1
|
Qu Y, Zhang Y, Huang B, Chen C, Wang H, Liu S, Wang H. Pump-Free Pneumatic Actuator Driven by the Vapor Pressure at the Gas-Liquid Equilibrium of Aqua Ammonia. Soft Robot 2024. [PMID: 39435582 DOI: 10.1089/soro.2023.0067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2024] Open
Abstract
Currently, pneumatic soft actuators are widely used due to their impressive adaptability, but they still face challenges for more extensive practical applications. One of the primary issues is the bulky and noisy air compressors required to generate air pressure. To circumvent this critical problem, this work proposes a new type of air pressure source, based on the vapor pressure at the gas-liquid equilibrium to replace conventional air pumps. Compared with the previous phase transition method, this approach gains advantages such as generating gas even at low temperatures (instead of boiling point), more controllable gas output, and higher force density (since both ammonia and water contribute to the gas pressure). This work built mathematical models to explain the mechanism of converting energy to output action force from electrical energy and found the aqua ammonia system is one of the optimal choices. Multiple prototypes were created to demonstrate the capability of this method, including a pouch actuator that pushed a load 20,555 times heavier than its dead weight. Finally, based on the soft actuator, an untethered crawling robot was implemented with onboard batteries, showing the potentially extensive applications of this methodology.
Collapse
Affiliation(s)
- Yang Qu
- Shenzhen Key Laboratory of Biomimetic Robotics and Intelligent Systems, Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, China
- Guangdong Provincial Key Laboratory of Human-Augmentation and Rehabilitation Robotics in Universities, Southern University of Science and Technology, Shenzhen, China
| | - Yiming Zhang
- Shenzhen Key Laboratory of Biomimetic Robotics and Intelligent Systems, Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, China
- Guangdong Provincial Key Laboratory of Human-Augmentation and Rehabilitation Robotics in Universities, Southern University of Science and Technology, Shenzhen, China
| | - Boyuan Huang
- Shenzhen Key Laboratory of Biomimetic Robotics and Intelligent Systems, Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, China
- Guangdong Provincial Key Laboratory of Human-Augmentation and Rehabilitation Robotics in Universities, Southern University of Science and Technology, Shenzhen, China
| | - Cheng Chen
- Shenzhen Key Laboratory of Biomimetic Robotics and Intelligent Systems, Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, China
- Guangdong Provincial Key Laboratory of Human-Augmentation and Rehabilitation Robotics in Universities, Southern University of Science and Technology, Shenzhen, China
| | - Huacen Wang
- Shenzhen Key Laboratory of Biomimetic Robotics and Intelligent Systems, Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, China
- Guangdong Provincial Key Laboratory of Human-Augmentation and Rehabilitation Robotics in Universities, Southern University of Science and Technology, Shenzhen, China
| | - Sicong Liu
- Shenzhen Key Laboratory of Biomimetic Robotics and Intelligent Systems, Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, China
- Guangdong Provincial Key Laboratory of Human-Augmentation and Rehabilitation Robotics in Universities, Southern University of Science and Technology, Shenzhen, China
| | - Hongqiang Wang
- Shenzhen Key Laboratory of Biomimetic Robotics and Intelligent Systems, Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, China
- Guangdong Provincial Key Laboratory of Human-Augmentation and Rehabilitation Robotics in Universities, Southern University of Science and Technology, Shenzhen, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
| |
Collapse
|
2
|
Hao B, Wang X, Dong Y, Sun M, Xin C, Yang H, Cao Y, Zhu J, Liu X, Zhang C, Su L, Li B, Zhang L. Focused ultrasound enables selective actuation and Newton-level force output of untethered soft robots. Nat Commun 2024; 15:5197. [PMID: 38890294 PMCID: PMC11189400 DOI: 10.1038/s41467-024-49148-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 05/23/2024] [Indexed: 06/20/2024] Open
Abstract
Untethered miniature soft robots have significant application potentials in biomedical and industrial fields due to their space accessibility and safe human interaction. However, the lack of selective and forceful actuation is still challenging in revolutionizing and unleashing their versatility. Here, we propose a focused ultrasound-controlled phase transition strategy for achieving millimeter-level spatially selective actuation and Newton-level force of soft robots, which harnesses ultrasound-induced heating to trigger the phase transition inside the robot, enabling powerful actuation through inflation. The millimeter-level spatial resolution empowers single robot to perform multiple tasks according to specific requirements. As a concept-of-demonstration, we designed soft robot for liquid cargo delivery and biopsy robot for tissue acquisition and patching. Additionally, an autonomous control system is integrated with ultrasound imaging to enable automatic acoustic field alignment and control. The proposed method advances the spatiotemporal response capability of untethered miniature soft robots, holding promise for broadening their versatility and adaptability.
Collapse
Affiliation(s)
- Bo Hao
- Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong, Hong Kong, SAR 999077, PR China
| | - Xin Wang
- Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong, Hong Kong, SAR 999077, PR China
| | - Yue Dong
- Guangdong Provincial Key Laboratory of Intelligent Morphing Mechanisms and Adaptive Robotics, School of Mechanical Engineering and Automation, Harbin Institute of Technology, Shenzhen, 518055, PR China.
| | - Mengmeng Sun
- Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong, Hong Kong, SAR 999077, PR China
| | - Chen Xin
- Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong, Hong Kong, SAR 999077, PR China
| | - Haojin Yang
- Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong, Hong Kong, SAR 999077, PR China
| | - Yanfei Cao
- Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong, Hong Kong, SAR 999077, PR China
| | - Jiaqi Zhu
- Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong, Hong Kong, SAR 999077, PR China
| | - Xurui Liu
- Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong, Hong Kong, SAR 999077, PR China
| | - Chong Zhang
- Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong, Hong Kong, SAR 999077, PR China
| | - Lin Su
- Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong, Hong Kong, SAR 999077, PR China
| | - Bing Li
- Guangdong Provincial Key Laboratory of Intelligent Morphing Mechanisms and Adaptive Robotics, School of Mechanical Engineering and Automation, Harbin Institute of Technology, Shenzhen, 518055, PR China.
| | - Li Zhang
- Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong, Hong Kong, SAR 999077, PR China.
- Multi-Scale Medical Robotics Center, Hong Kong Science Park, Shatin NT, Hong Kong, SAR 999077, PR China.
- CUHK T Stone Robotics Institute, The Chinese University of Hong Kong, Hong Kong, SAR 999077, PR China.
- Chow Yuk Ho Technology Center for Innovative Medicine, The Chinese University of Hong Kong, Hong Kong, SAR 999077, PR China.
- Department of Surgery, The Chinese University of Hong Kong, Hong Kong, SAR 999077, PR China.
| |
Collapse
|
3
|
Fang X, Wei K, Yang R. Untethered Soft Pneumatic Actuators with Embedded Multiple Sensing Capabilities. Soft Robot 2024; 11:382-391. [PMID: 37948534 DOI: 10.1089/soro.2023.0048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2023] Open
Abstract
Pneumatic soft robot attracts extensive attention because of its own characteristics. It has great application potential in medical and other fields. Although the recent improvement of the soft robot shows great potentials for delicate manipulations, the development of completely untethered pneumatic intelligent soft robots remains challenging. This article introduces a novel type of untethered soft pneumatic actuator with embedded multiple sensing capabilities. The untethered drive of the soft pneumatic actuator is achieved by near-infrared-induced liquid-gas phase transition. In addition, a soft conductive resin was developed to make flexible sensors. Embedded flexible sensors enable bending and temperature sensing of soft actuators. With Digital Light Processing three-dimensional printing, the rapid fabrication of soft actuators and flexible sensors was realized. This article demonstrates the potential of the proposed untethered soft actuators with embedded multiple sensing capabilities as an important contribution to the research of completely untethered intelligent soft robots.
Collapse
Affiliation(s)
- Xingmiao Fang
- Department of Biomedical Engineering, Anhui Medical University, Hefei, China
| | - Kun Wei
- Department of Biomedical Engineering, Anhui Medical University, Hefei, China
| | - Runhuai Yang
- Department of Biomedical Engineering, Anhui Medical University, Hefei, China
| |
Collapse
|
4
|
Ai W, Hou K, Wu J, Long Y, Song K. Miniaturized and untethered McKibben muscles based on photothermal-induced gas-liquid transformation. Nat Commun 2024; 15:1329. [PMID: 38351311 PMCID: PMC10864313 DOI: 10.1038/s41467-024-45540-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 01/24/2024] [Indexed: 02/16/2024] Open
Abstract
Pneumatic artificial muscles can move continuously under the power support of air pumps, and their flexibility also provides the possibility for applications in complex environments. However, in order to achieve operation in confined spaces, the miniaturization of artificial muscles becomes crucial. Since external attachment devices greatly hinder the miniaturization and use of artificial muscles, we propose a light-driven approach to get rid of these limitations. In this study, we report a miniaturized fiber-reinforced artificial muscle based on mold editing, capable of bending and axial elongation using gas-liquid conversion in visible light. The minimum volume of the artificial muscle prepared using this method was 15.7 mm3 (d = 2 mm, l = 5 mm), which was smaller than those of other fiber-reinforced pneumatic actuators. This research can promote the development of non-tethered pneumatic actuators for rescue and exploration, and create the possibility of miniaturization of actuators.
Collapse
Affiliation(s)
- Wenfei Ai
- Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, CAS, Beijing, 100190, P. R. China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Kai Hou
- Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, CAS, Beijing, 100190, P. R. China
| | - Jiaxin Wu
- Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, CAS, Beijing, 100190, P. R. China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Yue Long
- Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, CAS, Beijing, 100190, P. R. China.
- Binzhou Institute of Technology, Weiqiao-UCAS Science and Technology Park, Binzhou City, Shandong Province, 256606, China.
| | - Kai Song
- Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, CAS, Beijing, 100190, P. R. China.
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China.
- Binzhou Institute of Technology, Weiqiao-UCAS Science and Technology Park, Binzhou City, Shandong Province, 256606, China.
| |
Collapse
|
5
|
Exley T, Hays E, Johnson D, Moridani A, Motati R, Jafari A. Toward a Unified Naming Scheme for Thermo-Active Soft Actuators: A Review of Materials, Working Principles, and Applications. ROBOTICS REPORTS (NEW ROCHELLE, N.Y.) 2024; 2:15-28. [PMID: 38584677 PMCID: PMC10996867 DOI: 10.1089/rorep.2023.0023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Accepted: 12/12/2023] [Indexed: 04/09/2024]
Abstract
Soft robotics is a rapidly growing field that spans the fields of chemistry, materials science, and engineering. Due to the diverse background of the field, there have been contrasting naming schemes such as "intelligent," "smart," and "adaptive" materials, which add vagueness to the broad innovation among literature. Therefore, a clear, functional, and descriptive naming scheme is proposed in which a previously vague name-Soft Material for Soft Actuators-can remain clear and concise-Phase-Change Elastomers for Artificial Muscles. By synthesizing the working principle, material, and application into a naming scheme, the searchability of soft robotics can be enhanced and applied to other fields. The field of thermo-active soft actuators spans multiple domains and requires added clarity. Thermo-active actuators have potential for a variety of applications spanning virtual reality haptics to assistive devices. This review offers a comprehensive guide to selecting the type of thermo-active actuator when one has an application in mind. In addition, it discusses future directions and improvements that are necessary for implementation.
Collapse
Affiliation(s)
- Trevor Exley
- Advanced Robotic Manipulators (ARM) Lab, the Department of Biomedical Engineering, University of North Texas, Denton, Texas, USA
| | - Emilly Hays
- Advanced Robotic Manipulators (ARM) Lab, the Department of Biomedical Engineering, University of North Texas, Denton, Texas, USA
| | - Daniel Johnson
- Advanced Robotic Manipulators (ARM) Lab, the Department of Biomedical Engineering, University of North Texas, Denton, Texas, USA
| | - Arian Moridani
- Advanced Robotic Manipulators (ARM) Lab, the Department of Biomedical Engineering, University of North Texas, Denton, Texas, USA
| | - Ramya Motati
- Advanced Robotic Manipulators (ARM) Lab, the Department of Biomedical Engineering, University of North Texas, Denton, Texas, USA
| | - Amir Jafari
- Advanced Robotic Manipulators (ARM) Lab, the Department of Biomedical Engineering, University of North Texas, Denton, Texas, USA
| |
Collapse
|
6
|
Asawalertsak N, Heims F, Kovalev A, Gorb SN, Jørgensen J, Manoonpong P. Frictional Anisotropic Locomotion and Adaptive Neural Control for a Soft Crawling Robot. Soft Robot 2023; 10:545-555. [PMID: 36459126 DOI: 10.1089/soro.2022.0004] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Crawling animals with bendable soft bodies use the friction anisotropy of their asymmetric body structures to traverse various substrates efficiently. Although the effect of friction anisotropy has been investigated and applied to robot locomotion, the dynamic interactions between soft body bending at different frequencies (low and high), soft asymmetric surface structures at various aspect ratios (low, medium, and high), and different substrates (rough and smooth) have not been studied comprehensively. To address this lack, we developed a simple soft robot model with a bioinspired asymmetric structure (sawtooth) facing the ground. The robot uses only a single source of pressure for its pneumatic actuation. The frequency, teeth aspect ratio, and substrate parameters and the corresponding dynamic interactions were systematically investigated and analyzed. The study findings indicate that the anterior and posterior parts of the structure deform differently during the interaction, generating different frictional forces. In addition, these parts switched their roles dynamically from push to pull and vice versa in various states, resulting in the robot's emergent locomotion. Finally, autonomous adaptive crawling behavior of the robot was demonstrated using sensor-driven neural control with a miniature laser sensor installed in the anterior part of the robot. The robot successfully adapted its actuation frequency to reduce body bending and crawl through a narrow space, such as a tunnel. The study serves as a stepping stone for developing simple soft crawling robots capable of navigating cluttered and confined spaces autonomously.
Collapse
Affiliation(s)
- Naris Asawalertsak
- Bio-inspired Robotics and Neural Engineering Laboratory, School of Information Science and Technology, Vidyasirimedhi Institute of Science and Technology, Rayong, Thailand
| | - Franziska Heims
- Department of Functional Morphology and Biomechanics, Zoological Institute, Kiel University, Kiel, Germany
| | - Alexander Kovalev
- Department of Functional Morphology and Biomechanics, Zoological Institute, Kiel University, Kiel, Germany
| | - Stanislav N Gorb
- Department of Functional Morphology and Biomechanics, Zoological Institute, Kiel University, Kiel, Germany
| | - Jonas Jørgensen
- Center for Soft Robotics, SDU Biorobotics, The Mærsk Mc-Kinney Møller Institute, University of Southern Denmark, Odense M, Denmark
| | - Poramate Manoonpong
- Bio-inspired Robotics and Neural Engineering Laboratory, School of Information Science and Technology, Vidyasirimedhi Institute of Science and Technology, Rayong, Thailand
- Embodied AI and Neurorobotics Laboratory, SDU Biorobotics, The Mærsk Mc-Kinney Møller Institute, University of Southern Denmark, Odense M, Denmark
| |
Collapse
|
7
|
Lalegani Dezaki M, Bodaghi M. Shape memory meta-laminar jamming actuators fabricated by 4D printing. SOFT MATTER 2023; 19:2186-2203. [PMID: 36880606 DOI: 10.1039/d3sm00106g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Laminar jamming (LJ) technology is a hot topic because it allows for the transition from conventionally quick, precise, and high-force rigid robots to flexible, agile, and secure soft robots. This article introduces a novel conceptual design of meta-laminar jamming (MLJ) actuators with a polyurethane shape memory polymer (SMP)-based meta-structure fabricated by 4D printing (4DP). The sustainable MLJ actuators behave as soft/hard robots via hot and cold programming accompanied by negative air pressure. The advantage of MLJ actuators over conventional LJ actuators is that a continuous negative air pressure is not required to stimulate the actuator. SMP meta-structures with circle, rectangle, diamond, and auxetic shapes are 4D printed. Mechanical properties of the structures are evaluated through three-point bending and compression tests. Shape memory effects (SMEs) and shape recovery of meta-structures and MLJ actuators are investigated via hot air programming. MLJ actuators with auxetic meta-structure cores show a better performance in terms of contraction and bending with 100% shape recovery after stimulation. The sustainable MLJ actuators have the capabilities of shape recovery and shape locking with zero input power while holding 200 g weight. The actuator can easily lift and hold objects of varying weights and shapes without requiring any power input. This actuator has demonstrated its versatility in potential applications, such as functioning as an end-effector and a gripper device.
Collapse
Affiliation(s)
- Mohammadreza Lalegani Dezaki
- Department of Engineering, School of Science and Technology, Nottingham Trent University, Nottingham, NG11 8NS, UK.
| | - Mahdi Bodaghi
- Department of Engineering, School of Science and Technology, Nottingham Trent University, Nottingham, NG11 8NS, UK.
| |
Collapse
|
8
|
Meder F, Murali Babu SP, Mazzolai B. A Plant Tendril-Like Soft Robot That Grasps and Anchors by Exploiting its Material Arrangement. IEEE Robot Autom Lett 2022. [DOI: 10.1109/lra.2022.3153713] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
9
|
Eristoff S, Kim SY, Sanchez-Botero L, Buckner T, Yirmibeşoğlu OD, Kramer-Bottiglio R. Soft Actuators Made of Discrete Grains. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2109617. [PMID: 35170820 DOI: 10.1002/adma.202109617] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 02/05/2022] [Indexed: 06/14/2023]
Abstract
Recent work has demonstrated the potential of actuators consisting of bulk elastomers with phase-changing inclusions for generating high forces and large volumetric expansions. Simultaneously, granular assemblies have been shown to enable tunable properties via different packings, dynamic moduli via jamming, and compatibility with various printing methods via suspension in carrier fluids. Herein, granular actuators are introduced, which represent a new class of soft actuators made of discrete grains. The soft grains consist of a hyperelastic shell and multiple solvent cores. Upon heating, the encapsulated solvent cores undergo liquid-to-gas phase change, inducing rapid and strong volumetric expansion of the hyperelastic shell up to 700%. The grains can be used independently for micro-actuation, or in granular agglomerates for meso- and macroscale actuation, demonstrating the scalability of the granular actuators. Furthermore, the active grains can be suspended in a carrier resin or solvent to enable printable soft actuators via established granular material processing techniques. By combining the advantages of phase-change soft actuation and granularity, this work presents the opportunity to realize soft actuators with tunable bulk properties, compatibility with self-assembly techniques, and on-demand reconfigurability.
Collapse
Affiliation(s)
- Sophia Eristoff
- School of Engineering and Applied Science, Yale University, 9 Hillhouse Ave., New Haven, CT, 06511, USA
| | - Sang Yup Kim
- School of Engineering and Applied Science, Yale University, 9 Hillhouse Ave., New Haven, CT, 06511, USA
- Department of Mechanical Engineering, Sogang University, 35 Baekbeom-ro, Seoul, 04107, Republic of Korea
| | - Lina Sanchez-Botero
- School of Engineering and Applied Science, Yale University, 9 Hillhouse Ave., New Haven, CT, 06511, USA
| | - Trevor Buckner
- School of Engineering and Applied Science, Yale University, 9 Hillhouse Ave., New Haven, CT, 06511, USA
| | - Osman Doğan Yirmibeşoğlu
- School of Engineering and Applied Science, Yale University, 9 Hillhouse Ave., New Haven, CT, 06511, USA
| | - Rebecca Kramer-Bottiglio
- School of Engineering and Applied Science, Yale University, 9 Hillhouse Ave., New Haven, CT, 06511, USA
| |
Collapse
|
10
|
Abstract
Colloidal self-assembly refers to a solution-processed assembly of nanometer-/micrometer-sized, well-dispersed particles into secondary structures, whose collective properties are controlled by not only nanoparticle property but also the superstructure symmetry, orientation, phase, and dimension. This combination of characteristics makes colloidal superstructures highly susceptible to remote stimuli or local environmental changes, representing a prominent platform for developing stimuli-responsive materials and smart devices. Chemists are achieving even more delicate control over their active responses to various practical stimuli, setting the stage ready for fully exploiting the potential of this unique set of materials. This review addresses the assembly of colloids into stimuli-responsive or smart nanostructured materials. We first delineate the colloidal self-assembly driven by forces of different length scales. A set of concepts and equations are outlined for controlling the colloidal crystal growth, appreciating the importance of particle connectivity in creating responsive superstructures. We then present working mechanisms and practical strategies for engineering smart colloidal assemblies. The concepts underpinning separation and connectivity control are systematically introduced, allowing active tuning and precise prediction of the colloidal crystal properties in response to external stimuli. Various exciting applications of these unique materials are summarized with a specific focus on the structure-property correlation in smart materials and functional devices. We conclude this review with a summary of existing challenges in colloidal self-assembly of smart materials and provide a perspective on their further advances to the next generation.
Collapse
Affiliation(s)
- Zhiwei Li
- Department of Chemistry, University of California, Riverside, California 92521, United States
| | - Qingsong Fan
- Department of Chemistry, University of California, Riverside, California 92521, United States
| | - Yadong Yin
- Department of Chemistry, University of California, Riverside, California 92521, United States
| |
Collapse
|
11
|
Micro Elastic Pouch Motors: Elastically Deformable and Miniaturized Soft Actuators Using Liquid-to-Gas Phase Change. IEEE Robot Autom Lett 2021. [DOI: 10.1109/lra.2021.3075102] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
12
|
Hartmann F, Baumgartner M, Kaltenbrunner M. Becoming Sustainable, The New Frontier in Soft Robotics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2004413. [PMID: 33336520 PMCID: PMC11468029 DOI: 10.1002/adma.202004413] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 08/03/2020] [Indexed: 06/12/2023]
Abstract
The advancement of technology has a profound and far-reaching impact on the society, now penetrating all areas of life. From cradle to grave, one is supported by and depends on a wide range of electronic and robotic appliances, with an ever more intimate integration of the digital and biological spheres. These advances, however, often come at the price of negatively impacting our ecosystem, with growing demands on energy, contributions to greenhouse gas emissions and environmental pollution-from production to improper disposal. Mitigating these adverse effects is among the grand challenges of the society and at the forefront of materials research. The currently emerging forms of soft, biologically inspired electronics and robotics have the unique potential of becoming not only like their natural antitypes in performance and capabilities, but also in terms of their ecological footprint. This review outlines the rise of sustainable materials in soft and bioinspired robotics, targeting all robotic components from actuators to energy storage and electronics. The state-of-the-art in biobased robotics spans flourishing fields and applications ranging from microbots operating in vivo to biohybrid machines and fully biodegradable yet resilient actuators. These first steps initiate the evolution of robotics and guide them into a sustainable future.
Collapse
Affiliation(s)
- Florian Hartmann
- Soft Matter PhysicsInstitute of Experimental PhysicsJohannes Kepler University LinzAltenberger Strasse 69Linz4040Austria
- Soft Materials LabLinz Institute of Technology LITJohannes Kepler UniversityAltenberger Strasse 69Linz4040Austria
| | - Melanie Baumgartner
- Soft Matter PhysicsInstitute of Experimental PhysicsJohannes Kepler University LinzAltenberger Strasse 69Linz4040Austria
- Soft Materials LabLinz Institute of Technology LITJohannes Kepler UniversityAltenberger Strasse 69Linz4040Austria
- Institute of Polymer ScienceJohannes Kepler UniversityAltenberger Strasse 69Linz4040Austria
| | - Martin Kaltenbrunner
- Soft Matter PhysicsInstitute of Experimental PhysicsJohannes Kepler University LinzAltenberger Strasse 69Linz4040Austria
- Soft Materials LabLinz Institute of Technology LITJohannes Kepler UniversityAltenberger Strasse 69Linz4040Austria
| |
Collapse
|
13
|
Wang J, Gao D, Lee PS. Recent Progress in Artificial Muscles for Interactive Soft Robotics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2003088. [PMID: 33108022 DOI: 10.1002/adma.202003088] [Citation(s) in RCA: 83] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 06/21/2020] [Indexed: 06/11/2023]
Abstract
Artificial muscles are the core components of the smart and interactive soft robotic systems, providing the capabilities in shape morphing, manipulation, and mobility. Intense research efforts in the development of artificial muscles are based on the dielectric elastomer actuators, pneumatic actuators, electrochemical actuators, soft magnetic actuators, and stimulus responsive polymers. Recent progress has presented artificial muscles with impressive specific power output exceeding that of the natural muscles, dexterous shape morphing behavior that can be programmed and reconfigured, and exceptional high maneuverability to traverse surfaces with obstacles and different textures. Here, a succinct and critical summary is provided on the materials and strategies that have contributed to the important advancement of the artificial muscles in recent research. On that basis, the exciting opportunities are discussed in the integration of soft electronic devices with artificial muscles to enable smart and interactive soft robotic systems.
Collapse
Affiliation(s)
- Jiangxin Wang
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, Guangdong, 518172, China
| | - Dace Gao
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Pooi See Lee
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| |
Collapse
|
14
|
Ueno S, Monnai Y. Wireless Soft Actuator Based on Liquid-Gas Phase Transition Controlled by Millimeter-Wave Irradiation. IEEE Robot Autom Lett 2020. [DOI: 10.1109/lra.2020.3013847] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|