1
|
Xiong R, Zhu X, Zhao J, Ling G, Zhang P. Nanozymes-Mediated Cascade Reaction System for Tumor-Specific Diagnosis and Targeted Therapy. SMALL METHODS 2024; 8:e2301676. [PMID: 38480992 DOI: 10.1002/smtd.202301676] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 02/02/2024] [Indexed: 10/18/2024]
Abstract
Cascade reactions are described as efficient and versatile tools, and organized catalytic cascades can significantly improve the efficiency of chemical interworking between nanozymes. They have attracted great interest in many fields such as chromogenic detection, biosensing, tumor diagnosis, and therapy. However, how to selectively kill tumor cells by enzymatic reactions without harming normal cells, as well as exploring two or more enzyme-engineered nanoreactors for cascading catalytic reactions, remain great challenges in the field of targeted and specific cancer diagnostics and therapy. The latest research advances in nanozyme-catalyzed cascade processes for cancer diagnosis and therapy are described in this article. Here, various sensing strategies are summarized, for tumor-specific diagnostics. Targeting mechanisms for tumor treatment using cascade nanozymes are classified and analyzed, "elements" and "dimensions" of cascade nanozymes, types, designs of structure, and assembly modes of highly active and specific cascade nanozymes, as well as a variety of new strategies of tumor targeting based on the cascade reaction of nanozymes. Finally, the integrated application of the cascade nanozymes systems in tumor-targeted and specific diagnostic therapy is summarized, which will lay the foundation for the design of more rational, efficient, and specific tumor diagnostic and therapeutic modalities in the future.
Collapse
Affiliation(s)
- Ruru Xiong
- Wuya College of Innovation, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang, 110016, China
| | - Xiaoguang Zhu
- Wuya College of Innovation, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang, 110016, China
| | - Jiuhong Zhao
- Wuya College of Innovation, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang, 110016, China
| | - Guixia Ling
- Wuya College of Innovation, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang, 110016, China
| | - Peng Zhang
- Wuya College of Innovation, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang, 110016, China
| |
Collapse
|
2
|
Wu Q, Tan L, Ren X, Fu C, Chen Z, Ren J, Ma T, Meng X. Metal-Organic Framework-Based Nano-Activators Facilitating Microwave Combined Therapy via a Divide-and-Conquer Tactic for Triple-Negative Breast Cancer. ACS NANO 2023; 17:25575-25590. [PMID: 38095158 DOI: 10.1021/acsnano.3c09734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2023]
Abstract
Aiming at the clinical problems of high recurrence and metastasis rate of triple-negative breast cancer, a divide-and-conquer tactic is developed. The designed nanoactivators enhance microwave thermo-dynamic-chemotherapy to efficiently kill primary tumors, simultaneously ameliorate the immunosuppressive microenvironment, activate the tumor infiltration of T lymphocytes, and enhance the accumulation and penetration of PD-1/PD-L1 immune agents, ultimately boosting the efficacy of immune checkpoint blocking therapy to achieve efficient inhibition of distal tumors and metastases. Metal-organic framework (MOF)-based MPPT nano-activator is synthesized by packaging chemotherapeutic drug Pyrotinib and immunosuppressant PD-1/PD-L1 inhibitor 2 into MnCa-MOF and then coupling target molecule triphenylphosphine, which significantly improved the accumulation and penetration of Pyrotinib and immunosuppressant in tumors. In addition to the combined treatment of microwave thermo-dynamic-chemotherapy under microwave irradiation, Mn2+ in the nano-activator comprehensively promotes the cGAS-STING pathway to activate innate immunity, microwave therapy, and hypoxia relief are combined to ameliorate the tumor immunosuppressive microenvironment. The released Pyrotinib down-regulates epidermal growth factor receptor and its downstream pathways PI3K/AKT/mTOR and MAPK/ERK signaling pathways to maximize the therapeutic effect of immune checkpoint blocking, which helps to enhance the antitumor efficacy and promote long-term memory immunity. This nano-activator offers a generally promising paradigm for existing clinical triple-negative breast cancer treatment through a divide-and-conquer strategy.
Collapse
Affiliation(s)
- Qiong Wu
- Key Laboratory of Cryogenic Science and Technology, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- Laboratory of Controllable Preparation and Application of Nanomaterials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Longfei Tan
- Key Laboratory of Cryogenic Science and Technology, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- Laboratory of Controllable Preparation and Application of Nanomaterials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Xiangling Ren
- Key Laboratory of Cryogenic Science and Technology, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- Laboratory of Controllable Preparation and Application of Nanomaterials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Changhui Fu
- Key Laboratory of Cryogenic Science and Technology, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- Laboratory of Controllable Preparation and Application of Nanomaterials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Zengzhen Chen
- Key Laboratory of Cryogenic Science and Technology, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- Laboratory of Controllable Preparation and Application of Nanomaterials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Jun Ren
- Key Laboratory of Cryogenic Science and Technology, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- Laboratory of Controllable Preparation and Application of Nanomaterials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Tengchuang Ma
- Department of Nuclear Medicine, Harbin Medical University Cancer Hospital, Harbin 150086, Heilongjiang, P. R. China
| | - Xianwei Meng
- Key Laboratory of Cryogenic Science and Technology, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- Laboratory of Controllable Preparation and Application of Nanomaterials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| |
Collapse
|
3
|
Chen L, Zhao D, Ren X, Ren J, Meng X, Fu C, Li X. Shikonin-Loaded Hollow Fe-MOF Nanoparticles for Enhanced Microwave Thermal Therapy. ACS Biomater Sci Eng 2023; 9:5405-5417. [PMID: 37638660 PMCID: PMC10498989 DOI: 10.1021/acsbiomaterials.3c00644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 08/15/2023] [Indexed: 08/29/2023]
Abstract
Microwave (MW) thermal therapy has been widely used for the treatment of cancer in clinics, but it still shows limited efficacy and a high recurrence rate owing to non-selective heat delivery and thermo-resistance. Regulating glycolysis shows great promise to improve MW thermal therapy since glycolysis plays an important role in thermo-resistance, progression, metabolism, and recurrence. Herein, we developed a delivery nanosystem of shikonin (SK)-loaded and hyaluronic acid (HA)-modified hollow Fe-MOF (HFM), HFM@SK@HA, as an efficient glycolysis-meditated agent to improve the efficacy of MW thermal therapy. The HFM@SK@HA nanosystem shows a high SK loading capacity of 31.7 wt %. The loaded SK can be effectively released from the HFM@SK@HA under the stimulation of an acidic tumor microenvironment and MW irradiation, overcoming the intrinsically low solubility and severe toxicity of SK. We also find that the HFM@SK@HA can not only greatly improve the heating effect of MW in the tumor site but also mediate MW-enhancing dynamic therapy efficiency by catalyzing the endogenous H2O2 to generate reactive oxygen species (ROS). As such, the MW irradiation treatment in the presence of HFM@SK@HA in vitro enables a highly improved anti-tumor efficacy due to the combined effect of released SK and generated ROS on inhibiting glycolysis in cancer cells. Our in vivo experiments show that the tumor inhibition rate is up to 94.75% ± 3.63% with no obvious recurrence during the 2 weeks after treatment. This work provides a new strategy for improving the efficacy of MW thermal therapy.
Collapse
Affiliation(s)
- Lufeng Chen
- Department
of Radiation Oncology, First Clinical Medical
School and First Hospital of Shanxi Medical University, No.85 Jiefang Road, Taiyuan City 030001, PR China
| | - Dongming Zhao
- Department
of Radiation Oncology, First Clinical Medical
School and First Hospital of Shanxi Medical University, No.85 Jiefang Road, Taiyuan City 030001, PR China
- Department
of Pathology, Basic Medical School, Shanxi
Medical University, No.56 Xinjian Road, Taiyuan City 030001, PR China
| | - Xiangling Ren
- Laboratory
of Controllable Preparation and Application of Nanomaterials, Technical
Institute of Physics and Chemistry, Chinese
Academy of Sciences, No.29 East Road Zhongguancun, Beijing 100190, PR China
- CAS
Key Laboratory of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Jun Ren
- Laboratory
of Controllable Preparation and Application of Nanomaterials, Technical
Institute of Physics and Chemistry, Chinese
Academy of Sciences, No.29 East Road Zhongguancun, Beijing 100190, PR China
- CAS
Key Laboratory of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Xianwei Meng
- Laboratory
of Controllable Preparation and Application of Nanomaterials, Technical
Institute of Physics and Chemistry, Chinese
Academy of Sciences, No.29 East Road Zhongguancun, Beijing 100190, PR China
- CAS
Key Laboratory of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Changhui Fu
- Laboratory
of Controllable Preparation and Application of Nanomaterials, Technical
Institute of Physics and Chemistry, Chinese
Academy of Sciences, No.29 East Road Zhongguancun, Beijing 100190, PR China
- CAS
Key Laboratory of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Xianfeng Li
- Department
of Radiation Oncology, First Clinical Medical
School and First Hospital of Shanxi Medical University, No.85 Jiefang Road, Taiyuan City 030001, PR China
- Department
of Pathology, Basic Medical School, Shanxi
Medical University, No.56 Xinjian Road, Taiyuan City 030001, PR China
| |
Collapse
|
4
|
Li L, Sun T, Lu S, Chen Z, Xu S, Jian M, Zhang J. Graphene Interlocking Carbon Nanotubes for High-Strength and High-Conductivity Fibers. ACS APPLIED MATERIALS & INTERFACES 2023; 15:5701-5708. [PMID: 36661854 DOI: 10.1021/acsami.2c21518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Carbon nanotubes (CNTs) are promising building blocks for the fabrication of novel fibers with structural and functional properties. However, the mechanical and electrical performances of carbon nanotube fibers (CNTFs) are far lower than the intrinsic properties of individual CNTs. Exploring methods for the controllable assembly and continuous preparation of high-performance CNTFs is still challenging. Herein, a graphene/chlorosulfonic acid-assisted wet-stretching method is developed to produce highly densified and well-aligned graphene/carbon nanotube fibers (G/CNTFs) with excellent mechanical and electrical performances. Graphene with small size and high quality can bridge the adjacent CNTs to avoid the interfacial slippage under deformation, which facilitates the formation of a robust architecture with abundant conductive pathways. Their ordered structure and enhanced interfacial interactions endow the fibers with both high strength (4.7 GPa) and high electrical conductivity (more than 2 × 106 S/m). G/CNTF-based lightweight wires show good flexibility and knittability, and the high-performance fiber heaters exhibit ultrafast electrothermal response over 1000 °C/s and a low operation voltage of 3 V. This method paves the way for optimizing the microstructures and producing high-strength and high-conductivity CNTFs, which are promising candidates for the high-value fiber-based applications.
Collapse
Affiliation(s)
- Lijun Li
- Beijing Graphene Institute (BGI), Beijing 100095, P. R. China
| | - Tongzhao Sun
- Beijing Graphene Institute (BGI), Beijing 100095, P. R. China
- State Key Laboratory of High-Efficiency Coal Utilization and Green Chemical Engineering, College of Chemistry and Chemical Engineering, Ningxia University, Yinchuan 750021, P. R. China
| | - Shichao Lu
- Beijing Graphene Institute (BGI), Beijing 100095, P. R. China
| | - Zhuo Chen
- Beijing Graphene Institute (BGI), Beijing 100095, P. R. China
- Center for Nanochemistry, Beijing Science and Engineering Center for Nanocarbons, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P. R. China
| | - Shichen Xu
- Beijing Graphene Institute (BGI), Beijing 100095, P. R. China
- Center for Nanochemistry, Beijing Science and Engineering Center for Nanocarbons, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P. R. China
| | - Muqiang Jian
- Beijing Graphene Institute (BGI), Beijing 100095, P. R. China
| | - Jin Zhang
- Beijing Graphene Institute (BGI), Beijing 100095, P. R. China
- Center for Nanochemistry, Beijing Science and Engineering Center for Nanocarbons, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P. R. China
- School of Materials Science and Engineering, Peking University, Beijing 100871, P. R. China
| |
Collapse
|
5
|
Zhao L, Zhang W, Wu Q, Fu C, Ren X, Lv K, Ma T, Chen X, Tan L, Meng X. Lanthanide europium MOF nanocomposite as the theranostic nanoplatform for microwave thermo-chemotherapy and fluorescence imaging. J Nanobiotechnology 2022; 20:133. [PMID: 35292037 PMCID: PMC8922785 DOI: 10.1186/s12951-022-01335-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 02/26/2022] [Indexed: 12/12/2022] Open
Abstract
Backgrounds Microwave sensitization nanoplatform, integrating multiple functional units for improving tumor selectivity, is of great significance for clinical tumor microwave treatment. Lanthanide europium metal organic framework (EuMOF) is expected to be a theranostic nanoplatform owing to its unique luminescent and microwave sensitization properties. However, it is difficult to be applied to complicated biological systems for EuMOF due to its rapid degradation induced by the solvent molecular and ionic environment. In this work, a luminescent EuMOF nanocomposite (EuMOF@ZIF/AP-PEG, named EZAP) was designed, which brought the multifunctional characteristics of microwave sensitization, fluorescence imaging and drug loading. Results Lamellar EuMOF was synthesized by a hydrothermal method. Through the charge adsorption mechanism, the zeolite imidazole framework (ZIF) structure was intensively assembled on the surface of EuMOF to realize the protection. Then, through in-situ Apatinib drug loading and PEG modification, EZAP nanocomposite was finally obtained. Apatinib (AP) was a kind of chemotherapy drug approved by Food and Drug Administration for targeted therapy of tumors. PEG modification increased long-term circulation of EZAP nanocomposite. The physical and chemical structure and properties of EuMOF@ZIF (EZ) were systematically represented, indicating the successful synthesis of the nanocomposite. The toxic and side effects were negligible at a safe dose. The growth of human liver cancer cells and murine liver cancer cells in vitro was significantly inhibited, and the combined microwave-thermal therapy and chemotherapy in vivo achieved high anti-cancer efficacy. Moreover, EZAP nanocomposite possessed bright red fluorescence, which can be applied for tumor imaging in tumor-bearing mice in vivo. Conclusion Therefore, EZAP nanocomposite showed high microwave sensitization, excellent fluorescence properties and outstanding drug loading capacity, establishing a promising theranostic nanoplatform for tumor therapy and fluorescence imaging. This work proposes a unique strategy to design for the first time a multifunctional nanoplatform with lanthanide metal organic frameworks for biological applications in tumor therapy and diagnosis. Graphical Abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s12951-022-01335-7.
Collapse
Affiliation(s)
- Lirong Zhao
- Laboratory of Controllable Preparation and Application of Nanomaterials, CAS Key Laboratory of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, No. 29 East Road Zhongguancun, Beijing, 100190, People's Republic of China.,University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Wei Zhang
- Department of Interventional Radiology, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital,, Southern University of Science and Technology), Shenzhen, 518020, Guangdong, People's Republic of China
| | - Qiong Wu
- Laboratory of Controllable Preparation and Application of Nanomaterials, CAS Key Laboratory of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, No. 29 East Road Zhongguancun, Beijing, 100190, People's Republic of China
| | - Changhui Fu
- Laboratory of Controllable Preparation and Application of Nanomaterials, CAS Key Laboratory of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, No. 29 East Road Zhongguancun, Beijing, 100190, People's Republic of China
| | - Xiangling Ren
- Laboratory of Controllable Preparation and Application of Nanomaterials, CAS Key Laboratory of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, No. 29 East Road Zhongguancun, Beijing, 100190, People's Republic of China
| | - Kongpeng Lv
- Department of Interventional Radiology, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital,, Southern University of Science and Technology), Shenzhen, 518020, Guangdong, People's Republic of China
| | - Tengchuang Ma
- Department of Nuclear Medicine, Harbin Medical University Cancer Hospital, Nangang District, Harbin, 150086, Heilongjiang, People's Republic of China.
| | - Xudong Chen
- Department of Interventional Radiology, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital,, Southern University of Science and Technology), Shenzhen, 518020, Guangdong, People's Republic of China
| | - Longfei Tan
- Laboratory of Controllable Preparation and Application of Nanomaterials, CAS Key Laboratory of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, No. 29 East Road Zhongguancun, Beijing, 100190, People's Republic of China.
| | - Xianwei Meng
- Laboratory of Controllable Preparation and Application of Nanomaterials, CAS Key Laboratory of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, No. 29 East Road Zhongguancun, Beijing, 100190, People's Republic of China.
| |
Collapse
|
6
|
Li R, Tian Y, Zhu B, Wang Y, Dang R, Zhao L, Yang S, Li Y, Wen N. Graphene-containing metal-organic framework nanocomposites for enhanced microwave ablation of salivary adenoid cystic carcinoma. NANOSCALE ADVANCES 2022; 4:1308-1317. [PMID: 36133686 PMCID: PMC9419482 DOI: 10.1039/d1na00729g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 01/15/2022] [Indexed: 06/16/2023]
Abstract
Salivary adenoid cystic carcinoma (SACC), one of the most common malignant tumors in the head and neck region, is characterized by high postoperative recurrence rate and poor prognosis. Microwave (MW) ablation possesses advantages in preserving SACC patients' facial aesthetics and oral function, but unfortunately, it suffers from low therapeutic efficacy due to the limited MW-thermal efficiency. Moreover, the insufficient thermal ablation may aggravate hypoxic state in tumors, which is deleterious to the treatment of residual tumors and aggressive tumors. Hence, MW ablation has been rarely applied in treating head and neck tumors in recent years. To minimize the unfavorable outcomes and maximize the therapeutic effects of MW ablation, a MW sensitizer coupled with a self-sufficient oxygen nanoagent was employed for the first time in MW ablation to treat head and neck tumors. We prepared a graphene-containing metal-organic framework (ZIF67@Gr-PEG), which exhibited excellent MW thermal conversion ability endowed by the incorporated Gr and showed in situ oxygen generation capacity derived from the ZIF67 matrix. In an animal experiment, ZIF67@Gr-PEG-based MW ablation with a temperature up to 66.1 °C exhibited a high tumor ablation rate. More importantly, insufficient MW ablation-induced high expressions of HIF-1α and VEGF were observed in our experiment, whereas the levels of tumor hypoxia and angiogenesis were efficiently decreased in MW ablation with the assistance of ZIF67@Gr-PEG nanocomposites (NCs). Notably, our strategy for MW ablation not only evidences the great potential of ZIF67@Gr-PEG but also promotes the translation of thermotherapeutic graphene from basic research to clinical practice.
Collapse
Affiliation(s)
- Ruozhen Li
- Medical School of Chinese PLA Beijing 100853 China
- Department of Stomatology, The First Medical Center, Chinese PLA General Hospital No. 28 Fuxing Road Beijing 100853 China
| | - Yaping Tian
- Birth Defects Prevention and Control Technology Research Center, Translational Medicine Research Center, Chinese PLA General Hospital 28 FuXing Road Beijing 100853 China
| | - Biao Zhu
- Department of Stomatology, The First Medical Center, Chinese PLA General Hospital No. 28 Fuxing Road Beijing 100853 China
| | - Yu Wang
- Department of Oncology, Air Force Medical Center, PLA No. 30 FuCheng Road, Haidian District Beijing 100142 China
| | - Ruijie Dang
- Department of Stomatology, The First Medical Center, Chinese PLA General Hospital No. 28 Fuxing Road Beijing 100853 China
| | - Lisheng Zhao
- Department of Stomatology, The First Medical Center, Chinese PLA General Hospital No. 28 Fuxing Road Beijing 100853 China
| | - Shuo Yang
- Department of Stomatology, The First Medical Center, Chinese PLA General Hospital No. 28 Fuxing Road Beijing 100853 China
| | - Yunxia Li
- Department of Stomatology, The First Medical Center, Chinese PLA General Hospital No. 28 Fuxing Road Beijing 100853 China
| | - Ning Wen
- Department of Stomatology, The First Medical Center, Chinese PLA General Hospital No. 28 Fuxing Road Beijing 100853 China
| |
Collapse
|
7
|
Guo W, Chen Z, Tan L, Gu D, Ren X, Fu C, Wu Q, Meng X. Emerging biocompatible nanoplatforms for the potential application in diagnosis and therapy of deep tumors. VIEW 2022. [DOI: 10.1002/viw.20200174] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Affiliation(s)
- Wenna Guo
- Laboratory of Controllable Preparation and Application of Nanomaterials, Technical Institute of Physics and Chemistry Chinese Academy of Sciences Beijing P.R. China
- School of Optoelectronic Science and Engineering University of Electronic Science and Technology of China Chengdu Sichuan P.R. China
- CAS Key Laboratory of Cryogenics Technical Institute of Physics and Chemistry Beijing P.R. China
| | - Zengzhen Chen
- Laboratory of Controllable Preparation and Application of Nanomaterials, Technical Institute of Physics and Chemistry Chinese Academy of Sciences Beijing P.R. China
- CAS Key Laboratory of Cryogenics Technical Institute of Physics and Chemistry Beijing P.R. China
- University of Chinese Academy of Sciences Beijing P.R. China
| | - Longfei Tan
- Laboratory of Controllable Preparation and Application of Nanomaterials, Technical Institute of Physics and Chemistry Chinese Academy of Sciences Beijing P.R. China
- CAS Key Laboratory of Cryogenics Technical Institute of Physics and Chemistry Beijing P.R. China
| | - Deen Gu
- School of Optoelectronic Science and Engineering University of Electronic Science and Technology of China Chengdu Sichuan P.R. China
| | - Xiangling Ren
- Laboratory of Controllable Preparation and Application of Nanomaterials, Technical Institute of Physics and Chemistry Chinese Academy of Sciences Beijing P.R. China
- CAS Key Laboratory of Cryogenics Technical Institute of Physics and Chemistry Beijing P.R. China
| | - Changhui Fu
- Laboratory of Controllable Preparation and Application of Nanomaterials, Technical Institute of Physics and Chemistry Chinese Academy of Sciences Beijing P.R. China
- CAS Key Laboratory of Cryogenics Technical Institute of Physics and Chemistry Beijing P.R. China
| | - Qiong Wu
- Laboratory of Controllable Preparation and Application of Nanomaterials, Technical Institute of Physics and Chemistry Chinese Academy of Sciences Beijing P.R. China
- CAS Key Laboratory of Cryogenics Technical Institute of Physics and Chemistry Beijing P.R. China
| | - Xianwei Meng
- Laboratory of Controllable Preparation and Application of Nanomaterials, Technical Institute of Physics and Chemistry Chinese Academy of Sciences Beijing P.R. China
- CAS Key Laboratory of Cryogenics Technical Institute of Physics and Chemistry Beijing P.R. China
| |
Collapse
|
8
|
Li Y, Chen N, Li Z, Shao H, Sun X, Liu F, Liu X, Guo Q, Qu L. Reborn Three-Dimensional Graphene with Ultrahigh Volumetric Desalination Capacity. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2105853. [PMID: 34561904 DOI: 10.1002/adma.202105853] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 08/26/2021] [Indexed: 06/13/2023]
Abstract
The constructing of 3D materials with optimal performance is urgently needed to meet the growing demand of advanced materials in the high-tech sector. A distinctive 3D graphene (3DG) is designed based on a repeated rebirth strategy to obtain a better body and performance after each round of rebirth, as if it is Phoenix Nirvana. The properties of reborn graphene, namely 3DG after Nirvana (NvG), has been dramatically upgraded compared to 3DG, including high density (3.36 times) together with high porosity, as well as better electrical conductivity (1.41 times), mechanical strength (32.4 times), and ultrafast infiltration behavior. These advantages of NvG make it a strong intrinsic motivation for application in capacitive deionization (CDI). Using NvG directly as the CDI electrode, it has an extremely high volumetric capacity of 220 F cm-3 at 1 A cm-3 and a maximum salt absorption capacity of 8.02~9.2 mg cm-3 (8.9-10.2 times), while the power consumption for adsorption of the same mass of salt is less than a quarter of 3DG. The "Phoenix Nirvana"-like strategy of manufacturing 3D structures will undoubtedly become the new engine to kick-start the development of innovative carbon materials through an overall performance upgrade.
Collapse
Affiliation(s)
- Yuanyuan Li
- Key Laboratory of Cluster Science, Ministry of Education of China, Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Nan Chen
- Key Laboratory of Cluster Science, Ministry of Education of China, Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Zengling Li
- Key Laboratory of Cluster Science, Ministry of Education of China, Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Huibo Shao
- Key Laboratory of Cluster Science, Ministry of Education of China, Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Xiaotong Sun
- Key Laboratory of Cluster Science, Ministry of Education of China, Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Feng Liu
- State Key Laboratory of Nonlinear Mechanics Institute of Mechanics, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Xiaoting Liu
- Key Laboratory of Cluster Science, Ministry of Education of China, Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Qiang Guo
- Key Laboratory of Cluster Science, Ministry of Education of China, Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Liangti Qu
- Key Laboratory of Organic Optoelectronics & Molecular Engineering, Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
9
|
Jašek O, Toman J, Šnírer M, Jurmanová J, Kudrle V, Michalička J, Všianský D, Pavliňák D. Microwave plasma-based high temperature dehydrogenation of hydrocarbons and alcohols as a single route to highly efficient gas phase synthesis of freestanding graphene. NANOTECHNOLOGY 2021; 32:505608. [PMID: 34496359 DOI: 10.1088/1361-6528/ac24c3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 09/08/2021] [Indexed: 06/13/2023]
Abstract
Understanding underlying processes behind the simple and easily scalable graphene synthesis methods enables their large-scale deployment in the emerging energy storage and printable device applications. Microwave plasma decomposition of organic precursors forms a high-temperature environment, above 3000 K, where the process of catalyst-free dehydrogenation and consequent formation of C2molecules leads to nucleation and growth of high-quality few-layer graphene (FLG). In this work, we show experimental evidence that a high-temperature environment with a gas mixture of H2and acetylene, C2H2, leads to a transition from amorphous to highly crystalline material proving the suggested dehydrogenation mechanism. The overall conversion efficiency of carbon to FLG reached up to 47%, three times as much as for methane or ethanol, and increased with increasing microwave power (i.e. with the size of the high-temperature zone) and hydrocarbon flow rate. The yield decreased with decreasing C:H ratio while the best quality FLG (low D/G-0.5 and high 2D/G-1.5 Raman band ratio) was achieved for C:H ratio of 1:3. The structures contained less than 1 at% of oxygen. No additional hydrogen was necessary for the synthesis of FLG from higher alcohols having the same stoichiometry, 1-propanol and isopropanol, but the yield was lower, 15%, and dependent on the atom arrangement of the precursor. The prepared FLG nanopowder was analyzed by scanning electron microscopy, Raman, x-ray photoelectron spectroscopy, and thermogravimetry. Microwave plasma was monitored by optical emission spectroscopy.
Collapse
Affiliation(s)
- Ondřej Jašek
- Department of Physical Electronics, Faculty of Science, Masaryk University, Kotlarska 2, 611 37 Brno, Czech Republic
| | - Jozef Toman
- Department of Physical Electronics, Faculty of Science, Masaryk University, Kotlarska 2, 611 37 Brno, Czech Republic
| | - Miroslav Šnírer
- Department of Physical Electronics, Faculty of Science, Masaryk University, Kotlarska 2, 611 37 Brno, Czech Republic
| | - Jana Jurmanová
- Department of Physical Electronics, Faculty of Science, Masaryk University, Kotlarska 2, 611 37 Brno, Czech Republic
| | - Vít Kudrle
- Department of Physical Electronics, Faculty of Science, Masaryk University, Kotlarska 2, 611 37 Brno, Czech Republic
| | - Jan Michalička
- Central European Institute of Technology, Brno University of Technology, Purkynova 123, 612 00 Brno, Czech Republic
| | - Dalibor Všianský
- Department of Geological Sciences, Faculty of Science, Masaryk University, Kotlarska 2, 611 37 Brno, Czech Republic
| | - David Pavliňák
- Department of Physical Electronics, Faculty of Science, Masaryk University, Kotlarska 2, 611 37 Brno, Czech Republic
| |
Collapse
|
10
|
Chen Z, Wu Q, Guo W, Niu M, Tan L, Wen N, Zhao L, Fu C, Yu J, Ren X, Liang P, Meng X. Nanoengineered biomimetic Cu-based nanoparticles for multifunational and efficient tumor treatment. Biomaterials 2021; 276:121016. [PMID: 34274778 DOI: 10.1016/j.biomaterials.2021.121016] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 07/03/2021] [Accepted: 07/07/2021] [Indexed: 12/27/2022]
Abstract
The microwave dynamic therapy (MDT) mediated by cytotoxic reactive oxygen species (ROS) is a promising anticancer therapeutic method. However, the therapeutic efficiency of MDT is restricted by several limitations including insufficient ROS generation, strong proangiogenic response, and low tumor-targeting efficiency. Herein, we find that Cu-based nanoparticles can produce oxygen under microwave (MW) irradiation to raise the generation of ROS, such as •O2, •OH and 1O2, especially •O2. On this basis, a nanoengineered biomimetic strategy is designed to improve the efficiency of MDT. After intravenous administration, the nanoparticles accumulate to the tumor site through targeting effect mediated by biomimetic modification, and it can continuously produce oxygen to raise the levels of ROS in tumor microenvironment under MW irradiation for MDT. Additionally, Apatinib is incorporated as antiangiogenic drug to downregulate the expression of vascular endothelial growth factor (VEGF), which can effectively inhibit the tumor angiogenesis after MDT. Hence, the tumor inhibition rate is as high as 96.79%. This study provides emerging strategies to develop multifunctional nanosystems for efficient tumor therapy by MDT.
Collapse
Affiliation(s)
- Zengzhen Chen
- Laboratory of Controllable Preparation and Application of Nanomaterials, CAS Key Laboratory of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, No. 29 East Road Zhongguancun, Beijing, 100190, People's Republic of China; University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Qiong Wu
- Laboratory of Controllable Preparation and Application of Nanomaterials, CAS Key Laboratory of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, No. 29 East Road Zhongguancun, Beijing, 100190, People's Republic of China
| | - Wenna Guo
- Laboratory of Controllable Preparation and Application of Nanomaterials, CAS Key Laboratory of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, No. 29 East Road Zhongguancun, Beijing, 100190, People's Republic of China; School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu, 610054, Sichuan, People's Republic of China
| | - Meng Niu
- Department of Radiology, First Hospital of China Medical University Key Laboratory of Diagnostic Imaging and Interventional Radiology in Liaoning Province, Shenyang, 110001, People's Republic of China
| | - Longfei Tan
- Laboratory of Controllable Preparation and Application of Nanomaterials, CAS Key Laboratory of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, No. 29 East Road Zhongguancun, Beijing, 100190, People's Republic of China
| | - Ning Wen
- Department of Stomatology, the General Hospital of Chinese PLA, Beijing, 100853, People's Republic of China
| | - Lisheng Zhao
- Department of Stomatology, the General Hospital of Chinese PLA, Beijing, 100853, People's Republic of China.
| | - Changhui Fu
- Laboratory of Controllable Preparation and Application of Nanomaterials, CAS Key Laboratory of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, No. 29 East Road Zhongguancun, Beijing, 100190, People's Republic of China
| | - Jie Yu
- Department of Interventional Ultrasound, Chinese PLA General Hospital, Beijing, 100853, People's Republic of China
| | - Xiangling Ren
- Laboratory of Controllable Preparation and Application of Nanomaterials, CAS Key Laboratory of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, No. 29 East Road Zhongguancun, Beijing, 100190, People's Republic of China
| | - Ping Liang
- Department of Interventional Ultrasound, Chinese PLA General Hospital, Beijing, 100853, People's Republic of China.
| | - Xianwei Meng
- Laboratory of Controllable Preparation and Application of Nanomaterials, CAS Key Laboratory of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, No. 29 East Road Zhongguancun, Beijing, 100190, People's Republic of China.
| |
Collapse
|
11
|
Wang S, Liu Z, Tong Y, Zhai Y, Zhao X, Yue X, Qiao Y, Liu Y, Yin Y, Xi R, Zhao W, Meng M. Improved cancer phototheranostic efficacy of hydrophobic IR780 via parenteral route by association with tetrahedral nanostructured DNA. J Control Release 2021; 330:483-492. [DOI: 10.1016/j.jconrel.2020.12.048] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Revised: 11/17/2020] [Accepted: 12/24/2020] [Indexed: 11/29/2022]
|