1
|
Kang M, Sharma R, Blanco C, Wiedeman D, Altemose Q, Lynch PE, Sop Tagne GBJ, Zhang Y, Shalaginov MY, Popescu CC, Triplett BM, Rivero-Baleine C, Schwarz CM, Agarwal AM, Gu T, Hu J, Richardson KA. Solution-derived Ge-Sb-Se-Te phase-change chalcogenide films. Sci Rep 2024; 14:18151. [PMID: 39103371 DOI: 10.1038/s41598-024-69045-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Accepted: 07/30/2024] [Indexed: 08/07/2024] Open
Abstract
Ge-Sb-Se-Te chalcogenides, namely Se-substituted Ge-Sb-Te, have been developed as an alternative optical phase change material (PCM) with a high figure-of-merit. A need for the integration of such new PCMs onto a variety of photonic platforms has necessitated the development of fabrication processes compatible with diverse material compositions as well as substrates of varying material types, shapes, and sizes. This study explores the application of chemical solution deposition as a method capable of creating conformally coated layers and delves into the resulting modifications in the structural and optical properties of Ge-Sb-Se-Te PCMs. Specifically, we detail the solution-based deposition of Ge-Sb-Se-Te layers and present a comparative analysis with those deposited via thermal evaporation. We also discuss our ongoing endeavor to improve available choice of processing-material combinations and how to realize solution-derived high figure-of-merit optical PCM layers, which will enable a new era for the development of reconfigurable photonic devices.
Collapse
Affiliation(s)
- Myungkoo Kang
- New York State College of Ceramics, Alfred University, Alfred, NY, USA.
| | - Rashi Sharma
- College of Optics and Photonics, CREOL, University of Central Florida, Orlando, FL, USA
| | - Cesar Blanco
- College of Optics and Photonics, CREOL, University of Central Florida, Orlando, FL, USA
| | - Daniel Wiedeman
- College of Optics and Photonics, CREOL, University of Central Florida, Orlando, FL, USA
| | - Quentin Altemose
- Department of Physics and Astronomy, Ursinus College, Collegeville, PA, USA
| | - Patrick E Lynch
- New York State College of Ceramics, Alfred University, Alfred, NY, USA
| | - Gil B J Sop Tagne
- New York State College of Ceramics, Alfred University, Alfred, NY, USA
| | - Yifei Zhang
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Mikhail Y Shalaginov
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Cosmin-Constantin Popescu
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | | | | | - Casey M Schwarz
- Department of Physics and Astronomy, Ursinus College, Collegeville, PA, USA
| | - Anuradha M Agarwal
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Tian Gu
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Juejun Hu
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Kathleen A Richardson
- College of Optics and Photonics, CREOL, University of Central Florida, Orlando, FL, USA
| |
Collapse
|
2
|
Ma Z, Kong K, Yin Y, Guo Z, Ma X, Lin Q, Wang J, Shen Y, Lu X, Xu X, Kong X, Liu Z, Tang R. High Mechanical Strength Alloy-like Minerals Prepared by Inorganic Ionic Co-cross-linking. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2308017. [PMID: 38009645 DOI: 10.1002/adma.202308017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 11/01/2023] [Indexed: 11/29/2023]
Abstract
Alloys often combine different metals to generate superior mechanical properties. However, it is challenging to prepare high mechanical strength minerals with similar strategies. Using calcium carbonate (CaC) and calcium phosphate (CaP) as examples, this work synthesizes a group of compounds with the chemical formulas Ca(CO3 )x (PO4 )2(1- x )/3 (0 < x < 1, CaCPs) by cross-linking ionic oligomers. Unlike mixtures, these CaCPs exhibit a single temperature for the phase transition from amorphous to crystallized CaC (calcite) and CaP (hydroxyapatite). By heat-induced synchronous crystallization, dual-phase CaC/CaP with continuous crystallized boundaries are resembled to alloy-like minerals (ALMs). The mechanical properties of the ALMs are adjusted by tailoring their chemical compositions to reach a hardness of 5.6 GPa, which exceed those of control calcite and hydroxyapatite samples by 430% and 260%, respectively. This strategy expands the chemical scope of inorganic materials and holds promise for preparing high-performance minerals.
Collapse
Affiliation(s)
- Zaiqiang Ma
- Department of Chemistry, Zhejiang University, Hangzhou, 310058, China
| | - Kangren Kong
- Department of Chemistry, Zhejiang University, Hangzhou, 310058, China
| | - Yu Yin
- Department of Chemistry, Zhejiang University, Hangzhou, 310058, China
| | - Zhengxi Guo
- Department of Chemistry, Zhejiang University, Hangzhou, 310058, China
| | - Xiaoming Ma
- Department of Chemistry, Zhejiang University, Hangzhou, 310058, China
| | - Qingyun Lin
- Center of Electron Microscopy, School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Jie Wang
- Department of Chemistry, Zhejiang University, Hangzhou, 310058, China
| | - Yinlin Shen
- Department of Chemistry, Zhejiang University, Hangzhou, 310058, China
| | - Xingyu Lu
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, Instrumentation and Service Centre for Molecular Sciences, Westlake University, Hangzhou, 310024, China
| | - Xurong Xu
- Qiushi Academy for Advanced Studies, Zhejiang University, Hangzhou, 310027, China
| | - Xueqian Kong
- Department of Chemistry, Zhejiang University, Hangzhou, 310058, China
- Institute of Translational Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Zhaoming Liu
- Department of Chemistry, Zhejiang University, Hangzhou, 310058, China
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, Zhejiang University, Hangzhou, 310027, China
| | - Ruikang Tang
- Department of Chemistry, Zhejiang University, Hangzhou, 310058, China
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, Zhejiang University, Hangzhou, 310027, China
| |
Collapse
|
3
|
Prabhathan P, Sreekanth KV, Teng J, Ko JH, Yoo YJ, Jeong HH, Lee Y, Zhang S, Cao T, Popescu CC, Mills B, Gu T, Fang Z, Chen R, Tong H, Wang Y, He Q, Lu Y, Liu Z, Yu H, Mandal A, Cui Y, Ansari AS, Bhingardive V, Kang M, Lai CK, Merklein M, Müller MJ, Song YM, Tian Z, Hu J, Losurdo M, Majumdar A, Miao X, Chen X, Gholipour B, Richardson KA, Eggleton BJ, Sharda K, Wuttig M, Singh R. Roadmap for phase change materials in photonics and beyond. iScience 2023; 26:107946. [PMID: 37854690 PMCID: PMC10579438 DOI: 10.1016/j.isci.2023.107946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2023] Open
Abstract
Phase Change Materials (PCMs) have demonstrated tremendous potential as a platform for achieving diverse functionalities in active and reconfigurable micro-nanophotonic devices across the electromagnetic spectrum, ranging from terahertz to visible frequencies. This comprehensive roadmap reviews the material and device aspects of PCMs, and their diverse applications in active and reconfigurable micro-nanophotonic devices across the electromagnetic spectrum. It discusses various device configurations and optimization techniques, including deep learning-based metasurface design. The integration of PCMs with Photonic Integrated Circuits and advanced electric-driven PCMs are explored. PCMs hold great promise for multifunctional device development, including applications in non-volatile memory, optical data storage, photonics, energy harvesting, biomedical technology, neuromorphic computing, thermal management, and flexible electronics.
Collapse
Affiliation(s)
- Patinharekandy Prabhathan
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore
- Centre for Disruptive Photonic Technologies, The Photonic Institute, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Kandammathe Valiyaveedu Sreekanth
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A∗STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore
| | - Jinghua Teng
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A∗STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore
| | - Joo Hwan Ko
- School of Electrical Engineering and Computer Science, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea
| | - Young Jin Yoo
- School of Electrical Engineering and Computer Science, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea
| | - Hyeon-Ho Jeong
- School of Electrical Engineering and Computer Science, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea
| | - Yubin Lee
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea
| | - Shoujun Zhang
- DELL, Center for Terahertz Waves and College of Precision Instrument and Optoelectronics Engineering, Key Laboratory of Optoelectronic Information Technology (Ministry of Education of China), Tianjin University, Tianjin 300072, China
| | - Tun Cao
- DELL, School of Optoelectronic Engineering and Instrumentation Science, Dalian University of Technology, Dalian 116024, China
| | - Cosmin-Constantin Popescu
- Department of Materials Science & Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Brian Mills
- Department of Materials Science & Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Tian Gu
- Department of Materials Science & Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Materials Research Laboratory, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Zhuoran Fang
- Department of Electrical & Computer Engineering, University of Washington, Washington, Seattle, USA
| | - Rui Chen
- Department of Electrical & Computer Engineering, University of Washington, Washington, Seattle, USA
| | - Hao Tong
- Wuhan National Research Center for Optoelectronics, School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan, China
| | - Yi Wang
- Wuhan National Research Center for Optoelectronics, School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan, China
| | - Qiang He
- Wuhan National Research Center for Optoelectronics, School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan, China
| | - Yitao Lu
- Wuhan National Research Center for Optoelectronics, School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan, China
| | - Zhiyuan Liu
- Wuhan National Research Center for Optoelectronics, School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan, China
| | - Han Yu
- Institute of Advanced Materials, Beijing Normal University, Beijing 100875, China
| | - Avik Mandal
- Nanoscale Optics Lab, ECE Department, University of Alberta, Edmonton, Canada
| | - Yihao Cui
- Nanoscale Optics Lab, ECE Department, University of Alberta, Edmonton, Canada
| | - Abbas Sheikh Ansari
- Nanoscale Optics Lab, ECE Department, University of Alberta, Edmonton, Canada
| | - Viraj Bhingardive
- Nanoscale Optics Lab, ECE Department, University of Alberta, Edmonton, Canada
| | - Myungkoo Kang
- CREOL, College of Optics and Photonics, University of Central Florida, Orlando, FL, USA
| | - Choon Kong Lai
- Institute of Photonics and Optical Science (IPOS), School of Physics, The University of Sydney, New South Wales, NSW 2006, Australia
- The University of Sydney Nano Institute (Sydney Nano), The University of Sydney, New South Wales, NSW 2006, Australia
| | - Moritz Merklein
- Institute of Photonics and Optical Science (IPOS), School of Physics, The University of Sydney, New South Wales, NSW 2006, Australia
- The University of Sydney Nano Institute (Sydney Nano), The University of Sydney, New South Wales, NSW 2006, Australia
| | | | - Young Min Song
- School of Electrical Engineering and Computer Science, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea
- Anti-Viral Research Center, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea
- AI Graduate School, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea
| | - Zhen Tian
- DELL, Center for Terahertz Waves and College of Precision Instrument and Optoelectronics Engineering, Key Laboratory of Optoelectronic Information Technology (Ministry of Education of China), Tianjin University, Tianjin 300072, China
| | - Juejun Hu
- Department of Materials Science & Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Materials Research Laboratory, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Maria Losurdo
- Istituto di Chimica della Materia Condensata e di Tecnologie per l'Energia, CNR-ICMATE, Corso Stati Uniti 4, 35127 Padova, Italy
| | - Arka Majumdar
- Department of Electrical & Computer Engineering, University of Washington, Washington, Seattle, USA
| | - Xiangshui Miao
- Wuhan National Research Center for Optoelectronics, School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan, China
| | - Xiao Chen
- Institute of Advanced Materials, Beijing Normal University, Beijing 100875, China
| | - Behrad Gholipour
- Nanoscale Optics Lab, ECE Department, University of Alberta, Edmonton, Canada
| | - Kathleen A. Richardson
- CREOL, College of Optics and Photonics, University of Central Florida, Orlando, FL, USA
- Department of Materials Science and Engineering, University of Central Florida, Orlando, FL, USA
| | - Benjamin J. Eggleton
- Institute of Photonics and Optical Science (IPOS), School of Physics, The University of Sydney, New South Wales, NSW 2006, Australia
- The University of Sydney Nano Institute (Sydney Nano), The University of Sydney, New South Wales, NSW 2006, Australia
| | - Kanudha Sharda
- iScience, Cell Press, 125 London Wall, Barbican, London EC2Y 5AJ, UK
- iScience, Cell Press, RELX India Pvt Ltd., 14th Floor, Building No. 10B, DLF Cyber City, Phase II, Gurugram, Haryana 122002, India
| | - Matthias Wuttig
- Institute of Physics IA, RWTH Aachen University, 52074 Aachen, Germany
- Peter Grünberg Institute (PGI 10), Forschungszentrum Jülich, 52428 Jülich, Germany
| | - Ranjan Singh
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore
- Centre for Disruptive Photonic Technologies, The Photonic Institute, 50 Nanyang Avenue, Singapore 639798, Singapore
| |
Collapse
|
4
|
Perkins J, Cheng H, Craig C, Hewak DW, Gholipour B. Color Tunable, Lithography-Free Refractory Metal-Oxide Metacoatings with a Graded Refractive Index Profile. NANO LETTERS 2023; 23:2601-2606. [PMID: 36995278 PMCID: PMC10103291 DOI: 10.1021/acs.nanolett.2c04867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
The refractory metal-oxide semiconductors are an overlooked platform for nanophononics that offer alloys with high melting points and tunable optical constants through stoichiometry changes and ion intercalation. We show that these semiconductors can form metamaterial coatings (metacoatings) made from a set of highly subwavelength, periodic metal-oxide layers (≤20 nm) with a varying and graded refractive index profile that includes a combination of high and low refractive indices and plasmonic layers. These metacoatings exhibit vibrant, structural color arising from the periodic index profile that can be tuned across the visible spectrum, over ultralarge lateral areas through bottom-up thermal annealing techniques.
Collapse
Affiliation(s)
- Joshua Perkins
- Nanoscale Optics Lab, Department of Electrical and Computer Engineering, University of Alberta, T6G 2R3, Edmonton, Canada
| | - Haoyang Cheng
- Nanoscale Optics Lab, Department of Electrical and Computer Engineering, University of Alberta, T6G 2R3, Edmonton, Canada
| | - Chris Craig
- Optoelectronics Research Centre (ORC), University of Southampton, Southampton SO17 1BJ, U.K
| | - Daniel W Hewak
- Optoelectronics Research Centre (ORC), University of Southampton, Southampton SO17 1BJ, U.K
| | - Behrad Gholipour
- Nanoscale Optics Lab, Department of Electrical and Computer Engineering, University of Alberta, T6G 2R3, Edmonton, Canada
| |
Collapse
|
5
|
Sreekanth KV, Medwal R, Das CM, Gupta M, Mishra M, Yong KT, Rawat RS, Singh R. Electrically Tunable All-PCM Visible Plasmonics. NANO LETTERS 2021; 21:4044-4050. [PMID: 33900781 DOI: 10.1021/acs.nanolett.1c00941] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The realization of electrically tunable plasmonic resonances in the ultraviolet (UV) to visible spectral band is particularly important for active nanophotonic device applications. However, the plasmonic resonances in the UV to visible wavelength range cannot be tuned due to the lack of tunable plasmonic materials. Here, we experimentally demonstrate tunable plasmonic resonances at visible wavelengths using a chalcogenide semiconductor alloy such as antimony telluride (Sb2Te3), by switching the structural phase of Sb2Te3 from amorphous to crystalline. We demonstrate the excitation of a propagating surface plasmon with a high plasmonic figure of merit in both amorphous and crystalline phases of Sb2Te3 thin films. We show polarization-dependent and -independent plasmonic resonances by fabricating one and two-dimensional periodic nanostructures in Sb2Te3 thin films, respectively. Moreover, we demonstrate electrically tunable plasmonic resonances using a microheater integrated with the Sb2Te3/Si device. The developed electrically tunable Sb2Te3-based plasmonic devices could find applications in the development of active color filters.
Collapse
Affiliation(s)
- Kandammathe Valiyaveedu Sreekanth
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore
- Centre for Disruptive Photonic Technologies, The Photonic Institute, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Rohit Medwal
- Natural Sciences and Science Education, National Institute of Education, Nanyang Technological University, Singapore 637616, Singapore
| | - Chandreyee M Das
- School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798, Singapore
- CINTRA CNRS/NTU/THALES, UMI 3288, Research Techno Plaza, 50 Nanyang Drive, Nanyang Technological University, Singapore, 637553, Singapore
| | - Manoj Gupta
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore
- Centre for Disruptive Photonic Technologies, The Photonic Institute, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Mayank Mishra
- Natural Sciences and Science Education, National Institute of Education, Nanyang Technological University, Singapore 637616, Singapore
| | - Ken-Tye Yong
- School of Biomedical Engineering, The University of Sydney, Sydney, New South Wales 2006, Australia
- The University of Sydney Nano Institute, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Rajdeep Singh Rawat
- Natural Sciences and Science Education, National Institute of Education, Nanyang Technological University, Singapore 637616, Singapore
| | - Ranjan Singh
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore
- Centre for Disruptive Photonic Technologies, The Photonic Institute, 50 Nanyang Avenue, Singapore 639798, Singapore
| |
Collapse
|
6
|
Heßler A, Wahl S, Leuteritz T, Antonopoulos A, Stergianou C, Schön CF, Naumann L, Eicker N, Lewin M, Maß TWW, Wuttig M, Linden S, Taubner T. In 3SbTe 2 as a programmable nanophotonics material platform for the infrared. Nat Commun 2021; 12:924. [PMID: 33568636 PMCID: PMC7876017 DOI: 10.1038/s41467-021-21175-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 01/13/2021] [Indexed: 11/24/2022] Open
Abstract
The high dielectric optical contrast between the amorphous and crystalline structural phases of non-volatile phase-change materials (PCMs) provides a promising route towards tuneable nanophotonic devices. Here, we employ the next-generation PCM In3SbTe2 (IST) whose optical properties change from dielectric to metallic upon crystallization in the whole infrared spectral range. This distinguishes IST as a switchable infrared plasmonic PCM and enables a programmable nanophotonics material platform. We show how resonant metallic nanostructures can be directly written, modified and erased on and below the meta-atom level in an IST thin film by a pulsed switching laser, facilitating direct laser writing lithography without need for cumbersome multi-step nanofabrication. With this technology, we demonstrate large resonance shifts of nanoantennas of more than 4 µm, a tuneable mid-infrared absorber with nearly 90% absorptance as well as screening and nanoscale “soldering” of metallic nanoantennas. Our concepts can empower improved designs of programmable nanophotonic devices for telecommunications, (bio)sensing and infrared optics, e.g. programmable infrared detectors, emitters and reconfigurable holograms. Here, the authors introduce In3SbTe2 (IST) as a programmable material platform for plasmonics and nanophotonics in the infrared. They demonstrate direct optical writing, modifying and erasing of metallic crystalline IST nanoantennas, tuning their resonances, as well as nanoscale screening and soldering.
Collapse
Affiliation(s)
- Andreas Heßler
- Institute of Physics (IA), RWTH Aachen University, Aachen, Germany.
| | - Sophia Wahl
- Institute of Physics (IA), RWTH Aachen University, Aachen, Germany
| | - Till Leuteritz
- Physikalisches Institut, University of Bonn, Bonn, Germany
| | | | | | | | - Lukas Naumann
- Physikalisches Institut, University of Bonn, Bonn, Germany
| | - Niklas Eicker
- Institute of Physics (IA), RWTH Aachen University, Aachen, Germany
| | - Martin Lewin
- Institute of Physics (IA), RWTH Aachen University, Aachen, Germany
| | - Tobias W W Maß
- Institute of Physics (IA), RWTH Aachen University, Aachen, Germany
| | - Matthias Wuttig
- Institute of Physics (IA), RWTH Aachen University, Aachen, Germany
| | - Stefan Linden
- Physikalisches Institut, University of Bonn, Bonn, Germany
| | - Thomas Taubner
- Institute of Physics (IA), RWTH Aachen University, Aachen, Germany.
| |
Collapse
|
7
|
Piccinotti D, MacDonald KF, A Gregory S, Youngs I, Zheludev NI. Artificial intelligence for photonics and photonic materials. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2021; 84:012401. [PMID: 33355315 DOI: 10.1088/1361-6633/abb4c7] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Artificial intelligence (AI) is the most important new methodology in scientific research since the adoption of quantum mechanics and it is providing exciting results in numerous fields of science and technology. In this review we summarize research and discuss future opportunities for AI in the domains of photonics, nanophotonics, plasmonics and photonic materials discovery, including metamaterials.
Collapse
Affiliation(s)
- Davide Piccinotti
- Optoelectronics Research Centre and Centre for Photonic Metamaterials, University of Southampton, Southampton, SO17 1BJ, United Kingdom
| | - Kevin F MacDonald
- Optoelectronics Research Centre and Centre for Photonic Metamaterials, University of Southampton, Southampton, SO17 1BJ, United Kingdom
| | - Simon A Gregory
- Defence Science and Technology Laboratory, Salisbury, SP4 0JQ, United Kingdom
| | - Ian Youngs
- Defence Science and Technology Laboratory, Salisbury, SP4 0JQ, United Kingdom
| | - Nikolay I Zheludev
- Optoelectronics Research Centre and Centre for Photonic Metamaterials, University of Southampton, Southampton, SO17 1BJ, United Kingdom
- Centre for Disruptive Photonic Technologies, The Photonics Institute, School of Physical and Mathematical Sciences, Nanyang Technological University, 637371 Singapore
| |
Collapse
|
8
|
Luo S, Li T, Wang X, Faizan M, Zhang L. High‐throughput computational materials screening and discovery of optoelectronic semiconductors. WIRES COMPUTATIONAL MOLECULAR SCIENCE 2020. [DOI: 10.1002/wcms.1489] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Shulin Luo
- State Key Laboratory of Integrated Optoelectronics, Key Laboratory of Automobile Materials of MOE and School of Materials Science and Engineering Jilin University Changchun China
| | - Tianshu Li
- State Key Laboratory of Integrated Optoelectronics, Key Laboratory of Automobile Materials of MOE and School of Materials Science and Engineering Jilin University Changchun China
| | - Xinjiang Wang
- Department of Physics, State Key Laboratory of Superhard Materials Jilin University Changchun China
| | - Muhammad Faizan
- State Key Laboratory of Integrated Optoelectronics, Key Laboratory of Automobile Materials of MOE and School of Materials Science and Engineering Jilin University Changchun China
| | - Lijun Zhang
- State Key Laboratory of Integrated Optoelectronics, Key Laboratory of Automobile Materials of MOE and School of Materials Science and Engineering Jilin University Changchun China
| |
Collapse
|
9
|
Krishnamoorthy HNS, Adamo G, Yin J, Savinov V, Zheludev NI, Soci C. Infrared dielectric metamaterials from high refractive index chalcogenides. Nat Commun 2020; 11:1692. [PMID: 32245976 PMCID: PMC7125163 DOI: 10.1038/s41467-020-15444-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 02/28/2020] [Indexed: 11/09/2022] Open
Abstract
High-index dielectric materials are in great demand for nanophotonic devices and applications, from ultrathin optical elements to metal-free sub-diffraction light confinement and waveguiding. Here we show that chalcogenide topological insulators are particularly apt candidates for dielectric nanophotonics architectures in the infrared spectral range, by reporting metamaterial resonances in chalcogenide crystals sustained well inside the mid-infrared, choosing Bi2Te3 as case study within this family of materials. Strong resonant modulation of the incident electromagnetic field is achieved thanks to the exceptionally high refractive index ranging between 7 and 8 throughout the 2-10 μm region. Analysis of the complex mode structure in the metamaterial allude to the excitation of circular surface currents which could open pathways for enhanced light-matter interaction and low-loss plasmonic configurations by coupling to the spin-polarized topological surface carriers, thereby providing new opportunities to combine dielectric, plasmonic and magnetic metamaterials in a single platform.
Collapse
Affiliation(s)
- H N S Krishnamoorthy
- Centre for Disruptive Photonic Technologies, TPI, SPMS, Nanyang Technological University, Singapore, 637371, Singapore.
| | - G Adamo
- Centre for Disruptive Photonic Technologies, TPI, SPMS, Nanyang Technological University, Singapore, 637371, Singapore
| | - J Yin
- Centre for Disruptive Photonic Technologies, TPI, SPMS, Nanyang Technological University, Singapore, 637371, Singapore
| | - V Savinov
- Optoelectronics Research Centre & Centre for Photonic Metamaterials, University of Southampton, London, SO17 1BJ, UK
| | - N I Zheludev
- Centre for Disruptive Photonic Technologies, TPI, SPMS, Nanyang Technological University, Singapore, 637371, Singapore
- Optoelectronics Research Centre & Centre for Photonic Metamaterials, University of Southampton, London, SO17 1BJ, UK
| | - C Soci
- Centre for Disruptive Photonic Technologies, TPI, SPMS, Nanyang Technological University, Singapore, 637371, Singapore.
| |
Collapse
|
10
|
Affiliation(s)
- Behrad Gholipour
- Department of Electrical and Computer Engineering, Faculty of Engineering, Donadeo Innovation Centre for Engineering, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|