1
|
Xue X, Li M, Liu Z, Wang C, Xu J, Wang S, Zhang H, Zhong H, Ji W. Quantum dots enhanced stability of in-situ fabricated perovskite nanocrystals based light-emitting diodes: Electrical field distribution effects. FUNDAMENTAL RESEARCH 2025; 5:347-353. [PMID: 40166101 PMCID: PMC11955023 DOI: 10.1016/j.fmre.2022.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 08/03/2022] [Accepted: 08/04/2022] [Indexed: 11/30/2022] Open
Abstract
With the development in fabricating efficient perovskite light emitting diodes (PeLEDs), improving the operating stability becomes an urgent task. Here we report quantum dot (QD) enhanced stability of PeLEDs by introducing CdSe/ZnS core-shell QDs in toluene anti-solvent during in-situ fabrication of FAPbBr3 perovskite nanocrystals (PNCs) films. In comparison with PNC films with pristine toluene as the anti-solvent, the as-prepared FAPbBr3 PNC films with a QD monolayer on the surface exhibit improved photoluminescence quantum yield, enhanced photostability and better reproducibility. Benefiting from these advantages, the peak luminance and the maximum external quantum efficiency of the PeLED containing QD monolayer are increased from 6807 cd/m2 to 86,670 cd/m2 and 2.4% to 7.1%, respectively. The T 50 lifetime under the initial luminance of 1021 cd/m2 approaches 83 minutes. Based on electrical field simulation and transient electroluminescence measurements, the enhanced stability can be mainly attributed to the electrical field redistribution induced by the QD monolayer. This work demonstrates that the combination of QDs and perovskites provides an effective strategy to address the operational stability of PeLEDs. The insights into electrical field distribution effect will make great impact on stability improvement of other perovskite based devices.
Collapse
Affiliation(s)
- Xulan Xue
- Key Lab of Physics and Technology for Advanced Batteries (Ministry of Education), College of Physics, Jilin University, Changchun 130012, China
| | - Menglin Li
- MIIT Key Laboratory for Low-Dimensional Quantum Structure and Devices, School of Materials Science & Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Zhenjie Liu
- Key Lab of Physics and Technology for Advanced Batteries (Ministry of Education), College of Physics, Jilin University, Changchun 130012, China
| | - Chenhui Wang
- MIIT Key Laboratory for Low-Dimensional Quantum Structure and Devices, School of Materials Science & Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Jincheng Xu
- Institute of Applied Physics and Materials Engineering, University of Macau, Taipa 999078, China
| | - Shuangpeng Wang
- Institute of Applied Physics and Materials Engineering, University of Macau, Taipa 999078, China
| | - Hanzhuang Zhang
- Key Lab of Physics and Technology for Advanced Batteries (Ministry of Education), College of Physics, Jilin University, Changchun 130012, China
| | - Haizheng Zhong
- MIIT Key Laboratory for Low-Dimensional Quantum Structure and Devices, School of Materials Science & Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Wenyu Ji
- Key Lab of Physics and Technology for Advanced Batteries (Ministry of Education), College of Physics, Jilin University, Changchun 130012, China
| |
Collapse
|
2
|
Bai W, Xuan T, Zhao H, Dong H, Cheng X, Wang L, Xie RJ. Perovskite Light-Emitting Diodes with an External Quantum Efficiency Exceeding 30. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2302283. [PMID: 37246938 DOI: 10.1002/adma.202302283] [Citation(s) in RCA: 60] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 05/03/2023] [Indexed: 05/30/2023]
Abstract
Perovskite light-emitting diodes (PeLEDs) are strong candidates for next-generation display and lighting technologies due to their high color purity and low-cost solution-processed fabrication. However, PeLEDs are not superior to commercial organic light-emitting diodes (OLEDs) in efficiency, as some key parameters affecting their efficiency, such as the charge carrier transport and light outcoupling efficiency, are usually overlooked and not well optimized. Here, ultrahigh-efficiency green PeLEDs are reported with quantum efficiencies surpassing a milestone of 30% by regulating the charge carrier transport and near-field light distribution to reduce electron leakage and achieve a high light outcoupling efficiency of 41.82%. Ni0.9 Mg0.1 Ox films are applied with a high refractive index and increased hole carrier mobility as the hole injection layer to balance the charge carrier injection and insert the polyethylene glycol layer between the hole transport layer and the perovskite emissive layer to block the electron leakage and reduce the photon loss. Therefore, with the modified structure, the state-of-the-art green PeLEDs achieve a world record external quantum efficiency of 30.84% (average = 29.05 ± 0.77%) at a luminance of 6514 cd m-2 . This study provides an interesting idea to construct super high-efficiency PeLEDs by balancing the electron-hole recombination and enhancing the light outcoupling.
Collapse
Affiliation(s)
- Wenhao Bai
- Fujian Key Laboratory of Surface and Interface Engineering for High Performance Materials, College of Materials, Xiamen University, Xiamen, 361005, P. R. China
| | - Tongtong Xuan
- Fujian Key Laboratory of Surface and Interface Engineering for High Performance Materials, College of Materials, Xiamen University, Xiamen, 361005, P. R. China
- Shenzhen Research Institute of Xiamen University, Shenzhen, 518000, P. R. China
- Xiamen Key Laboratory of High Performance Metals and Materials, Xiamen University, Xiamen, 361005, P. R. China
| | - Haiyan Zhao
- Fujian Key Laboratory of Surface and Interface Engineering for High Performance Materials, College of Materials, Xiamen University, Xiamen, 361005, P. R. China
| | - Haorui Dong
- Fujian Key Laboratory of Surface and Interface Engineering for High Performance Materials, College of Materials, Xiamen University, Xiamen, 361005, P. R. China
| | - Xinru Cheng
- College of Optical and Electronic Technology, China Jiliang University, Hangzhou, Zhejiang, 310018, P. R. China
| | - Le Wang
- College of Optical and Electronic Technology, China Jiliang University, Hangzhou, Zhejiang, 310018, P. R. China
| | - Rong-Jun Xie
- Fujian Key Laboratory of Surface and Interface Engineering for High Performance Materials, College of Materials, Xiamen University, Xiamen, 361005, P. R. China
- Shenzhen Research Institute of Xiamen University, Shenzhen, 518000, P. R. China
- Xiamen Key Laboratory of High Performance Metals and Materials, Xiamen University, Xiamen, 361005, P. R. China
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Xiamen, 361005, P. R. China
| |
Collapse
|
3
|
Li H, Hu S, Wang H, Zhang X, Tong Y, Qi H, Guo P, Zhao G, Gao J, Liu P, Zang J, Hao H, Liu T, Bian H, Zhang Y, Wei Y, Guo Y, Zhang L, Fang Y, Wang H. Control of n-Phase Distribution in Quasi Two-Dimensional Perovskite for Efficient Blue Light-Emitting Diodes. ACS APPLIED MATERIALS & INTERFACES 2023; 15:9574-9583. [PMID: 36753052 DOI: 10.1021/acsami.2c19979] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Pure-bromide quasi-2D perovskite (PBQ-2DP) promises high-performance light-emitting diodes (LEDs), while a challenge remains on control over its n-phase distribution for bright true-blue emission. Present work addresses the challenge through exploring the passivation molecule of amino acid with reinforced binding energy, which generates narrow n-phase distribution preferentially at n = 3 with true blue emission at 478 nm. Consequently, a peak external quantum efficiency of 5.52% and a record brightness of 512 cd m-2 are achieved on the PBQ-2DP-based true blue PeLED, these both values located among the top in the records of similar devices. We further reveal that the electron-phonon coupling results in the red-shifted emission in the PBQ-2DP film, suggesting that the view of n-phase distribution dominated true-blue emission in PBQ-2DP needs to be revisited, pointing out a guideline of electron-phonon coupling suppression to relieve the strait of realizing true blue or even deep blue emission in the PBQ-2DP film.
Collapse
Affiliation(s)
- Huixin Li
- State Key Laboratory of Solidification Processing, Center for Nano Energy Materials, School of Materials Science and Engineering, Northwestern Polytechnical University and Shaanxi Joint Laboratory of Graphene, Xi'an 710072, China
| | - Siliang Hu
- State Key Laboratory of Solidification Processing, Center for Nano Energy Materials, School of Materials Science and Engineering, Northwestern Polytechnical University and Shaanxi Joint Laboratory of Graphene, Xi'an 710072, China
| | - Hongyue Wang
- State Key Laboratory of Solidification Processing, Center for Nano Energy Materials, School of Materials Science and Engineering, Northwestern Polytechnical University and Shaanxi Joint Laboratory of Graphene, Xi'an 710072, China
- Chongqing Innovation Center, Northwestern Polytechnical University, Chongqing 401135, China
| | - Xiuhai Zhang
- State Key Laboratory of Solidification Processing, Center for Nano Energy Materials, School of Materials Science and Engineering, Northwestern Polytechnical University and Shaanxi Joint Laboratory of Graphene, Xi'an 710072, China
| | - Yu Tong
- State Key Laboratory of Solidification Processing, Center for Nano Energy Materials, School of Materials Science and Engineering, Northwestern Polytechnical University and Shaanxi Joint Laboratory of Graphene, Xi'an 710072, China
| | - Heng Qi
- State Key Laboratory of Solidification Processing, Center for Nano Energy Materials, School of Materials Science and Engineering, Northwestern Polytechnical University and Shaanxi Joint Laboratory of Graphene, Xi'an 710072, China
| | - Pengfei Guo
- State Key Laboratory of Solidification Processing, Center for Nano Energy Materials, School of Materials Science and Engineering, Northwestern Polytechnical University and Shaanxi Joint Laboratory of Graphene, Xi'an 710072, China
- Chongqing Innovation Center, Northwestern Polytechnical University, Chongqing 401135, China
| | - Guanguan Zhao
- State Key Laboratory of Solidification Processing, Center for Nano Energy Materials, School of Materials Science and Engineering, Northwestern Polytechnical University and Shaanxi Joint Laboratory of Graphene, Xi'an 710072, China
| | - Jialiang Gao
- State Key Laboratory of Solidification Processing, Center for Nano Energy Materials, School of Materials Science and Engineering, Northwestern Polytechnical University and Shaanxi Joint Laboratory of Graphene, Xi'an 710072, China
| | - Peng Liu
- State Key Laboratory of Solidification Processing, Center for Nano Energy Materials, School of Materials Science and Engineering, Northwestern Polytechnical University and Shaanxi Joint Laboratory of Graphene, Xi'an 710072, China
| | - Jianyang Zang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China
| | - Hongxing Hao
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China
| | - Taihong Liu
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China
| | - Hongtao Bian
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China
| | - Youqian Zhang
- State Key Laboratory of Solidification Processing, Center for Nano Energy Materials, School of Materials Science and Engineering, Northwestern Polytechnical University and Shaanxi Joint Laboratory of Graphene, Xi'an 710072, China
| | - Yang Wei
- State Key Laboratory of Solidification Processing, Center for Nano Energy Materials, School of Materials Science and Engineering, Northwestern Polytechnical University and Shaanxi Joint Laboratory of Graphene, Xi'an 710072, China
| | - Yangyang Guo
- State Key Laboratory of Solidification Processing, Center for Nano Energy Materials, School of Materials Science and Engineering, Northwestern Polytechnical University and Shaanxi Joint Laboratory of Graphene, Xi'an 710072, China
| | - Lei Zhang
- School of Optoelectronic Engineering, Xidian University, Xi'an 710071, China
| | - Yu Fang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China
| | - Hongqiang Wang
- State Key Laboratory of Solidification Processing, Center for Nano Energy Materials, School of Materials Science and Engineering, Northwestern Polytechnical University and Shaanxi Joint Laboratory of Graphene, Xi'an 710072, China
- Chongqing Innovation Center, Northwestern Polytechnical University, Chongqing 401135, China
| |
Collapse
|
4
|
Krieger A, Wagner M, Gröhn F. Mixed-Surfactant Perovskites with Enhanced Photostability. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
5
|
Kumar R, Shukla PS, Varma G, Bag M. Synthesis of porous electrode from CH3NH3PbBr3 single crystal for efficient supercapacitor application: Role of morphology on the charge storage and stability. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.139344] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
6
|
Worku M, Ben-Akacha A, Blessed Shonde T, Liu H, Ma B. The Past, Present, and Future of Metal Halide Perovskite Light‐Emitting Diodes. SMALL SCIENCE 2021. [DOI: 10.1002/smsc.202000072] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Affiliation(s)
- Michael Worku
- Materials Science and Engineering Program Florida State University Tallahassee FL 32306 USA
| | - Azza Ben-Akacha
- Department of Chemistry and Biochemistry Florida State University Tallahassee FL 32306 USA
| | - Tunde Blessed Shonde
- Department of Chemistry and Biochemistry Florida State University Tallahassee FL 32306 USA
| | - He Liu
- Department of Chemistry and Biochemistry Florida State University Tallahassee FL 32306 USA
| | - Biwu Ma
- Materials Science and Engineering Program Florida State University Tallahassee FL 32306 USA
- Department of Chemistry and Biochemistry Florida State University Tallahassee FL 32306 USA
| |
Collapse
|
7
|
Recent Advances on Cyan‐Emitting (480 ≤
λ
≤ 520 nm) Metal Halide Perovskite Materials. SMALL SCIENCE 2021. [DOI: 10.1002/smsc.202000077] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
8
|
Zou C, Lin LY. Effect of emitter orientation on the outcoupling efficiency of perovskite light-emitting diodes. OPTICS LETTERS 2020; 45:4786-4789. [PMID: 32870857 DOI: 10.1364/ol.400814] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 07/28/2020] [Indexed: 06/11/2023]
Abstract
Metal halide perovskite light-emitting diodes (PeLEDs) have experienced a rapid advancement in the last several years with the external quantum efficiencies (EQEs) reaching over 20%, comparable to the state-of-the-art organic LEDs and quantum dot LEDs. The photoluminescence quantum yields of perovskite films have also been approaching 100%. Therefore, the next step to improving the EQE of PeLEDs should be focused on boosting light extraction. In this Letter, we demonstrate the emitter dipole orientation as a key parameter in determining the outcoupling efficiency of PeLEDs. We find that the CsPbBr3 emitter has a slightly preferred orientation with the horizontal-to-vertical dipole ratio of 0.41:0.59, as compared to 0.33:0.67 in the isotropic case. A theoretical analysis predicts that a purely anisotropic perovskite emitter may result in a maximum EQE of 36%.
Collapse
|
9
|
Zou C, Liu Y, Ginger DS, Lin LY. Suppressing Efficiency Roll-Off at High Current Densities for Ultra-Bright Green Perovskite Light-Emitting Diodes. ACS NANO 2020; 14:6076-6086. [PMID: 32324379 DOI: 10.1021/acsnano.0c01817] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Perovskite light-emitting diodes (PeLEDs) have undergone rapid development in the last several years with external quantum efficiencies (EQEs) reaching over 21%. However, most PeLEDs still suffer from severe efficiency roll-off (droop) at high injection current densities, thus limiting their achievable brightness and presenting a challenge to their use in laser diode applications. In this work, we show that the roll-off characteristics of PeLEDs are affected by a combination of charge injection imbalance, nonradiative Auger recombination, and Joule heating. To realize ultrabright and efficient PeLEDs, several strategies have been applied. First, we designed an energy ladder to balance the electron and hole transport. Second, we optimized perovskite materials to possess reduced Auger recombination rates and improved carrier mobility. Third, we replaced glass substrates with sapphire substrates to better dissipate joule heat. Finally, by applying a current-focusing architecture, we achieved PeLEDs with a record luminance of 7.6 Mcd/m2. The devices can be operated at very high current densities (J) up to ∼1 kA/cm2. Our work suggests a broad application prospect of perovskite materials for high-brightness LEDs and ultimately a potential for solution-processed electrically pumped laser diodes.
Collapse
Affiliation(s)
- Chen Zou
- Department of Electrical and Computer Engineering, University of Washington, Seattle, Washington 98195, United States
| | - Yun Liu
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - David S Ginger
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Lih Y Lin
- Department of Electrical and Computer Engineering, University of Washington, Seattle, Washington 98195, United States
| |
Collapse
|
10
|
Kumar S, Jagielski J, Marcato T, Solari SF, Shih CJ. Understanding the Ligand Effects on Photophysical, Optical, and Electroluminescent Characteristics of Hybrid Lead Halide Perovskite Nanocrystal Solids. J Phys Chem Lett 2019; 10:7560-7567. [PMID: 31736317 PMCID: PMC6926956 DOI: 10.1021/acs.jpclett.9b02950] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
There has been a tremendous amount of interest in developing high-efficiency light-emitting diodes (LEDs) based on colloidal nanocrystals (NCs) of hybrid lead halide perovskites. Here, we systematically investigate the ligand effects on EL characteristics by tuning the hydrophobicity of primary alkylamine ligands used in NC synthesis. By increasing the ligand hydrophobicity, we find (i) a reduced NC size that induces a higher degree of quantum confinement, (ii) a shortened exciton lifetime that increases the photoluminescence quantum yield, (iii) a lowering of refractive index that increases the light outcoupling efficiency, and (iv) an increased thin-film resistivity. Accordingly, ligand engineering allows us to demonstrate high-performance green LEDs exhibiting a maximum external quantum efficiency up to 16.2%. The device operational lifetime, defined by the time lasted when the device luminance reduces to 85% of its initial value, LT85, reaches 243 min at an initial luminance of 516 cd m-2.
Collapse
|