xinwei Guan
- School of Materials Science and Engineering, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Shamim Shahrokhi
- School of Materials Science and Engineering, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Chien-Yu Huang
- School of Materials Science and Engineering, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Yutao Wang
- School of Materials Science and Engineering, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Tengyue He
- School of Materials Science and Engineering, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Simrjit Singh
- School of Materials Science and Engineering, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Long Hu
- School of Materials Science and Engineering, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Jose Ramon Duran Retamal
- Computer, Electrical and Mathematical Sciences and Engineering, Physical Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Saudi Arabia
| | - Jr-Hau He
- Department of Materials Science and Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong SAR, China
| | - Tom Wu
- School of Materials Science and Engineering, University of New South Wales, Sydney, NSW, 2052, Australia
| |
Collapse
|
35
|
Kim J, Lee W, Cho K, Ahn H, Lee J, Baek KY, Kim JK, Kang K, Lee T. Crystallinity-dependent device characteristics of polycrystalline 2D n = 4 Ruddlesden-Popper perovskite photodetectors. NANOTECHNOLOGY 2021; 32:185203. [PMID: 33498023 DOI: 10.1088/1361-6528/abe003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Ruddlesden-Popper (RP) perovskites have attracted a lot of attention as the active layer for optoelectronic devices due to their excellent photophysical properties and environmental stability. Especially, local structural properties of RP perovskites have shown to play important roles in determining the performance of optoelectronic devices. Here, we report the photodetector performance variation depending on the crystallinity of n = 4 two-dimensional (2D) RP perovskite polycrystalline films. Through controlling the solvent evaporation rate, 2D RP perovskite films could be tuned between highly- and randomly-orientated phases. We investigated how different factors related to the film crystallinity are reflected in the variation of photodetector performances by considering grain boundary and low energy edge state effects in n = 4 RP perovskites. Better understanding the interplay between these factors that govern the photophysical properties of the devices would be beneficial for designing high-performance RP perovskite-based optoelectronic devices.
Collapse
Affiliation(s)
- Junwoo Kim
- Department of Physics and Astronomy, and Institute of Applied Physics, Seoul National University, Seoul 08826, Republic of Korea
| | - Woocheol Lee
- Department of Physics and Astronomy, and Institute of Applied Physics, Seoul National University, Seoul 08826, Republic of Korea
| | - Kyungjune Cho
- Department of Physics and Astronomy, and Institute of Applied Physics, Seoul National University, Seoul 08826, Republic of Korea
| | - Heebeom Ahn
- Department of Physics and Astronomy, and Institute of Applied Physics, Seoul National University, Seoul 08826, Republic of Korea
| | - Jonghoon Lee
- Department of Physics and Astronomy, and Institute of Applied Physics, Seoul National University, Seoul 08826, Republic of Korea
| | - Kyeong-Yoon Baek
- Department of Physics and Astronomy, and Institute of Applied Physics, Seoul National University, Seoul 08826, Republic of Korea
| | - Jae-Keun Kim
- Department of Physics and Astronomy, and Institute of Applied Physics, Seoul National University, Seoul 08826, Republic of Korea
| | - Keehoon Kang
- Department of Physics and Astronomy, and Institute of Applied Physics, Seoul National University, Seoul 08826, Republic of Korea
| | - Takhee Lee
- Department of Physics and Astronomy, and Institute of Applied Physics, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
36
|
Fang Y, Zhai S, Chu L, Zhong J. Advances in Halide Perovskite Memristor from Lead-Based to Lead-Free Materials. ACS APPLIED MATERIALS & INTERFACES 2021; 13:17141-17157. [PMID: 33844908 DOI: 10.1021/acsami.1c03433] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Memristors have attracted considerable attention as one of the four basic circuit elements besides resistors, capacitors, and inductors. Especially, the nonvolatile memory devices have become a promising candidate for the new-generation information storage, due to their excellent write, read, and erase rates, in addition to the low-energy consumption, multistate storage, and high scalability. Among them, halide perovskite (HP) memristors have great potential to achieve low-cost practical information storage and computing. However, the usual lead-based HP memristors face serious problems of high toxicity and low stability. To alleviate the above issues, great effort has been devoted to develop lead-free HP memristors. Here, we have summarized and discussed the advances in HP memristors from lead-based to lead-free materials including memristive properties, stability, neural network applications, and memristive mechanism. Finally, the challenges and prospects of lead-free HP memristors have been discussed.
Collapse
Affiliation(s)
- Yuetong Fang
- New Energy Technology Engineering Laboratory of Jiangsu Province & College of Telecommunications and Information Engineering & College of Electronic and Optic Engineering, Nanjing University of Posts and Telecommunications, Nanjing 210023, People's Republic of China
| | - Shuaibo Zhai
- New Energy Technology Engineering Laboratory of Jiangsu Province & College of Telecommunications and Information Engineering & College of Electronic and Optic Engineering, Nanjing University of Posts and Telecommunications, Nanjing 210023, People's Republic of China
| | - Liang Chu
- New Energy Technology Engineering Laboratory of Jiangsu Province & College of Telecommunications and Information Engineering & College of Electronic and Optic Engineering, Nanjing University of Posts and Telecommunications, Nanjing 210023, People's Republic of China
- Guangdong Provincial Key Lab of Nano-Micro Materials Research, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, People's Republic of China
| | - Jiasong Zhong
- College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, People's Republic of China
| |
Collapse
|
37
|
Park Y, Lee JS. Bifunctional Silver-Doped ZnO for Reliable and Stable Organic-Inorganic Hybrid Perovskite Memory. ACS APPLIED MATERIALS & INTERFACES 2021; 13:1021-1026. [PMID: 33369379 DOI: 10.1021/acsami.0c18038] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Halide perovskites (HPs) have possible uses as an active layer for emerging memory devices due to their low operation voltage and high on/off ratio. However, HP-based memory devices, which are operated by the formation of a conductive filament, still suffer from reliability issues such as limited endurance and stability. To solve the problems, it is essential to control filament formation in the active layer. Here, we present nanoscale HP-based memory devices that have a Ag-doped ZnO (AZO) layer on HP. The AZO layer is used as a Ag ion reservoir for filament formation in HP, and this reservoir enables control of filament formation. By adjusting the Ag concentration in the AZO layer, the controlled filament composed of Ag can be formed; as a result, the memory device has excellent endurance (3 × 104 cycles) compared to the device that uses a Ag electrode instead of an AZO layer (4 × 102 cycles). Also, an AZO layer can passivate HP, so the device operates stably in ambient air for 15 days with a high on/off ratio (106). These results demonstrate that the introduction of the AZO layer can improve the reliability of HP-based memory devices for high-density applications.
Collapse
Affiliation(s)
- Youngjun Park
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Jang-Sik Lee
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| |
Collapse
|
38
|
Liu J, Jin J, Yang Z, Cai J, Yue J, Impundu J, Liu H, Wei H, Peng Z, Li YJ, Sun L. Extremely Low Program Current Memory Based on Self-Assembled All-Inorganic Perovskite Single Crystals. ACS APPLIED MATERIALS & INTERFACES 2020; 12:31776-31782. [PMID: 32567297 DOI: 10.1021/acsami.0c07186] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Memory devices based on lead halide perovskite have attracted great interests because of their unique current-voltage hysteresis. However, current memory devices based on polycrystalline perovskites usually suffer from large intrinsic electronic current and parasitic leakage current due to the existence of grain boundaries, which further leads to high power consumption. Here, a low-power resistance switching random-access memory device is demonstrated by assembling single-crystalline CsPbBr3 on Ag electrodes. The assembled structure serves as a bipolar nonvolatile resistance switching memory device with a low program current (∼10 nA), good endurance, long data retention (>103 S), and big on/off ratio of ∼103. The low program current results in a power of ∼3 × 10-8 W, which is much lower than that of polycrystalline perovskite-based devices (10-1-10-6 W). It is found that the formation and annihilation of Ag and bromide vacancy conductive filaments contribute to the significant resistive switching effect. At a low resistive state, the conductive filaments originate from the accumulation of Br- ions at the drain. Furthermore, the conductive filaments are proved to be a cone shape, shrinking from the drain to the source.
Collapse
Affiliation(s)
- Jia Liu
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiyou Jin
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhu Yang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
| | - Jinzhong Cai
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Junyi Yue
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Julienne Impundu
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hui Liu
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Haonan Wei
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
| | - Zhisheng Peng
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
| | - Yong Jun Li
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
| | - Lianfeng Sun
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
| |
Collapse
|
39
|
Ge J, Ma Z, Chen W, Cao X, Yan J, Fang H, Qin J, Liu Z, Pan S. Solution-processed inorganic δ-phase CsPbI 3 electronic synapses with short- and long-term plasticity in a crossbar array structure. NANOSCALE 2020; 12:13558-13566. [PMID: 32555883 DOI: 10.1039/d0nr03242e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Electronic synapses based on memristive devices can potentially open a niche area for neuromorphic computing by replicating the function of biological synapses with high fidelity. Recently, two-terminal memristors based on halide perovskites have demonstrated outstanding memristive properties and a variety of synaptic characteristics, combining with their additional advantages such as a solution-processed fabrication method and low crystalline temperature. However, the concerns over the chemical and phase stability of halide perovskites greatly hinder their practical applications. In this study, by using a simple single-step spin-coating method, we report artificial synapses with superior ambient stability (>90 days under ambient conditions) based on fully inorganic nonperovskite δ-phase CsPbI3 in a cross-bar array architecture. The threshold switching memristive device exhibits a moderate ON/OFF ratio, a relatively low operation voltage (0.3 V) and high endurance (>5 × 105). More importantly, the electronic device can emulate synaptic characteristics such as short-term plasticity, paired-pulse facilitation, and the transition from short-term memory to long-term memory with a high output signal-to-noise ratio (>102). This work represents the first record for artificial synapses based on nonperovskite CsPbI3 and will be a step toward achieving low-cost and high-density practical synapse arrays.
Collapse
Affiliation(s)
- Jun Ge
- Solid State Physics & Material Research Laboratory, School of Physics and Electronic Engineering, Guangzhou University, Guangzhou, 510006, China.
| | - Zelin Ma
- Solid State Physics & Material Research Laboratory, School of Physics and Electronic Engineering, Guangzhou University, Guangzhou, 510006, China.
| | - Weilong Chen
- Solid State Physics & Material Research Laboratory, School of Physics and Electronic Engineering, Guangzhou University, Guangzhou, 510006, China.
| | - Xucheng Cao
- Solid State Physics & Material Research Laboratory, School of Physics and Electronic Engineering, Guangzhou University, Guangzhou, 510006, China.
| | - Jianfeng Yan
- Solid State Physics & Material Research Laboratory, School of Physics and Electronic Engineering, Guangzhou University, Guangzhou, 510006, China.
| | - Huaheng Fang
- Solid State Physics & Material Research Laboratory, School of Physics and Electronic Engineering, Guangzhou University, Guangzhou, 510006, China.
| | - Jieli Qin
- Solid State Physics & Material Research Laboratory, School of Physics and Electronic Engineering, Guangzhou University, Guangzhou, 510006, China.
| | - Zhiyu Liu
- Solid State Physics & Material Research Laboratory, School of Physics and Electronic Engineering, Guangzhou University, Guangzhou, 510006, China.
| | - Shusheng Pan
- Solid State Physics & Material Research Laboratory, School of Physics and Electronic Engineering, Guangzhou University, Guangzhou, 510006, China.
| |
Collapse
|
40
|
Xia F, Xu Y, Li B, Hui W, Zhang S, Zhu L, Xia Y, Chen Y, Huang W. Improved Performance of CH 3NH 3PbI 3-xCl x Resistive Switching Memory by Assembling 2D/3D Perovskite Heterostructures. ACS APPLIED MATERIALS & INTERFACES 2020; 12:15439-15445. [PMID: 32148014 DOI: 10.1021/acsami.9b22732] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The rapidly growing demand for fast information storage and processing has driven the development of resistive random access memories (RRAMs). Recently, RRAMs based on organometal halide perovskite materials have been reported to have promising memory properties, which are essential for next-generation memory devices. In this study, a hybrid two-dimensional/three-dimensional (2D/3D) perovskite heterostructure has been created by depositing n-butylammonium iodide on top of the CH3NH3PbI3-xClx (MAPbI3-xClx) surface. The perovskite film is fabricated by a facile one-step spin-coating method with room-temperature molten salt methylammonium acetate in the air. Resistive switching memory devices with a 2D/3D perovskite heterostructure exhibit a significantly improved switching window (ON/OFF ratio over 103) with a lower operation voltage compared with their 3D counterparts. The 2D/3D perovskite heterostructure is advantageous for fabricating uniform-crystalline-grain, highly compact structures and can passivate defect states for the MAPbI3-xClx film and the interface, which results in improved memory properties. These results provide a new perspective for developing high-performance perovskite-based memory devices.
Collapse
Affiliation(s)
- Fei Xia
- Key Laboratory of Flexible Electronics (KLOFE) & Institution of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, P. R. China
| | - Ying Xu
- Key Laboratory of Flexible Electronics (KLOFE) & Institution of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, P. R. China
| | - Bixin Li
- Key Laboratory of Flexible Electronics (KLOFE) & Institution of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, P. R. China
- Department of Science Education, Laboratory of College Physics, Hunan First Normal University, 1015 Fenglin Third Road, Changsha 410205, China
| | - Wei Hui
- Key Laboratory of Flexible Electronics (KLOFE) & Institution of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, P. R. China
| | - Shiyang Zhang
- Department of Science Education, Laboratory of College Physics, Hunan First Normal University, 1015 Fenglin Third Road, Changsha 410205, China
| | - Lin Zhu
- Key Laboratory of Flexible Electronics (KLOFE) & Institution of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, P. R. China
| | - Yingdong Xia
- Key Laboratory of Flexible Electronics (KLOFE) & Institution of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, P. R. China
| | - Yonghua Chen
- Key Laboratory of Flexible Electronics (KLOFE) & Institution of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, P. R. China
| | - Wei Huang
- Key Laboratory of Flexible Electronics (KLOFE) & Institution of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, P. R. China
- Shaanxi Institute of Flexible Electronics (SIFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an 710072, China
- Key Laboratory for Organic Electronics and Information Displays (KLOEID), & Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
| |
Collapse
|
41
|
Shen Z, Zhao C, Qi Y, Mitrovic IZ, Yang L, Wen J, Huang Y, Li P, Zhao C. Memristive Non-Volatile Memory Based on Graphene Materials. MICROMACHINES 2020; 11:E341. [PMID: 32218324 PMCID: PMC7231216 DOI: 10.3390/mi11040341] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 03/14/2020] [Accepted: 03/21/2020] [Indexed: 02/04/2023]
Abstract
Resistive random access memory (RRAM), which is considered as one of the most promising next-generation non-volatile memory (NVM) devices and a representative of memristor technologies, demonstrated great potential in acting as an artificial synapse in the industry of neuromorphic systems and artificial intelligence (AI), due its advantages such as fast operation speed, low power consumption, and high device density. Graphene and related materials (GRMs), especially graphene oxide (GO), acting as active materials for RRAM devices, are considered as a promising alternative to other materials including metal oxides and perovskite materials. Herein, an overview of GRM-based RRAM devices is provided, with discussion about the properties of GRMs, main operation mechanisms for resistive switching (RS) behavior, figure of merit (FoM) summary, and prospect extension of GRM-based RRAM devices. With excellent physical and chemical advantages like intrinsic Young's modulus (1.0 TPa), good tensile strength (130 GPa), excellent carrier mobility (2.0 × 105 cm2∙V-1∙s-1), and high thermal (5000 Wm-1∙K-1) and superior electrical conductivity (1.0 × 106 S∙m-1), GRMs can act as electrodes and resistive switching media in RRAM devices. In addition, the GRM-based interface between electrode and dielectric can have an effect on atomic diffusion limitation in dielectric and surface effect suppression. Immense amounts of concrete research indicate that GRMs might play a significant role in promoting the large-scale commercialization possibility of RRAM devices.
Collapse
Affiliation(s)
- Zongjie Shen
- Department of Electrical and Electronic Engineering, Xi’an Jiaotong–Liverpool University, Suzhou 215123, China; (Z.S.); (Y.Q.); (J.W.); (Y.H.); (P.L.)
- Department of Electrical Engineering and Electronics, University of Liverpool, Liverpool L69 3BX, UK;
| | - Chun Zhao
- Department of Electrical and Electronic Engineering, Xi’an Jiaotong–Liverpool University, Suzhou 215123, China; (Z.S.); (Y.Q.); (J.W.); (Y.H.); (P.L.)
- Department of Electrical Engineering and Electronics, University of Liverpool, Liverpool L69 3BX, UK;
| | - Yanfei Qi
- Department of Electrical and Electronic Engineering, Xi’an Jiaotong–Liverpool University, Suzhou 215123, China; (Z.S.); (Y.Q.); (J.W.); (Y.H.); (P.L.)
- School of Electronic and Information Engineering, Xi’an Jiaotong University, Xi’an 710061, China
| | - Ivona Z. Mitrovic
- Department of Electrical Engineering and Electronics, University of Liverpool, Liverpool L69 3BX, UK;
| | - Li Yang
- Department of Chemistry, Xi’an Jiaotong–Liverpool University, Suzhou 215123, China;
- Department of Chemistry, University of Liverpool, Liverpool L69 3BX, UK
| | - Jiacheng Wen
- Department of Electrical and Electronic Engineering, Xi’an Jiaotong–Liverpool University, Suzhou 215123, China; (Z.S.); (Y.Q.); (J.W.); (Y.H.); (P.L.)
- Department of Electrical Engineering and Electronics, University of Liverpool, Liverpool L69 3BX, UK;
| | - Yanbo Huang
- Department of Electrical and Electronic Engineering, Xi’an Jiaotong–Liverpool University, Suzhou 215123, China; (Z.S.); (Y.Q.); (J.W.); (Y.H.); (P.L.)
- Department of Electrical Engineering and Electronics, University of Liverpool, Liverpool L69 3BX, UK;
| | - Puzhuo Li
- Department of Electrical and Electronic Engineering, Xi’an Jiaotong–Liverpool University, Suzhou 215123, China; (Z.S.); (Y.Q.); (J.W.); (Y.H.); (P.L.)
- Department of Electrical Engineering and Electronics, University of Liverpool, Liverpool L69 3BX, UK;
| | - Cezhou Zhao
- Department of Electrical and Electronic Engineering, Xi’an Jiaotong–Liverpool University, Suzhou 215123, China; (Z.S.); (Y.Q.); (J.W.); (Y.H.); (P.L.)
- Department of Electrical Engineering and Electronics, University of Liverpool, Liverpool L69 3BX, UK;
| |
Collapse
|
42
|
Lv Z, Wang Y, Chen J, Wang J, Zhou Y, Han ST. Semiconductor Quantum Dots for Memories and Neuromorphic Computing Systems. Chem Rev 2020; 120:3941-4006. [DOI: 10.1021/acs.chemrev.9b00730] [Citation(s) in RCA: 114] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Ziyu Lv
- Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen 518060, P. R. China
| | - Yan Wang
- Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen 518060, P. R. China
| | - Jingrui Chen
- Institute for Advanced Study, Shenzhen University, Shenzhen 518060, P. R. China
| | - Junjie Wang
- Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen 518060, P. R. China
| | - Ye Zhou
- Institute for Advanced Study, Shenzhen University, Shenzhen 518060, P. R. China
| | - Su-Ting Han
- Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen 518060, P. R. China
| |
Collapse
|
43
|
Wu W, Lin XL, Liu Q, He Y, Huang YR, Chen B, Li HH, Chen ZR. The engineering of stilbazolium/iodocuprate hybrids with optical/electrical performances by modulating inter-molecular charge transfer among H-aggregated chromophores. Inorg Chem Front 2020. [DOI: 10.1039/c9qi01672d] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Good electrical bistability performances in stilbazolium/iodocuprate hybrids stem from the better face-to-face π⋯π stacking interactions induced by the substituents with appropriate lengths and electronic natures.
Collapse
Affiliation(s)
- Wei Wu
- College of Chemistry
- Fuzhou University
- Fuzhou
- China
| | | | - Qian Liu
- College of Chemistry
- Fuzhou University
- Fuzhou
- China
| | - Yan He
- College of Chemistry
- Fuzhou University
- Fuzhou
- China
| | | | - Bin Chen
- College of Chemistry
- Fuzhou University
- Fuzhou
- China
| | - Hao-Hong Li
- College of Chemistry
- Fuzhou University
- Fuzhou
- China
| | | |
Collapse
|
44
|
Cheng XF, Qian WH, Wang J, Yu C, He JH, Li H, Xu QF, Chen DY, Li NJ, Lu JM. Environmentally Robust Memristor Enabled by Lead-Free Double Perovskite for High-Performance Information Storage. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2019; 15:e1905731. [PMID: 31668013 DOI: 10.1002/smll.201905731] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 10/17/2019] [Indexed: 06/10/2023]
Abstract
Memristors are emerging as a rising star of new computing and information storage techniques. However, the practical applications are severely challenged by their instability toward harsh conditions, including high moisture, high temperatures, fire, ionizing irradiation, and mechanical bending. In this work, for the first time, lead-free double perovskite Cs2 AgBiBr6 is utilized for environmentally robust memristors, enabling highly efficient information storage. The memory performance of the typical indium-tin-oxide/Cs2 AgBiBr6 /Au sandwich-like memristors is retained after 1000 switching cycles, 105 s of reading, and 104 times of mechanical bending, comparable to other halide perovskite memristors. Most importantly, the memristive behavior remains robust in harsh environments, including humidity up to 80%, temperatures as high as 453 K, an alcohol burner flame for 10 s, and 60 Co γ-ray irradiation for a dosage of 5 × 105 rad (SI), which is not achieved by any other memristors and commercial flash memory techniques. The realization of an environmentally robust memristor from Cs2 AgBiBr6 with a high memory performance will inspire further development of robust electronics using lead-free double perovskites.
Collapse
Affiliation(s)
- Xue-Feng Cheng
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Suzhou Nano Science and Technology, National United Engineering Laboratory of Functionalized Environmental Adsorption Materials, Soochow University, Suzhou, 215123, P. R. China
| | - Wen-Hu Qian
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Suzhou Nano Science and Technology, National United Engineering Laboratory of Functionalized Environmental Adsorption Materials, Soochow University, Suzhou, 215123, P. R. China
- Testing and Analysis Center, Soochow University, Suzhou, 215123, P. R. China
| | - Jia Wang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Suzhou Nano Science and Technology, National United Engineering Laboratory of Functionalized Environmental Adsorption Materials, Soochow University, Suzhou, 215123, P. R. China
| | - Chuang Yu
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Suzhou Nano Science and Technology, National United Engineering Laboratory of Functionalized Environmental Adsorption Materials, Soochow University, Suzhou, 215123, P. R. China
| | - Jing-Hui He
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Suzhou Nano Science and Technology, National United Engineering Laboratory of Functionalized Environmental Adsorption Materials, Soochow University, Suzhou, 215123, P. R. China
| | - Hua Li
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Suzhou Nano Science and Technology, National United Engineering Laboratory of Functionalized Environmental Adsorption Materials, Soochow University, Suzhou, 215123, P. R. China
| | - Qing-Feng Xu
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Suzhou Nano Science and Technology, National United Engineering Laboratory of Functionalized Environmental Adsorption Materials, Soochow University, Suzhou, 215123, P. R. China
| | - Dong-Yun Chen
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Suzhou Nano Science and Technology, National United Engineering Laboratory of Functionalized Environmental Adsorption Materials, Soochow University, Suzhou, 215123, P. R. China
| | - Na-Jun Li
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Suzhou Nano Science and Technology, National United Engineering Laboratory of Functionalized Environmental Adsorption Materials, Soochow University, Suzhou, 215123, P. R. China
| | - Jian-Mei Lu
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Suzhou Nano Science and Technology, National United Engineering Laboratory of Functionalized Environmental Adsorption Materials, Soochow University, Suzhou, 215123, P. R. China
| |
Collapse
|
45
|
Cao X, Han Y, Zhou J, Zuo W, Gao X, Han L, Pang X, Zhang L, Liu Y, Cao S. Enhanced Switching Ratio and Long-Term Stability of Flexible RRAM by Anchoring Polyvinylammonium on Perovskite Grains. ACS APPLIED MATERIALS & INTERFACES 2019; 11:35914-35923. [PMID: 31495172 DOI: 10.1021/acsami.9b12931] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The ON/OFF ratio and long-term stability are two important issues for flexible organic-inorganic hybrid perovskite (OHP) resistive random access memory (RRAM) for practical applications. In this work, polyvinylammonium (PVAm) is applied to partially replace methylamine ions (MA+) to fabricate the stable and flexible polymeric OHP RRAM devices, wherein PVAm acts as nucleation sites and the template for crystalline growth of MAPbI3 to tune the microscopic perovskite structure. Simultaneously, the multiple perovskite grain interfaces are strengthened through the long-carbochain polymeric backbone, hence producing a continuous and compact perovskite film. As a result, the PVAm-modified OHP RRAM device shows remarkable enhancement of the ON/OFF ratio, long-term stability, and flexibility compared with the unmodified OHP device. Specifically, the polymeric OHP device exhibits fast and stable nonvolatile resistive switching (RS) characteristics with an ON/OFF ratio of ∼105 and a set voltage of -0.45 V under ambient conditions. Also, the distinct multilevel RS behavior can be realized in this device by controlling the compliance current in the SET process. Additionally, the unsealed polymeric OHP device manifests the striking long-term stability, which can still maintain the stable memory performance after 1 year exposure to the humid and thermal ambient environment. Furthermore, the flexible polymeric OHP device was also fabricated and affords the excellent bending endurance behavior by showing a reproducible RS property over 100-cycle bending experiments. This work provides a new perovskite-based material design strategy of polymeric OHP for stable and flexible RRAM devices with the high ON/OFF ratio.
Collapse
Affiliation(s)
| | | | | | | | | | - Lifeng Han
- College of Materials and Chemical Engineering , Zhengzhou University of Light Industry , Zhengzhou 450002 , People's Republic of China
| | | | | | | | | |
Collapse
|
46
|
Shen Z, Qi Y, Mitrovic IZ, Zhao C, Hall S, Yang L, Luo T, Huang Y, Zhao C. Effect of Annealing Temperature for Ni/AlO x/Pt RRAM Devices Fabricated with Solution-Based Dielectric. MICROMACHINES 2019; 10:mi10070446. [PMID: 31269730 PMCID: PMC6680579 DOI: 10.3390/mi10070446] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/01/1970] [Revised: 06/25/2019] [Accepted: 06/28/2019] [Indexed: 11/19/2022]
Abstract
Resistive random access memory (RRAM) devices with Ni/AlOx/Pt-structure were manufactured by deposition of a solution-based aluminum oxide (AlOx) dielectric layer which was subsequently annealed at temperatures from 200 °C to 300 °C, in increments of 25 °C. The devices displayed typical bipolar resistive switching characteristics. Investigations were carried out on the effect of different annealing temperatures for associated RRAM devices to show that performance was correlated with changes of hydroxyl group concentration in the AlOx thin films. The annealing temperature of 250 °C was found to be optimal for the dielectric layer, exhibiting superior performance of the RRAM devices with the lowest operation voltage (<1.5 V), the highest ON/OFF ratio (>104), the narrowest resistance distribution, the longest retention time (>104 s) and the most endurance cycles (>150).
Collapse
Affiliation(s)
- Zongjie Shen
- Department of Electrical and Electronic Engineering, Xi'an Jiaotong-Liverpool University, Suzhou 215123, China
- Department of Electrical Engineering and Electronics, University of Liverpool, Liverpool L69 3BX, UK
| | - Yanfei Qi
- Department of Electrical and Electronic Engineering, Xi'an Jiaotong-Liverpool University, Suzhou 215123, China
- School of Electronic and Information Engineering, Xi'an Jiaotong University, Xi'an 710061, China
| | - Ivona Z Mitrovic
- Department of Electrical Engineering and Electronics, University of Liverpool, Liverpool L69 3BX, UK
| | - Cezhou Zhao
- Department of Electrical and Electronic Engineering, Xi'an Jiaotong-Liverpool University, Suzhou 215123, China
- Department of Electrical Engineering and Electronics, University of Liverpool, Liverpool L69 3BX, UK
| | - Steve Hall
- Department of Electrical Engineering and Electronics, University of Liverpool, Liverpool L69 3BX, UK
| | - Li Yang
- Department of Chemistry, Xi'an Jiaotong-Liverpool University, Suzhou 215123, China
- Department of Chemistry, University of Liverpool, Liverpool L69 3BX, UK
| | - Tian Luo
- Department of Electrical and Electronic Engineering, Xi'an Jiaotong-Liverpool University, Suzhou 215123, China
- Department of Electrical Engineering and Electronics, University of Liverpool, Liverpool L69 3BX, UK
| | - Yanbo Huang
- Department of Electrical and Electronic Engineering, Xi'an Jiaotong-Liverpool University, Suzhou 215123, China
- Department of Electrical Engineering and Electronics, University of Liverpool, Liverpool L69 3BX, UK
| | - Chun Zhao
- Department of Electrical and Electronic Engineering, Xi'an Jiaotong-Liverpool University, Suzhou 215123, China.
- Department of Electrical Engineering and Electronics, University of Liverpool, Liverpool L69 3BX, UK.
| |
Collapse
|