1
|
Tong X, Dong Y, Han Y, Zhou R, Zhu L, Zhang D, Dai Y, Shen X, Li Y, Wen C, Lin J. A biodegradable Zn-5Gd alloy with biomechanical compatibility, cytocompatibility, antibacterial ability, and in vitro and in vivo osteogenesis for orthopedic applications. Acta Biomater 2024; 177:538-559. [PMID: 38253302 DOI: 10.1016/j.actbio.2024.01.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 12/21/2023] [Accepted: 01/15/2024] [Indexed: 01/24/2024]
Abstract
Zinc (Zn) and some of its alloys are recognized as promising biodegradable implant materials due to their acceptable biocompatibility, facile processability, and moderate degradation rate. Nevertheless, the limited mechanical properties and stability of as-cast Zn alloys hinder their clinical application. In this work, hot-rolled (HR) and hot-extruded (HE) Zn-5 wt.% gadolinium (Zn-5Gd) samples were prepared by casting and respectively combining with hot rolling and hot extrusion for bone-implant applications. Their microstructure evolution, mechanical properties, corrosion behavior, cytotoxicity, antibacterial ability, and in vitro and in vivo osteogenesis were systematically evaluated. The HR and HE Zn-5Gd exhibited significantly improved mechanical properties compared with those of their pure Zn counterparts and the HR Zn-5Gd showed a unique combination of tensile properties with an ultimate tensile strength of ∼311.6 MPa, yield strength of ∼236.5 MPa, and elongation of ∼40.6%, all of which are greater than the mechanical properties required for bone-implant materials. The HR and HE Zn-5Gd showed higher corrosion resistance than their pure Zn counterpart in Hanks' solution and the HE Zn-5Gd had the lowest corrosion rate of 155 µm/y measured by electrochemical corrosion and degradation rate of 26.9 µm/y measured by immersion testing. The HR and HE Zn-5Gd showed high cytocompatibility toward MC3T3-E1 and MG-63 cells, high antibacterial effects against S. aureus, and better in vitro osteogenic activity than their pure Zn counterparts. Furthermore, the HE Zn-5Gd exhibited better in vivo biocompatibility, osteogenesis, and osteointegration ability than pure Zn and pure Ti. STATEMENT OF SIGNIFICANCE: This work reports the mechanical properties, corrosion behaviors, cytocompatibility, antibacterial ability, in vitro and in vivo osteogenesis of biodegradable Zn-Gd alloy for bone-implant applications. Our findings demonstrate that the hot-rolled (HR) Zn-5Gd showed a unique combination of tensile properties with an ultimate tensile strength of ∼311.6 MPa, yield strength of ∼236.5 MPa, and elongation of ∼40.6%. The HR and HE Zn-5Gd showed higher corrosion resistance than their pure Zn counterpart in Hanks' solution. The HR and HE Zn-5Gd showed high cytocompatibility toward MC3T3-E1 and MG-63 cells, good antibacterial effects against S. aureus, and better in vitro osteogenic activity. Furthermore, the HE Zn-5Gd exhibited better in vivo biocompatibility, osteogenesis, and osteointegration ability than pure Zn and pure Ti.
Collapse
Affiliation(s)
- Xian Tong
- Institute of Stomatology, School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou 325027, China; School of Materials Science and Engineering, Xiangtan University, Xiangtan 411105, China
| | - Yilong Dong
- Department of Orthopaedics, The Third Affiliated Hospital of Wenzhou Medical University (Ruian People's Hospital), Wenzhou 325016, China
| | - Yue Han
- Institute of Stomatology, School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou 325027, China
| | - Runqi Zhou
- Institute of Stomatology, School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou 325027, China.
| | - Li Zhu
- Institute of Stomatology, School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou 325027, China
| | - Dechuang Zhang
- School of Materials Science and Engineering, Xiangtan University, Xiangtan 411105, China
| | - Yilong Dai
- School of Materials Science and Engineering, Xiangtan University, Xiangtan 411105, China
| | - Xinkun Shen
- Department of Orthopaedics, The Third Affiliated Hospital of Wenzhou Medical University (Ruian People's Hospital), Wenzhou 325016, China
| | - Yuncang Li
- School of Engineering, RMIT University, Melbourne, Victoria 3001, Australia
| | - Cuie Wen
- School of Engineering, RMIT University, Melbourne, Victoria 3001, Australia.
| | - Jixing Lin
- Institute of Stomatology, School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou 325027, China.
| |
Collapse
|
2
|
Tong X, Han Y, Zhou R, Jiang W, Zhu L, Li Y, Huang S, Ma J, Wen C, Lin J. Biodegradable Zn-Dy binary alloys with high strength, ductility, cytocompatibility, and antibacterial ability for bone-implant applications. Acta Biomater 2023; 155:684-702. [PMID: 36328128 DOI: 10.1016/j.actbio.2022.10.053] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 09/16/2022] [Accepted: 10/25/2022] [Indexed: 11/05/2022]
Abstract
The unique combination of biodegradability, biocompatibility, and functionality of zinc (Zn)-based alloys makes them highly desirable for a wide range of medical applications. However, a long-standing problem associated with this family of biodegradable alloys in the as-cast state is their limited mechanical strength and slow degradation rate. Here we report the development of Zn-xDy (x = 1, 3, and 5 wt.%) alloys with high strength, ductility, cytocompatibility, antibacterial ability, and appropriate degradation rate for biodegradable bone-implant applications. Our results indicate that the mechanical properties of Zn-xDy alloys were effectively improved with increasing Dy addition and hot-rolling due to the second-phase strengthening. The hot-rolled (HR) Zn-3Dy alloy showed the best combined mechanical performance with an ultimate tensile strength of 270.5 MPa, a yield strength of 214.8 MPa, an elongation of 55.1%, and Brinell hardness of 75.9 HB. The corrosion and degradation rates of HR Zn-xDy alloys in Hanks' solution gradually increased with increasing Dy addition due to the intensification of galvanic corrosion. The HR Zn-3Dy alloy showed high antibacterial ability against S. aureus and cytocompatibility toward MC3T3-E1 cells among all the HR alloys. Overall, the HR Zn-3Dy alloy can be considered a promising biodegradable material for bone implants. STATEMENT OF SIGNIFICANCE: This work reports on Zn-xDy (x = 1, 3, and 5%) alloys fabricated by Dy alloying followed by hot-rolling for biodegradable bone-implant applications. Our findings demonstrate that the hot-rolled (HR) Zn-3Dy alloy showed the best combined mechanical performance with an ultimate tensile strength of 270.5 MPa, a yield strength of 214.8 MPa, an elongation of 55.1%, and Brinell hardness of 75.9 HB. The corrosion and degradation rates of HR Zn-xDy alloys in Hanks' solution gradually increased with increasing Dy addition due to the intensification of galvanic corrosion. Furthermore, the HR Zn-3Dy alloy showed greater antibacterial ability against S. aureus and the best cytocompatibility toward MC3T3-E1 cells among all the HR alloys.
Collapse
Affiliation(s)
- Xian Tong
- Institute of Stomatology, School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou 325027, China; School of Materials Science and Engineering, Xiangtan University, Xiangtan 411105, China
| | - Yue Han
- Institute of Stomatology, School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou 325027, China
| | - Runqi Zhou
- Institute of Stomatology, School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou 325027, China
| | - Wanying Jiang
- Institute of Stomatology, School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou 325027, China
| | - Li Zhu
- Institute of Stomatology, School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou 325027, China
| | - Yuncang Li
- School of Engineering, RMIT University, Melbourne, Victoria 3001, Australia
| | - Shengbin Huang
- Institute of Stomatology, School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou 325027, China.
| | - Jianfeng Ma
- Institute of Stomatology, School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou 325027, China.
| | - Cuie Wen
- School of Engineering, RMIT University, Melbourne, Victoria 3001, Australia.
| | - Jixing Lin
- Institute of Stomatology, School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou 325027, China.
| |
Collapse
|
3
|
Bian D, Chu X, Xiao J, Tong Z, Huang H, Jia Q, Liu J, Li W, Yu H, He Y, Ma L, Wang X, Li M, Yang T, Huang W, Zhang C, Yao M, Zhang Y, Xu Z, Guan S, Zheng Y. Design of single-phased magnesium alloys with typically high solubility rare earth elements for biomedical applications: Concept and proof. Bioact Mater 2022; 22:180-200. [PMID: 36246664 PMCID: PMC9531051 DOI: 10.1016/j.bioactmat.2022.09.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 09/15/2022] [Accepted: 09/16/2022] [Indexed: 11/07/2022] Open
Abstract
Rare earth elements (REEs) have been long applied in magnesium alloys, among which the mischmetal-containing WE43 alloy has already got the CE mark approval for clinical application. A considerable amount of REEs (7 wt%) is needed in that multi-phased alloy to achieve a good combination of mechanical strength and corrosion resistance. However, the high complex RE addition accompanied with multiple second phases may bring the concern of biological hazards. Single-phased Mg-RE alloys with simpler compositions were proposed to improve the overall performance, i.e., “Simpler alloy, better performance”. The single-phased microstructure can be successfully obtained with typical high-solubility REEs (Ho, Er or Lu) through traditional smelting, casting and extrusion in a wide compositional range. A good corrosion resistance with a macroscopically uniform corrosion mode was guaranteed by the homogeneously single-phased microstructure. The bimodal-grained structure with plenty of sub-grain microstructures allow us to minimize the RE addition to <1 wt%, without losing mechanical properties. The single-phased Mg-RE alloys show comparable mechanical properties to the clinically-proven Mg-based implants. They exhibited similar in-vitro and in-vivo performances (without local or systematic toxicity in SD-rats) compared to a high purity magnesium. In addition, metal elements in our single-phased alloys can be gradually excreted through the urinary system and digestive system, showing no consistent accumulation of RE in main organs, i.e., less burden on organs. The novel concept in this study focuses on the simplification of Mg-RE based alloys for biomedical purpose, and other biodegradable metals with single-phased microstructures are expected to be explored. A concept of developing single-phased biodegradable magnesium alloys was proposed. Single-phased magnesium alloys with bimodal-grained structures were obtained. Good strength and corrosion resistance synergy was achieved in the alloys. Significantly reduced rare earth addition is beneficial to the biocompatibility. Simpler alloy helps to lower the possible biological risks of Mg related implants.
Collapse
Affiliation(s)
- Dong Bian
- Medical Research Center, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, China
| | - Xiao Chu
- Medical Research Center, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, China
| | - Jin Xiao
- Department of Orthopedics, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, China
| | - Zhipei Tong
- Department of Orthopedics, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, China
| | - He Huang
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, 450001, China
| | - Qinggong Jia
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, 450001, China
| | - Jianing Liu
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, China
| | - Wenting Li
- School of Materials Science and Engineering, Peking University, Beijing, 100871, China
| | - Hui Yu
- Department of Orthopedics, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, China
| | - Yue He
- Department of Orthopedics, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, China
| | - Limin Ma
- Medical Research Center, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, China
| | - Xiaolan Wang
- Medical Research Center, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, China
| | - Mei Li
- Medical Research Center, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, China
| | - Tao Yang
- Department of Orthopedics, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, China
| | - Wenhan Huang
- Department of Orthopedics, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, China
| | - Chi Zhang
- Department of Orthopedics, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, China
| | - Mengyu Yao
- Department of Orthopedics, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, China
| | - Yu Zhang
- Department of Orthopedics, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, China
- Co-corresponding author.
| | - Zhigang Xu
- ERC for Revolutionizing Metallic Biomaterials, North Carolina A&T State University, Greensboro, NC, 27411, USA
- Co-corresponding author.
| | - Shaokang Guan
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, 450001, China
- Corresponding author.
| | - Yufeng Zheng
- Department of Orthopedics, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, China
- School of Materials Science and Engineering, Peking University, Beijing, 100871, China
- Corresponding authors. Department of Orthopedics, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, China.
| |
Collapse
|
4
|
Yuksekdag A, Kose-Mutlu B, Siddiqui AF, Wiesner MR, Koyuncu I. A holistic approach for the recovery of rare earth elements and scandium from secondary sources under a circular economy framework - A review. CHEMOSPHERE 2022; 293:133620. [PMID: 35033522 DOI: 10.1016/j.chemosphere.2022.133620] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 12/27/2021] [Accepted: 01/11/2022] [Indexed: 06/14/2023]
Abstract
Limited natural resources and a continuous increase in the demand for modern technological products, is creating a demand and supply gap for rare earth elements (REEs) and Sc. There is therefore a need to adopt the sustainable approach of the circular economy system (CE). In this review, we defined six steps required to close the loop and recover REEs, using a holistic approach. Recent statistics on REEs and Sc demand and the number of waste generations are reported and studies on more environmentally friendly, economic, and/or efficient recovery processes are summarized. Pilot-scale recovery facilities are described for several types of secondary sources. Finally, we identify obstacles to closing the REE loop in a circular economy and the reasons why secondary sources are not preferred over primary sources. Briefly, recovery from secondary sources should be environmentally and economically friendly and of an acceptable standard concerning final product quality. However, current technologies for recovery from for secondary sources are limiting and technology needs will vary depending on the source type. The quality/purity of the recovered metals should be proven so that they do not result in any adverse effects on the product quality, when they are being used as secondary raw material. In addition, for industrial-scale facilities, process improvements are required that consider environmental conditions.
Collapse
Affiliation(s)
- Ayse Yuksekdag
- National Research Center on Membrane Technologies, Istanbul Technical University, 34469, Maslak, Istanbul, Turkey; Environmental Engineering Department, Istanbul Technical University, 34469, Maslak, Istanbul, Turkey
| | - Borte Kose-Mutlu
- National Research Center on Membrane Technologies, Istanbul Technical University, 34469, Maslak, Istanbul, Turkey; Molecular Biology and Genetics Department, Istanbul Technical University, 34469, Maslak, Istanbul, Turkey.
| | - Azmat Fatima Siddiqui
- National Research Center on Membrane Technologies, Istanbul Technical University, 34469, Maslak, Istanbul, Turkey; Environmental Engineering Department, Istanbul Technical University, 34469, Maslak, Istanbul, Turkey
| | - Mark R Wiesner
- Civil and Environmental Engineering Department, Duke University, 27708, Durham, NC, USA
| | - Ismail Koyuncu
- National Research Center on Membrane Technologies, Istanbul Technical University, 34469, Maslak, Istanbul, Turkey; Environmental Engineering Department, Istanbul Technical University, 34469, Maslak, Istanbul, Turkey.
| |
Collapse
|
5
|
Wang C, Chen P, Li X, Zhu Y, Zhu B. Enhanced Electromagnetic Wave Absorption for Y 2O 3-Doped SiBCN Ceramics. ACS APPLIED MATERIALS & INTERFACES 2021; 13:55440-55453. [PMID: 34761903 DOI: 10.1021/acsami.1c16909] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Polymer-derived SiBCN ceramics (PDCs-SiBCN) are promising ultrahigh-temperature ceramics owing to their excellent high-temperature oxidation resistance and electromagnetic wave (EMW)-absorbing capability. In this paper, the microstructure evolutions, the dielectric properties, and EMW absorption properties of Y2O3-doped SiBCN ceramics were investigated. The results reveal that Y2O3 acting as a catalyst promotes the formation of SiC, BN(C), and graphite crystalline phases in the SiBCN ceramics, and these crystalline phases are constructed as conduction phases and polarization phases to enhance the EMW-adsorbing properties. The minimum reflection loss (RLmin) reaches -42.22 dB at 15.28 GHz, and the effective absorption bandwidth is 4.72 GHz (13.28-18.00 GHz). In addition, there is only 0.56 wt % mass loss for the Y2O3-doped SiBCN ceramics when they are heated from ambient temperature to 1500 °C in air, indicating that the Y2O3-doped SiBCN ceramics obtain excellent oxidation resistance at high temperature. We believe that rare metal oxidation is beneficial for the growth of crystalline phases in the PDCs, resulting in high EMW-absorbing properties and oxidation resistance. Thus, the research extends a novel method and design strategy for microstructure regulation and property enhancement of PDCs.
Collapse
Affiliation(s)
- Chengen Wang
- The State Key Laboratory of Refractories and Metallurgy, Wuhan University of Science and Technology, Wuhan 430081, P. R. China
| | - Pingan Chen
- The State Key Laboratory of Refractories and Metallurgy, Wuhan University of Science and Technology, Wuhan 430081, P. R. China
| | - Xiangcheng Li
- The State Key Laboratory of Refractories and Metallurgy, Wuhan University of Science and Technology, Wuhan 430081, P. R. China
| | - Yingli Zhu
- The State Key Laboratory of Refractories and Metallurgy, Wuhan University of Science and Technology, Wuhan 430081, P. R. China
| | - Boquan Zhu
- The State Key Laboratory of Refractories and Metallurgy, Wuhan University of Science and Technology, Wuhan 430081, P. R. China
| |
Collapse
|
6
|
Yu M, Renner JN, Duval CE. A Lysine-Modified Polyethersulfone (PES) Membrane for the Recovery of Lanthanides. Front Chem 2020; 8:512. [PMID: 32626691 PMCID: PMC7311803 DOI: 10.3389/fchem.2020.00512] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 05/18/2020] [Indexed: 11/13/2022] Open
Abstract
Rare-earth elements (which include all lanthanides, scandium, and yttrium) play a key role in many fields including oil refining, metallurgy, electronics manufacturing, and other high-technology applications. Although the available lanthanide resources are enough for current levels of manufacturing, increased future demand for lanthanides will require new, efficient recovery methods to provide a sustainable supply. Membrane adsorbers are promising separation materials to recover lanthanides from high volumes of wastewater due to their tailorable surface chemistry, high binding capacity and high throughput. In this work, membrane adsorbers were synthesized by first using ultraviolet-initiated free radical polymerization to graft a poly(glycidyl methacrylate) (p-GMA) layer to the surface of polyethersulfone membranes. Then, the reactive epoxy groups of the grafted p-GMA were used for the covalent attachment of lysine molecules via a zinc perchlorate-catalyzed, epoxide ring-opening reaction at 35°C. Changes in membrane surface chemistry throughout the functionalization process were monitored with Fourier Transform Infrared Spectroscopy. The degree of grafting for the p-GMA film was quantified gravimetrically and increased with increasing polymerization time. Equilibrium adsorption experiments were performed for single specie solutions of La3+, Ce3+, Nd3+, Na+, Ca2+, and Mg2+ at pH 5.25 ± 0.25. Lysine-modified membranes showed negligible uptake of Na+, Ca2+, and Mg2+. The maximum capacities modeled by the Langmuir isotherm for La3+ and Ce3+ were 6.11 ± 0.58 and 6.45 ± 1.29 mg/g adsorbent, respectively. Nd3+ adsorbed to the membrane; however, the fit of the Langmuir model was not significant and it adsorbed to a lower extent than La3+ and Ce3+. Lower adsorption of the higher charge density species indicates that the primary binding mode is through the amine moieties of lysine and not the carboxylic acid. Dynamic adsorption experiments were conducted with 1 ppm La3+ feed solutions at different flow rates using either a single membrane or three membranes in series. The dynamic binding capacity at 50% breakthrough was independent of flowrate within the tested range. The low-temperature membrane functionalization methodology presented in this work can be used to immobilize biomolecules with even higher specificity, like engineered peptides or proteins, on membrane surfaces.
Collapse
Affiliation(s)
- Ming Yu
- Department of Chemical and Biomolecular Engineering, Case Western Reserve University, Cleveland, OH, United States
| | - Julie N Renner
- Department of Chemical and Biomolecular Engineering, Case Western Reserve University, Cleveland, OH, United States
| | - Christine E Duval
- Department of Chemical and Biomolecular Engineering, Case Western Reserve University, Cleveland, OH, United States
| |
Collapse
|