1
|
Wang X, Huang H, Hu J, Li Z, Fan H, Huang Y, Zhang Y, Lu D, Chang Y, Zhao R. Interfacial study and modulation of high-voltage layered cathode based all-solid-state batteries. J Colloid Interface Sci 2025; 677:953-962. [PMID: 39128289 DOI: 10.1016/j.jcis.2024.08.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 07/28/2024] [Accepted: 08/06/2024] [Indexed: 08/13/2024]
Abstract
Employing layered materials as the cathodes for solid-state batteries (SSBs) is vital in enhancing the batteries' energy density, whereas numerous issues are present regarding the compatibilities between cathode electrode and modified solid electrolyte (ME) in this battery configuration. By investigating the electrochemical performance and interfacial properties of SSBs using various cathodes, the fundamental reason for the poor compatibility between layered cathodes, especially LiCoO2 with ME is revealed. Because of the Li(solvent)+ intercalation environments formed in the ME, the resultant weak-interacted TFSI- could be adsorbed and destabilized by Co ions on the surface. Besides, the high energy level offsets between LiCoO2 and ME lead to Li-ion transferring from the bulk electrode to the electrolyte, resulting in a pre-formed interface on the cathode particles before the electric current is applied, affects the formation of effective cathode-electrolyte interface (CEI) film during electrochemical process and deteriorated overall battery performance. From this view, an interlayer is pre-added on the LiCoO2 surface through an electrostatic adsorption method, to adjust the energy level offsets between the cathode and ME, as well as isolate the direct contact of surface Co ions to TFSI-. The cycling properties of the SSB using modified LiCoO2 are greatly enhanced, and a capacity retention of 68.72 % after 100 cycles could be achieved, against 8.28 % previously, certifying the rationality of the understanding and the effectiveness of the proposed modification method. We believe this research could provide basic knowledge of the compatibility between layered cathodes and MEs, shedding light on designing more effective strategies for achieving SSBs with high energy density.
Collapse
Affiliation(s)
- Xiaojin Wang
- School of Chemistry, Guangdong Provincial International Joint Research Center for Energy Storage Materials, Base of Production, Education & Research on Energy Storage and Power Battery of Guangdong Higher Education Institute, Engineering Research Center of MTEES (Ministry of Education), South China Normal University, Guangzhou 510006, China
| | - Haiqi Huang
- School of Chemistry, Guangdong Provincial International Joint Research Center for Energy Storage Materials, Base of Production, Education & Research on Energy Storage and Power Battery of Guangdong Higher Education Institute, Engineering Research Center of MTEES (Ministry of Education), South China Normal University, Guangzhou 510006, China
| | - Jiawei Hu
- School of Chemistry, Guangdong Provincial International Joint Research Center for Energy Storage Materials, Base of Production, Education & Research on Energy Storage and Power Battery of Guangdong Higher Education Institute, Engineering Research Center of MTEES (Ministry of Education), South China Normal University, Guangzhou 510006, China
| | - Zhuohua Li
- School of Chemistry, Guangdong Provincial International Joint Research Center for Energy Storage Materials, Base of Production, Education & Research on Energy Storage and Power Battery of Guangdong Higher Education Institute, Engineering Research Center of MTEES (Ministry of Education), South China Normal University, Guangzhou 510006, China
| | - HuanMin Fan
- School of Chemistry, Guangdong Provincial International Joint Research Center for Energy Storage Materials, Base of Production, Education & Research on Energy Storage and Power Battery of Guangdong Higher Education Institute, Engineering Research Center of MTEES (Ministry of Education), South China Normal University, Guangzhou 510006, China
| | - Yansha Huang
- School of Chemistry, Guangdong Provincial International Joint Research Center for Energy Storage Materials, Base of Production, Education & Research on Energy Storage and Power Battery of Guangdong Higher Education Institute, Engineering Research Center of MTEES (Ministry of Education), South China Normal University, Guangzhou 510006, China
| | - Yuanyuan Zhang
- Analysis & Testing Center, Key Laboratory of Theoretical Chemistry of Environment Ministry of Education, South China Normal University, Guangzhou 510006, China.
| | - Dongliang Lu
- Guangdong Polytechnic of Environmental Protection Engineering, Foshan 528216, PR China
| | - Yi Chang
- GAC AION New Energy Automobile Co.Ltd, Guangzhou 511434, China.
| | - Ruirui Zhao
- School of Chemistry, Guangdong Provincial International Joint Research Center for Energy Storage Materials, Base of Production, Education & Research on Energy Storage and Power Battery of Guangdong Higher Education Institute, Engineering Research Center of MTEES (Ministry of Education), South China Normal University, Guangzhou 510006, China; Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Nankai University, Tianjin 300071, China.
| |
Collapse
|
2
|
Huo S, Wang L, Su B, Xue W, Wang Y, Zhang H, Li M, Qiu J, Xu H, He X. Anode-Free Li Metal Batteries: Feasibility Analysis and Practical Strategy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024:e2411757. [PMID: 39370573 DOI: 10.1002/adma.202411757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 09/13/2024] [Indexed: 10/08/2024]
Abstract
Energy storage devices are striving to achieve high energy density, long lifespan, and enhanced safety. In view of the current popular lithiated cathode, anode-free lithium metal batteries (AFLMBs) will deliver the theoretical maximum energy density among all the battery chemistries. However, AFLMBs face challenges such as low plating-stripping efficiency, significant volume change, and severe Li-dendrite growth, which negatively impact their lifespan and safety. This study provides an overview and analysis of recent progress in electrode structure, characterization, performance, and practical challenges of AFLMBs. The deposition behavior of lithium is categorized into two stages: heterogeneous and homogeneous interface deposition. The feasibility and practical application value of AFLMBs are critically evaluated. Additionally, key test models, evaluation parameters, and advanced characterization techniques are discussed. Importantly, practical strategies of different battery components in AFLMBs, including current collector, interface layer, solid-state electrolyte, liquid-state electrolyte, cathode, and cycling protocol, are presented to address the challenges posed by the two types of deposition processes, lithium loss, crosstalk effect and volume change. Finally, the application prospects of AFLMBs are envisioned, with a focus on overcoming the current limitations and unlocking their full potential as high-performance energy storage solutions.
Collapse
Affiliation(s)
- Sida Huo
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Li Wang
- Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing, 100084, China
| | - Ben Su
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Wendong Xue
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Yue Wang
- Chemical Defense Institute, Beijing, 100191, China
| | - Hao Zhang
- Chemical Defense Institute, Beijing, 100191, China
| | - Meng Li
- Chemical Defense Institute, Beijing, 100191, China
| | - Jingyi Qiu
- Chemical Defense Institute, Beijing, 100191, China
| | - Hong Xu
- Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing, 100084, China
| | - Xiangming He
- Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
3
|
Meda L, Masafwa K, Crockem AN, Williams JA, Beamon NA, Adams JI, Tunis JV, Yang L, Schaefer JL, Wu JJ. Cross-Linked Composite Solid Polymer Electrolyte Doped with Li 6.4La 3Zr 1.4Ta 0.6O 12 for High Voltage Lithium Metal Batteries. ACS APPLIED MATERIALS & INTERFACES 2024; 16:44791-44801. [PMID: 39159210 PMCID: PMC11367574 DOI: 10.1021/acsami.4c08181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 08/07/2024] [Accepted: 08/13/2024] [Indexed: 08/21/2024]
Abstract
Composite solid polymer electrolytes (CSPEs) are safer alternatives to liquid electrolytes and excellent candidates for high-voltage solid-state batteries. However, interfacial instabilities between the electrodes and CSPEs are one of the bottlenecks in pursuing these systems. In this study, a cross-linked CSPE was synthesized based on polypropylene carbonate, polyethylene glycol methyl ether acrylate, polyethylene glycol diacrylate with additives including lithium bis(trifluoromethane)sulfonimide salt, and tantalum-doped lithium lanthanum zirconium oxide (LLZTO). Mass fractions of 10, 20, and 40% LLZTO were added to the CSPE matrix. In a symmetric cell, lithium plating and stripping revealed that the interface between the lithium metal anode and CSPE with 10% of the LLZTO (CSPE-10LLZTO) shows the most stable interface. The CSPE-10LLZTO sample demonstrated high flexibility and showed no degradation over 800 h of cycling at varying current densities. The ionic conductivity for the CSPE-10LLZTO sample at 40 °C was 6.4 × 10-4 S/cm. An all-solid-state full cell was fabricated with LiNi0.5Mn0.3Co0.2O2 as the cathode, CSPE-10LLZTO as the electrolyte and separator, and Li metal as the anode, delivering approximately 140 mAh/g of capacity. Differential scanning calorimetry measurements on CSPE-xLLZTO showed high miscibility and the elimination of crystallinity. Raman spectroscopy revealed uniformity in the structure. These findings demonstrate the capability of the CSPEs to develop high-voltage solid-state lithium metal batteries.
Collapse
Affiliation(s)
- Lamartine Meda
- Department
of Chemistry, Xavier University of Louisiana, 1 Drexel Drive, New Orleans, Louisiana 70125, United States
| | - Kutemwa Masafwa
- Department
of Chemistry, Xavier University of Louisiana, 1 Drexel Drive, New Orleans, Louisiana 70125, United States
| | - Ayssia N. Crockem
- Department
of Chemistry, Xavier University of Louisiana, 1 Drexel Drive, New Orleans, Louisiana 70125, United States
| | - Jere A. Williams
- Department
of Chemistry, Xavier University of Louisiana, 1 Drexel Drive, New Orleans, Louisiana 70125, United States
| | - Nila A. Beamon
- Department
of Chemistry, Xavier University of Louisiana, 1 Drexel Drive, New Orleans, Louisiana 70125, United States
| | - Jada I. Adams
- Department
of Chemistry, Xavier University of Louisiana, 1 Drexel Drive, New Orleans, Louisiana 70125, United States
| | - Jeremiah V. Tunis
- Department
of Chemistry, Xavier University of Louisiana, 1 Drexel Drive, New Orleans, Louisiana 70125, United States
| | - Lingyu Yang
- Deptartment
of Chemical & Biomolecular Engineering, University of Notre Dame, Notre
Dame, Indiana 46556, United States
| | - Jennifer L. Schaefer
- Deptartment
of Chemical & Biomolecular Engineering, University of Notre Dame, Notre
Dame, Indiana 46556, United States
| | - James J. Wu
- NASA
Glenn Research Center, Cleveland, Ohio 44135, United States
| |
Collapse
|
4
|
Pierdoná Antoniolli JF, Grespan GL, Rodrigues D. Challenges and Recent Progress on Solid-State Batteries and Electrolytes, using Qualitative Systematic Analysis. A Short Review. CHEMSUSCHEM 2024; 17:e202301808. [PMID: 38507195 DOI: 10.1002/cssc.202301808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 03/19/2024] [Accepted: 03/19/2024] [Indexed: 03/22/2024]
Abstract
The rise in the energy demand, the need to decrease the use of fossil fuels, expanding investments in renewable energy and boosting the electric vehicle market, opens the door to new technologies in clean energy accumulators. Lithium-ion batteries are the most advanced technology in the market but have safety concerns due to the flammability of the electrolyte, which opens the door to innovations. One of these innovations is the solid-state batteries (SSB), which, by using solid electrolytes, do not have the flammable risk, bringing safety to users while reaching similar energy and power densities. This work presents a review about SSB, based on qualitative and exploratory research, using the Web of Science (WoS) platform. Keywords used to gather information from the database were "solid state batteries" and "electrolytes". Only publications from 2018 to 2023 were selected. The main research focus is to solve the challenges posed by the different physical-chemical phenomena of the SSB. This work focuses on the general comprehension of the SSB batteries, what are the factors that can affect it and the main solutions presented in the literature the last five years.
Collapse
Affiliation(s)
| | - Giovani Luiz Grespan
- Department of Chemistry, Federal University of São Carlos, 13565-905, São Carlos, SP, Brazil
| | - Durval Rodrigues
- Department of Materials Engineering, Lorena School of Enginneering, University of São Paulo, 12612-550, Lorena, SP, Brazil
| |
Collapse
|
5
|
Fang CD, Huang Y, Sun YF, Sun PF, Li K, Yao SY, Zhang MY, Fang WH, Chen JJ. Revealing and reconstructing the 3D Li-ion transportation network for superionic poly(ethylene) oxide conductor. Nat Commun 2024; 15:6781. [PMID: 39117642 PMCID: PMC11310194 DOI: 10.1038/s41467-024-51191-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 07/30/2024] [Indexed: 08/10/2024] Open
Abstract
Understanding the Li-ions conduction network and transport dynamics in polymer electrolyte is crucial for developing reliable all-solid-state batteries. In this work, advanced nano- X-ray computed tomography combined with Raman spectroscopy and solid state nuclear magnetic resonance are used to multi-scale qualitatively and quantitatively reveal ion conduction network of poly(ethylene) oxide (PEO)-based electrolyte (from atomic, nano to macroscopic level). With the clear mapping of the microstructural heterogeneities of the polymer segments, aluminium-oxo molecular clusters (AlOC) are used to reconstruct a high-efficient conducting network with high available Li-ions (76.7%) and continuous amorphous domains via the strong supramolecular interactions. Such superionic PEO conductor (PEO-LiTFSI-AlOC) exhibites a molten-like Li-ion conduction behaviour among the whole temperature range and delivers an ionic conductivity of 1.87 × 10-4 S cm-1 at 35 °Ϲ. This further endows Li electrochemical plating/stripping stability under 50 μA cm-2 and 50 μAh cm-2 over 2000 h. The as-built Li|PEO-LiTFSI-AlOC|LiFePO4 full batteries show a high rate performance and a capacity retention more than 90% over 200 cycling at 250 μA cm-2, even enabling a high-loading LiFePO4 cathode of 16.8 mg cm-2 with a specific capacity of 150 mAh g-1 at 50 °Ϲ.
Collapse
Affiliation(s)
- Cheng-Dong Fang
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Collaborative Innovation Center of Chemistry for Energy Materials (iChem), Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian, China
| | - Ying Huang
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Collaborative Innovation Center of Chemistry for Energy Materials (iChem), Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian, China
| | - Yi-Fan Sun
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, China
| | - Peng-Fei Sun
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Collaborative Innovation Center of Chemistry for Energy Materials (iChem), Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian, China
| | - Ke Li
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Collaborative Innovation Center of Chemistry for Energy Materials (iChem), Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian, China
| | - Shu-Yang Yao
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, China
| | - Min-Yi Zhang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, China
| | - Wei-Hui Fang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, China.
| | - Jia-Jia Chen
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Collaborative Innovation Center of Chemistry for Energy Materials (iChem), Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian, China.
| |
Collapse
|
6
|
Wei L, Xu X, Xi K, Lei Y, Cheng X, Shi X, Wu H, Gao Y. Ultralong Cycling and Interfacial Regulation of Bilayer Heterogeneous Composite Solid-State Electrolytes in Lithium Metal Batteries. ACS APPLIED MATERIALS & INTERFACES 2024; 16:33578-33589. [PMID: 38905020 DOI: 10.1021/acsami.4c06026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/23/2024]
Abstract
Under the background of "carbon neutral", lithium-ion batteries (LIB) have been widely used in portable electronic devices and large-scale energy storage systems, but the current commercial electrolyte is mainly liquid organic compounds, which have serious safety risks. In this paper, a bilayer heterogeneous composite solid-state electrolyte (PLPE) was constructed with the 3D LiX zeolite nanofiber (LiX-NF) layer and in-situ interfacial layer, which greatly extends the life span of lithium metal batteries (LMB). LiX-NF not only offers a continuous fast path for Li+, but also zeolite's Lewis acid-base interaction can immobilize large anions, which significantly improves the electrochemical performance of the electrolyte. In addition, the in-situ interfacial layer at the electrode-electrolyte interface can effectively facilitate the uniform deposition of Li+ and inhibit the growth of lithium dendrites. As a result, the Li/Li battery assembled with PLPE can be stably cycled for more than 2500 h at 0.1 mA cm-2. Meanwhile, the initial discharge capacity of the LiFePO4/PLPE/Li battery can be 162.43 mAh g-1 at 0.5 C, and the capacity retention rate is 82.74% after 500 cycles. These results emphasize that this bilayer heterogeneous composite solid-state electrolyte has distinct properties and shows excellent potential for application in LMB.
Collapse
Affiliation(s)
- Lai Wei
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, P. R. China
| | - Xin Xu
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, P. R. China
| | - Kang Xi
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, P. R. China
| | - Yue Lei
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, P. R. China
| | - Xiang Cheng
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, P. R. China
| | - Xiaobei Shi
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, P. R. China
| | - Haihua Wu
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, P. R. China
| | - Yunfang Gao
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, P. R. China
| |
Collapse
|
7
|
Nie L, Zhu J, Wu X, Zhang M, Xiao X, Gao R, Wu X, Zhu Y, Chen S, Han Z, Yu Y, Wang S, Ling S, Zhou G. A Large-Scale Fabrication of Flexible, Ultrathin, and Robust Solid Electrolyte for Solid-State Lithium-Sulfur Batteries. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2400115. [PMID: 38752837 DOI: 10.1002/adma.202400115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 04/21/2024] [Indexed: 05/22/2024]
Abstract
All-solid-state lithium metal batteries (ASSLMBs) are considered as the most promising candidates for the next-generation high-safety batteries. To achieve high energy density in ASSLMBs, it is essential that the solid-state electrolytes (SSEs) are lightweight, thin, and possess superior electrochemical stability. In this study, a feasible and scalable fabrication approach to construct 3D supporting skeleton using an electro-blown spinning technique is proposed. This skeleton not only enhances the mechanical strength but also hinders the migration of Li-salt anions, improving the lithium-ion transference number of the SSE. This provides a homogeneous distribution of Li-ion flux and local current density, promoting uniform Li deposition. As a result, based on the mechanically robust and thin SSEs, the Li symmetric cells show outstanding Li plating/stripping reversibility. Besides, a stable interface contact between SSE and Li anode has been established with the formation of an F-enriched solid electrolyte interface layer. The solid-state Li|sulfurized polyacrylonitrile (Li|SPAN) cell achieves a capacity retention ratio of 94.0% after 350 cycles at 0.5 C. Also, the high-voltage Li|LCO cell shows a capacity retention of 92.4% at 0.5 C after 500 cycles. This fabrication approach for SSEs is applicable for commercially large-scale production and application in high-energy-density and high-safety ASSLMBs.
Collapse
Affiliation(s)
- Lu Nie
- Tsinghua-Berkeley Shenzhen Institute and Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, P. R. China
| | - Jinling Zhu
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Xiaoyan Wu
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Mengtian Zhang
- Tsinghua-Berkeley Shenzhen Institute and Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, P. R. China
| | - Xiao Xiao
- Tsinghua-Berkeley Shenzhen Institute and Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, P. R. China
| | - Runhua Gao
- Tsinghua-Berkeley Shenzhen Institute and Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, P. R. China
| | - Xinru Wu
- Tsinghua-Berkeley Shenzhen Institute and Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, P. R. China
| | - Yanfei Zhu
- Tsinghua-Berkeley Shenzhen Institute and Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, P. R. China
| | - Shaojie Chen
- Department of Chemistry, Fudan University, Shanghai, 200438, China
| | - Zhiyuan Han
- Tsinghua-Berkeley Shenzhen Institute and Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, P. R. China
| | - Yi Yu
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Shaogang Wang
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang, 110016, P. R. China
| | - Shengjie Ling
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Guangmin Zhou
- Tsinghua-Berkeley Shenzhen Institute and Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, P. R. China
| |
Collapse
|
8
|
Zhang C, Yu J, Cui Y, Lv Y, Zhang Y, Gao T, He Y, Chen X, Li T, Lin T, Mi Q, Yu Y, Liu W. An electron-blocking interface for garnet-based quasi-solid-state lithium-metal batteries to improve lifespan. Nat Commun 2024; 15:5325. [PMID: 38909045 PMCID: PMC11193789 DOI: 10.1038/s41467-024-49715-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 06/17/2024] [Indexed: 06/24/2024] Open
Abstract
Garnet oxide is one of the most promising solid electrolytes for solid-state lithium metal batteries. However, the traditional interface modification layers cannot completely block electron migrating from the current collector to the interior of the solid-state electrolyte, which promotes the penetration of lithium dendrites. In this work, a highly electron-blocking interlayer composed of potassium fluoride (KF) is deposited on garnet oxide Li6.4La3Zr1.4Ta0.6O12 (LLZTO). After reacting with melted lithium metal, KF in-situ transforms to KF/LiF interlayer, which can block the electron leakage and inhibit lithium dendrite growth. The Li symmetric cells using the interlayer show a long cycle life of ~3000 hours at 0.2 mA cm-2 and over 350 hours at 0.5 mA cm-2 respectively. Moreover, an ionic liquid of LiTFSI in C4mim-TFSI is screened to wet the LLZTO|LiNi0.8Co0.1Mn0.1O2 (NCM) positive electrode interfaces. The Li|KF-LLZTO | NCM cells present a specific capacity of 109.3 mAh g-1, long lifespan of 3500 cycles and capacity retention of 72.5% at 25 °C and 2 C (380 mA g-1) with an average coulombic efficiency of 99.99%. This work provides a simple and integrated strategy on high-performance quasi-solid-state lithium metal batteries.
Collapse
Affiliation(s)
- Chang Zhang
- School of Physical Science and Technology, ShanghaiTech University, 201210, Shanghai, China
- Shanghai Key Laboratory of High-resolution Electron Microscopy, ShanghaiTech University, 201210, Shanghai, China
| | - Jiameng Yu
- School of Physical Science and Technology, ShanghaiTech University, 201210, Shanghai, China
| | - Yuanyuan Cui
- School of Materials Science and Engineering, Shanghai University, 200444, Shanghai, China.
| | - Yinjie Lv
- School of Physical Science and Technology, ShanghaiTech University, 201210, Shanghai, China
| | - Yue Zhang
- School of Physical Science and Technology, ShanghaiTech University, 201210, Shanghai, China
| | - Tianyi Gao
- School of Physical Science and Technology, ShanghaiTech University, 201210, Shanghai, China
| | - Yuxi He
- School of Physical Science and Technology, ShanghaiTech University, 201210, Shanghai, China
| | - Xin Chen
- School of Physical Science and Technology, ShanghaiTech University, 201210, Shanghai, China
| | - Tao Li
- School of Materials Science and Engineering, Shanghai Jiao Tong University, 200240, Shanghai, China
- Zhangjiang Institute for Advanced Study (ZIAS), Shanghai Jiao Tong University, 201210, Shanghai, China
| | - Tianquan Lin
- School of Materials Science and Engineering, Shanghai Jiao Tong University, 200240, Shanghai, China
- Zhangjiang Institute for Advanced Study (ZIAS), Shanghai Jiao Tong University, 201210, Shanghai, China
| | - Qixi Mi
- School of Physical Science and Technology, ShanghaiTech University, 201210, Shanghai, China
| | - Yi Yu
- School of Physical Science and Technology, ShanghaiTech University, 201210, Shanghai, China
- Shanghai Key Laboratory of High-resolution Electron Microscopy, ShanghaiTech University, 201210, Shanghai, China
| | - Wei Liu
- School of Physical Science and Technology, ShanghaiTech University, 201210, Shanghai, China.
- Shanghai Key Laboratory of High-resolution Electron Microscopy, ShanghaiTech University, 201210, Shanghai, China.
| |
Collapse
|
9
|
Schorr NB, Bhandarkar A, McBrayer JD, Talin AA. Composite Ionogel Electrodes for Polymeric Solid-State Li-Ion Batteries. Polymers (Basel) 2024; 16:1763. [PMID: 39000618 PMCID: PMC11244546 DOI: 10.3390/polym16131763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/08/2024] [Accepted: 06/17/2024] [Indexed: 07/17/2024] Open
Abstract
Realizing rechargeable cells with practical energy and power density requires electrodes with high active material loading, a remaining challenge for solid-state batteries. Here, we present a new strategy based on ionogel-derived solid-state electrolytes (SSEs) to form composite electrodes that enable high active material loading (>10 mg/cm2, ~9 mA/cm2 at 1C) in a scalable approach for fabricating Li-ion cells. By tuning the precursor and active materials composition incorporated into the composite lithium titanate electrodes, we achieve near-theoretical capacity utilization at C/5 rates and cells capable of stable cycling at 5.85 mA/cm2 (11.70 A/g) with over 99% average Coulombic efficiency at room temperature. Finally, we demonstrate a complete polymeric solid-state cell with a composite anode and a composite lithium iron phosphate cathode with ionogel SSEs, which is capable of stable cycling at a 1C rate.
Collapse
Affiliation(s)
- Noah B. Schorr
- Department of Power Sources R&D, Sandia National Laboratories, Albuquerque, NM 87123, USA
| | - Austin Bhandarkar
- Department of Material Physics, Sandia National Laboratories, Livermore, CA 94550, USA
| | - Josefine D. McBrayer
- Department of Power Sources R&D, Sandia National Laboratories, Albuquerque, NM 87123, USA
| | - A. Alec Talin
- Department of Material Physics, Sandia National Laboratories, Livermore, CA 94550, USA
| |
Collapse
|
10
|
Ge S, Wu J, Wang R, Zhang L, Liu S, Ma X, Fu K, Yan J, Yu J, Ding B. Tailoring Practical Solid Electrolyte Composites Containing Ferroelectric Ceramic Nanofibers and All-Trans Block Copolymers for All-Solid-State Lithium Metal Batteries. ACS NANO 2024; 18:13818-13828. [PMID: 38748457 DOI: 10.1021/acsnano.4c02236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Ion transport efficiency, the key to determining the cycling stability and rate capability of all-solid-state lithium metal batteries (ASSLMBs), is constrained by ionic conductivity and Li+-migration ability across the multicomponent phases and interfaces in ASSLMBs. Here, we report a robust strategy for the large-scale fabrication of a practical solid electrolyte composite with high-throughput linear Li+-transport channels by compositing an all-trans block copolymer PVDF-b-PTFE matrix with ferroelectric BaTiO3-TiO2 nanofiber films. The electrolyte shows a sustainable electromechanical-coupled deformability that enables the rapid dissociation of anions with Li+ to create more movable Li+ ions and spontaneously transform the battery internal strain into Li+-ion migration kinetic energy. The ceramic framework homogenizes the interfacial potential with electrodes, endowing the electrolyte with a high conductivity of 0.782 mS·cm-1 and stable ion transport ability in ASSLMBs at room temperature. The batteries of LiFePO4/Li can stably cycle 1000 times at 0.5 C with a high capacity retention of 96.1%, and Ah-grade pouch or high-voltage Li(Ni0.8Mn0.1Co0.1)O2/Li batteries also exhibit excellent rate capability and cycling performance.
Collapse
Affiliation(s)
- Shuhui Ge
- Shanghai Frontier Science Research Center for Advanced Textiles, College of Textiles, Donghua University, Shanghai 201620, China
| | - Jiawei Wu
- Shanghai Frontier Science Research Center for Advanced Textiles, College of Textiles, Donghua University, Shanghai 201620, China
| | - Rui Wang
- Shanghai Frontier Science Research Center for Advanced Textiles, College of Textiles, Donghua University, Shanghai 201620, China
| | - Liang Zhang
- Shanghai Frontier Science Research Center for Advanced Textiles, College of Textiles, Donghua University, Shanghai 201620, China
| | - Shujie Liu
- Shanghai Frontier Science Research Center for Advanced Textiles, College of Textiles, Donghua University, Shanghai 201620, China
| | - Xianda Ma
- Shanghai Frontier Science Research Center for Advanced Textiles, College of Textiles, Donghua University, Shanghai 201620, China
| | - Kelvin Fu
- Mechanical Engineering, University of Delaware, Newark, Delaware 19716, United States
| | - Jianhua Yan
- Shanghai Frontier Science Research Center for Advanced Textiles, College of Textiles, Donghua University, Shanghai 201620, China
- Innovation Center for Textile Science and Technology, Donghua University, Shanghai 200051, China
| | - Jianyong Yu
- Innovation Center for Textile Science and Technology, Donghua University, Shanghai 200051, China
| | - Bin Ding
- Innovation Center for Textile Science and Technology, Donghua University, Shanghai 200051, China
| |
Collapse
|
11
|
Cui M, Fu S, Yuan S, Jin B, Liu H, Li Y, Gao N, Jiang Q. Dual Interface Compatibility Enabled via Composite Solid Electrolyte with High Transference Number for Long-Life All-Solid-State Lithium Metal Batteries. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2307505. [PMID: 38095459 DOI: 10.1002/smll.202307505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 11/17/2023] [Indexed: 01/04/2024]
Abstract
The development of solid-state electrolytes (SSEs) effectively solves the safety problem derived from dendrite growth and volume change of lithium during cycling. In the meantime, the SSEs possess non-flammability compared to conventional organic liquid electrolytes. Replacing liquid electrolytes with SSEs to assemble all-solid-state lithium metal batteries (ASSLMBs) has garnered significant attention as a promising energy storage/conversion technology for the future. Herein, a composite solid electrolyte containing two inorganic components (Li6.25Al0.25La3Zr2O12, Al2O3) and an organic polyvinylidene difluoride matrix is designed rationally. X-ray photoelectron spectroscopy and density functional theory calculation results demonstrate the synergistic effect among the components, which results in enhanced ionic conductivity, high lithium-ion transference number, extended electrochemical window, and outstanding dual interface compatibility. As a result, Li||Li symmetric battery maintains a stable cycle for over 2500 h. Moreover, all-solid-state lithium metal battery assembled with LiNi0.6Co0.2Mn0.2O2 cathode delivers a high discharge capacity of 168 mAh g-1 after 360 cycles at 0.1 C at 25 °C, and all-solid-state lithium-sulfur battery also exhibits a high initial discharge capacity of 912 mAh g-1 at 0.1 C. This work demonstrates a long-life flexible composite solid electrolyte with excellent interface compatibility, providing an innovative way for the rational construction of next-generation high-energy-density ASSLMBs.
Collapse
Affiliation(s)
- Mengyang Cui
- Key Laboratory of Automobile Materials, Ministry of Education, School of Materials Science and Engineering, Jilin University, Changchun, 130022, China
| | - Shiyang Fu
- State Key Lab of Superhard Materials, College of Physics, Jilin University, Changchun, 130012, China
| | - Shisheng Yuan
- Key Laboratory of Automobile Materials, Ministry of Education, School of Materials Science and Engineering, Jilin University, Changchun, 130022, China
| | - Bo Jin
- Key Laboratory of Automobile Materials, Ministry of Education, School of Materials Science and Engineering, Jilin University, Changchun, 130022, China
| | - Hui Liu
- Key Laboratory of Automobile Materials, Ministry of Education, School of Materials Science and Engineering, Jilin University, Changchun, 130022, China
| | - Yiyang Li
- Key Laboratory of Automobile Materials, Ministry of Education, School of Materials Science and Engineering, Jilin University, Changchun, 130022, China
| | - Nan Gao
- State Key Lab of Superhard Materials, College of Physics, Jilin University, Changchun, 130012, China
| | - Qing Jiang
- Key Laboratory of Automobile Materials, Ministry of Education, School of Materials Science and Engineering, Jilin University, Changchun, 130022, China
| |
Collapse
|
12
|
Wang Q, Xu H, Fan Y, Chi SS, Han B, Ke R, Wang R, Wang J, Wang C, Xu X, Zheng Z, Deng Y, Chang J. Insight into Multiple Intermolecular Coordination of Composite Solid Electrolytes via Cryo-Electron Microscopy for High-Voltage All-Solid-State Lithium Metal Batteries. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024:e2314063. [PMID: 38444248 DOI: 10.1002/adma.202314063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 02/25/2024] [Indexed: 03/07/2024]
Abstract
Polymer/ceramic-based composite solid electrolytes (CSE) are promising candidates for all-solid-state lithium metal batteries (SLBs), benefiting from the combined mechanical robustness of polymeric electrolytes and the high ionic conductivity of ceramic electrolytes. However, the interfacial instability and poorly understood interphases of CSE hinder their application in high-voltage SLBs. Herein, a simple but effective CSE that stabilizes high-voltage SLBs by forming multiple intermolecular coordination interactions between polyester and ceramic electrolytes is discovered. The multiple coordination between the carbonyl groups in poly(ε-caprolactone) and the fluorosulfonyl groups in anions with Li6.5 La3 Zr1.5 Ta0.5 O12 nanoparticles is directly visualized by cryogenic transmission electron microscopy and further confirmed by theoretical calculation. Importantly, the multiple coordination in CSE not only prevents the continuous decomposition of polymer skeleton by shielding the vulnerable carbonyl sites but also establishes stable inorganic-rich interphases through preferential decomposition of anions. The stable CSE and its inorganic-rich interphases enable Li||Li symmetric cells with an exceptional lifespan of over 4800 h without dendritic shorting at 0.1 mA cm-2 . Moreover, the high-voltage SLB with LiNi0.5 Co0.2 Mn0.3 O2 cathode displays excellent cycling stability over 1100 cycles at a 1C charge/discharge rate. This work reveals the underlying mechanism behind the excellent stability of coordinating composite electrolytes and interfaces in high-voltage SLBs.
Collapse
Affiliation(s)
- Qingrong Wang
- Department of Materials Science and Engineering, School of Innovation and Entrepreneurship, Guangdong Provincial Key Laboratory of Energy Materials for Electric Power, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Hongli Xu
- Department of Materials Science and Engineering, School of Innovation and Entrepreneurship, Guangdong Provincial Key Laboratory of Energy Materials for Electric Power, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Yanchen Fan
- Department of Materials Science and Engineering, School of Innovation and Entrepreneurship, Guangdong Provincial Key Laboratory of Energy Materials for Electric Power, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Shang-Sen Chi
- Department of Materials Science and Engineering, School of Innovation and Entrepreneurship, Guangdong Provincial Key Laboratory of Energy Materials for Electric Power, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Bing Han
- Department of Materials Science and Engineering, School of Innovation and Entrepreneurship, Guangdong Provincial Key Laboratory of Energy Materials for Electric Power, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Ruohong Ke
- Department of Materials Science and Engineering, School of Innovation and Entrepreneurship, Guangdong Provincial Key Laboratory of Energy Materials for Electric Power, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Ruo Wang
- Department of Materials Science and Engineering, School of Innovation and Entrepreneurship, Guangdong Provincial Key Laboratory of Energy Materials for Electric Power, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Jun Wang
- Department of Materials Science and Engineering, School of Innovation and Entrepreneurship, Guangdong Provincial Key Laboratory of Energy Materials for Electric Power, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Chaoyang Wang
- Research Institute of Materials Science, South China University of Technology, Guangzhou, 510640, China
| | - Xiaoxiong Xu
- Department of Materials Science and Engineering, School of Innovation and Entrepreneurship, Guangdong Provincial Key Laboratory of Energy Materials for Electric Power, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Zijian Zheng
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China
| | - Yonghong Deng
- Department of Materials Science and Engineering, School of Innovation and Entrepreneurship, Guangdong Provincial Key Laboratory of Energy Materials for Electric Power, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Jian Chang
- Department of Materials Science and Engineering, School of Innovation and Entrepreneurship, Guangdong Provincial Key Laboratory of Energy Materials for Electric Power, Southern University of Science and Technology, Shenzhen, 518055, China
- Dongguan Key Laboratory of Interdisciplinary Science for Advanced Materials and Large-Scale Scientific Facilities, School of Physical Sciences, Great Bay University, Dongguan, 523000, China
| |
Collapse
|
13
|
Gao X, Du P, Cheng B, Ren X, Zhan X, Zhu L. Lithiophilic and Eco-Friendly Nano-Se Seeds Unlock Dendrite-Free and Anode-Free Li-Metal Batteries. ACS APPLIED MATERIALS & INTERFACES 2024; 16:7327-7337. [PMID: 38299338 DOI: 10.1021/acsami.3c18137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2024]
Abstract
A 3D host design for lithium (Li)-metal anodes can effectively accommodate volume changes and suppress Li dendrite growth; nonetheless, its practical applicability in energy-dense Li-metal batteries (LMBs) is plagued by excessive Li loading. Herein, we introduced eco- and human-friendly Se seeds into 3D carbon cloth (CC) to create a robust host for efficient Li deposition/stripping. The highly lithiophilic nano-Se endowed the Se-decorated CC (Se@CC) with perfect Li wettability for instantaneous Li infusion. At an optimal Li loading of 17 mg, the electrode delivered an unprecedentedly long life span of 5400 h with low overpotentials <36 mV at 1 mA cm-2/1 mAh cm-2 and 1500 h at 5 mA cm-2/5 mAh cm-2. Furthermore, the uniform Se distribution and strong Li-Se binding allowed for further reduction in Li loading to 2 mg via direct Li electrodeposition. The corresponding LiNi0.8Co0.1Mn0.1O2 (NCM811)-based full cell afforded a high capacity retention rate of 74.67% over 300 cycles at a low N/P ratio of 8.64. Finally, the initial anode-free LMB using a NCM811 cathode and a Se@CC anode current collector demonstrated a high electrode-level specific energy of 531 Wh kg-1 and consistently high CEs >99.7% over 200 cycles. This work highlights a high-performance host design with excellent tunability for practical high-energy-density LMBs.
Collapse
Affiliation(s)
- Xiaorui Gao
- School of Materials Science and Engineering, School of Chemistry and Chemical Engineering, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, 230601 Hefei, P.R. China
| | - Peng Du
- School of Materials Science and Engineering, School of Chemistry and Chemical Engineering, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, 230601 Hefei, P.R. China
| | - Bing Cheng
- School of Materials Science and Engineering, School of Chemistry and Chemical Engineering, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, 230601 Hefei, P.R. China
| | - Xiaodi Ren
- Department of Materials Science and Engineering, University of Science & Technology of China, 230026 Hefei, Anhui , P.R. China
| | - Xiaowen Zhan
- School of Materials Science and Engineering, School of Chemistry and Chemical Engineering, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, 230601 Hefei, P.R. China
| | - Lingyun Zhu
- School of Materials Science and Engineering, School of Chemistry and Chemical Engineering, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, 230601 Hefei, P.R. China
| |
Collapse
|
14
|
Chatterjee D, Naik KG, Vishnugopi BS, Mukherjee PP. Electrodeposition Stability Landscape for Solid-Solid Interfaces. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2307455. [PMID: 38072655 PMCID: PMC10853722 DOI: 10.1002/advs.202307455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/18/2023] [Indexed: 02/10/2024]
Abstract
As solid-state batteries (SSBs) with lithium (Li) metal anodes gain increasing traction as promising next-generation energy storage systems, a fundamental understanding of coupled electro-chemo-mechanical interactions is essential to design stable solid-solid interfaces. Notably, uneven electrodeposition at the Li metal/solid electrolyte (SE) interface arising from intrinsic electrochemical and mechanical heterogeneities remains a significant challenge. In this work, the thermodynamic origins of mechanics-coupled reaction kinetics at the Li/SE interface are investigated and its implications on electrodeposition stability are unveiled. It is established that the mechanics-driven energetic contribution to the free energy landscape of the Li deposition/dissolution redox reaction has a critical influence on the interface stability. The study presents the competing effects of mechanical and electrical overpotential on the reaction distribution, and demarcates the regimes under which stress interactions can be tailored to enable stable electrodeposition. It is revealed that different degrees of mechanics contribution to the forward (dissolution) and backward (deposition) reaction rates result in widely varying stability regimes, and the mechanics-coupled kinetics scenario exhibited by the Li/SE interface is shown to depend strongly on the thermodynamic and mechanical properties of the SE. This work highlights the importance of discerning the underpinning nature of electro-chemo-mechanical coupling toward achieving stable solid/solid interfaces in SSBs.
Collapse
Affiliation(s)
| | - Kaustubh G. Naik
- School of Mechanical EngineeringPurdue UniversityWest LafayetteIN47907USA
| | | | | |
Collapse
|
15
|
Li Y, Hu Y, Wang S, Zhou X, Yang Y, Xiao X, Chen G. Compressible and Elastic Reduced Graphene Oxide Sponge for Stable and Dendrite-Free Lithium Metal Anodes. NANO LETTERS 2024; 24:672-680. [PMID: 38166484 DOI: 10.1021/acs.nanolett.3c03973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2024]
Abstract
Dendritic Li deposition, an unstable solid-electrolyte interphase (SEI), and a nearly infinite relative volume change during cycling are three major obstacles to the practical application of Li metal batteries. Herein, we introduce a compressible and elastic reduced graphene oxide sponge (rGO-S) to simultaneously eliminate Li dendrite growth, stabilize the SEI, and accommodate the volume change. The volume change is contained by compressing and expanding the rGO-S anode, which effectively releases the Li plating-induced stress during cycling. The smooth and dense Li metal is deposited on rGO-S without dendrites, which preserves the SEI, reduces consumption of the electrolyte, and prevents the formation of Li debris. The half-cells employing rGO-S show a steady and high Coulombic efficiency. The Li@rGO-S symmetric cells demonstrate excellent cycling stability over 1200 cycles with a low overpotential. When paired with LiFePO4 (LFP), the Li@rGO-S||LFP full cells exhibit a high specific capacity (150.3 mAh g-1 at 1C), superior rate performance, and good capacity retention.
Collapse
Affiliation(s)
- Yaru Li
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Youdi Hu
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Shuaiqi Wang
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Xiaoze Zhou
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Yi Yang
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Xiao Xiao
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Gang Chen
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| |
Collapse
|
16
|
Peng B, Liu Z, Zhou Q, Xiong X, Xia S, Yuan X, Wang F, Ozoemena KI, Liu L, Fu L, Wu Y. A Solid-State Electrolyte Based on Li 0.95 Na 0.05 FePO 4 for Lithium Metal Batteries. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2307142. [PMID: 37742099 DOI: 10.1002/adma.202307142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 09/04/2023] [Indexed: 09/25/2023]
Abstract
Solid-state electrolytes (SSEs) play a crucial role in developing lithium metal batteries (LMBs) with high safety and energy density. Exploring SSEs with excellent comprehensive performance is the key to achieving the practical application of LMBs. In this work, the great potential of Li0.95 Na0.05 FePO4 (LNFP) as an ideal SSE due to its enhanced ionic conductivity and reliable stability in contact with lithium metal anode is demonstrated. Moreover, LNFP-based composite solid electrolytes (CSEs) are prepared to further improve electronic insulation and interface stability. The CSE containing 50 wt% of LNFP (LNFP50) shows high ionic conductivity (3.58 × 10-4 S cm-1 at 25 °C) and good compatibility with Li metal anode and cathodes. Surprisingly, the LMB of Li|LNFP50|LiFePO4 cell at 0.5 C current density shows good cycling stability (151.5 mAh g-1 for 500 cycles, 96.5% capacity retention, and 99.3% Coulombic efficiency), and high-energy LMB of Li|LNFP50|Li[Ni0.8 Co0.1 Mn0.1 ]O2 cell maintains 80% capacity retention after 170 cycles, which are better than that with traditional liquid electrolytes (LEs). This investigation offers a new approach to commercializing SSEs with excellent comprehensive performance for high-performance LMBs.
Collapse
Affiliation(s)
- Bohao Peng
- School of Energy Science and Engineering, Nanjing Tech University, Nanjing, Jiangsu Province, 211816, P. R. China
| | - Zaichun Liu
- Confucius Energy Storage Lab, School of Energy and Environment, Southeast University, Nanjing, 210096, P. R. China
| | - Qi Zhou
- School of Energy Science and Engineering, Nanjing Tech University, Nanjing, Jiangsu Province, 211816, P. R. China
| | - Xiaosong Xiong
- Confucius Energy Storage Lab, School of Energy and Environment, Southeast University, Nanjing, 210096, P. R. China
| | - Shuang Xia
- School of Energy Science and Engineering, Nanjing Tech University, Nanjing, Jiangsu Province, 211816, P. R. China
| | - Xuelong Yuan
- School of Energy Science and Engineering, Nanjing Tech University, Nanjing, Jiangsu Province, 211816, P. R. China
| | - Faxing Wang
- Confucius Energy Storage Lab, School of Energy and Environment, Southeast University, Nanjing, 210096, P. R. China
| | - Kenneth I Ozoemena
- Molecular Sciences Institute, School of Chemistry, University of the Witwatersrand, Private Bag 3, Wits, Johannesburg, 2050, South Africa
| | - Lili Liu
- School of Energy Science and Engineering, Nanjing Tech University, Nanjing, Jiangsu Province, 211816, P. R. China
| | - Lijun Fu
- School of Energy Science and Engineering, Nanjing Tech University, Nanjing, Jiangsu Province, 211816, P. R. China
| | - Yuping Wu
- School of Energy Science and Engineering, Nanjing Tech University, Nanjing, Jiangsu Province, 211816, P. R. China
- Confucius Energy Storage Lab, School of Energy and Environment, Southeast University, Nanjing, 210096, P. R. China
| |
Collapse
|
17
|
Zhao M, Zhang J, Costa CM, Lanceros-Méndez S, Zhang Q, Wang W. Unveiling Challenges and Opportunities in Silicon-Based All-Solid-State Batteries: Thin-Film Bonding with Mismatch Strain. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2308590. [PMID: 38050893 DOI: 10.1002/adma.202308590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 10/17/2023] [Indexed: 12/07/2023]
Abstract
Li-metal and silicon are potential anode materials in all-solid-state Li-ion batteries (ASSBs) due to high specific capacity. However, both materials form gaps at the interface with solid electrolytes (SEs) during charging/discharging, resulting in increased impedance and uneven current density distribution. In this perspective, the different mechanisms of formation of these gaps are elaborated in detail. For Li-metal anodes, Li-ions are repeatedly stripped and unevenly deposited on the surface, leading to gaps and Li dendrite formation, which is an unavoidable electrochemical behavior. For Si-based anodes, Li-ions inserting/extracting within the Si-based electrode causes volume changes and a local separation from the SE, which is a mechanical behavior and avoidable by mitigating the strain mismatch of thin-film bonding between anode and SE. Si electro-chemical-mechanical behaviors are also described and strategies recommended to synergistically decrease Si-based electrode strain, including Si materials, Si-based composites, and electrodes. Last, it is suggested to choose a composite polymer-inorganic SE with favorable elastic properties and high ionic conductivity and form it directly on the Si-based electrode, beneficial for increasing SE strain to accommodate stack pressure and the stability of the interface. Thus, this perspective sheds light on the development and application of Si-based ASSBs.
Collapse
Affiliation(s)
- Mingcai Zhao
- BCMaterials, Basque Centre for Materials, Applications and Nanostructures, UPV/EHU Science Park, Leioa, 48940, Spain
- College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, China
| | - Juan Zhang
- R&D department, Jiangsu E-ontech company, Nanjing, 211106, China
| | - Carlos M Costa
- Physics Centre of Minho and Porto Universities (CF-UM-UP) Laboratory of Physics for Materials and Emergent Technologies, LapMET, University of Minho, Braga, 4710-057, Portugal
- Institute of Science and Innovation for Bio-Sustainability (IB-S), University of Minho, Braga, 4710-053, Portugal
| | - Senentxu Lanceros-Méndez
- BCMaterials, Basque Centre for Materials, Applications and Nanostructures, UPV/EHU Science Park, Leioa, 48940, Spain
- Physics Centre of Minho and Porto Universities (CF-UM-UP) Laboratory of Physics for Materials and Emergent Technologies, LapMET, University of Minho, Braga, 4710-057, Portugal
- IKERBASQUE, Basque Foundation for Science, Plaza Euskadi 5, Bilbao, 48009, Spain
| | - Qi Zhang
- BCMaterials, Basque Centre for Materials, Applications and Nanostructures, UPV/EHU Science Park, Leioa, 48940, Spain
- IKERBASQUE, Basque Foundation for Science, Plaza Euskadi 5, Bilbao, 48009, Spain
| | - Wei Wang
- College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, China
| |
Collapse
|
18
|
Su CC, Wu X, Amine K, Bracamonte MV. Probing the Effectiveness in Stabilizing Lithium Metal Anodes through Functional Additives. ACS APPLIED MATERIALS & INTERFACES 2023; 15:59016-59024. [PMID: 38061011 DOI: 10.1021/acsami.3c14119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2023]
Abstract
A variety of electrolyte additives were comprehensively evaluated to understand their relative capability in stabilizing lithium metal anode. Although the Li||Cu test is an effective test to rule out ineffective additives, a reliable assessment of individual additives cannot be obtained just by a single evaluation method. Therefore, various methods must be combined to truly assess the stabilization of a lithium anode. Moreover, it was also discovered that a significant depletion of electrolytes occurred during the end-of-life of the lithium batteries, which partially contributed to the sudden failure of the lithium batteries during cycling. However, the main culprit of the sudden failure was identified as the significant increase in the resistance of the lithium metal anode. When used as an additive, cyclic fluorinated carbonates are the most effective in stabilizing the lithium anode and improving the cycling performance of lithium batteries among all the common additives. Despite its cost-effectiveness, the additive in the conventional electrolyte approach provides insufficient protection for lithium metal due to the complete consumption of the additive materials, which is necessary to repair the solid-electrolyte interphase (SEI). Therefore, it is suggested that a larger ratio (>15 wt %) of the SEI former should be employed to achieve effective lithium stabilization.
Collapse
Affiliation(s)
- Chi-Cheung Su
- Chemical Sciences and Engineering Division, Argonne National Laboratory, 9700 S. Cass Avenue, Lemont, Illinois 60439, United States
| | - Xianyang Wu
- Chemical Sciences and Engineering Division, Argonne National Laboratory, 9700 S. Cass Avenue, Lemont, Illinois 60439, United States
| | - Khalil Amine
- Chemical Sciences and Engineering Division, Argonne National Laboratory, 9700 S. Cass Avenue, Lemont, Illinois 60439, United States
| | - María Victoria Bracamonte
- Chemical Sciences and Engineering Division, Argonne National Laboratory, 9700 S. Cass Avenue, Lemont, Illinois 60439, United States
- Enrique Gaviola Institute of Physics (IFEG), Faculty of Mathematics, Astronomy, Physics and Computing, Universidad Nacional de Córdoba, Medina Allende s/n, Ciudad Universitaria, Córdoba 5000, Argentina
| |
Collapse
|
19
|
Xia S, Li F, Zhang X, Luo L, Zhang Y, Yuan T, Pang Y, Yang J, Liu W, Guo Z, Zheng S. Interfacial Manipulation via In Situ Constructed Fast Ion Transport Channels toward an Ultrahigh Rate and Practical Li Metal Anode. ACS NANO 2023; 17:20689-20698. [PMID: 37796083 DOI: 10.1021/acsnano.3c08864] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/06/2023]
Abstract
The successful substitution of Li metal for the conventional intercalation anode can promote a significant increase in the cell energy density. However, the practical application of the Li metal anode has long been fettered by the unstable solid electrolyte interface (SEI) layer on the Li metal surface and notorious dendritic Li growth. Herein, a stabilized SEI layer with in situ constructed fast ion transport channels has successfully been achieved by a robust In2S3-cemented poly(vinyl alcohol) coating. The modified Li metal demonstrates significantly enhanced Coulombic efficiency, high rate performance (10 mA cm-2), and ultralong life cycling stability (∼4900 cycles). The Li|LiCoO2 (LCO) cell presents an ultralong-term stable operation over 500 cycles at 1 C with an extremely low capacity decay rate (∼0.018% per cycle). And the Li|LCO full cell with the ultrahigh loading cathode (∼25 mg cm-2) and ultrathin Li foil (∼40 μm) also reveals a prolonged cycling performance under the low negative-to-positive capacity ratio of 2.2. Furthermore, the Li|LCO pouch cell with a commercial cathode and ultrathin Li foil still manifests excellent cycling performance even under the harsh conditions of limited Li metal and lean electrolyte. This work provides a cost-effective and scalable strategy toward high performance practical Li metal batteries.
Collapse
Affiliation(s)
- Shuixin Xia
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China
- School of Chemical Engineering, University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Fengguang Li
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Xun Zhang
- Ganjiang Innovation Academy, Chinese Academy of Sciences, Ganzhou 341000, China
| | - Lingli Luo
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Yue Zhang
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Tao Yuan
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Yuepeng Pang
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Junhe Yang
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Wei Liu
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Zaiping Guo
- School of Chemical Engineering, University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Shiyou Zheng
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China
| |
Collapse
|
20
|
An SY, Wu X, Zhao Y, Liu T, Yin R, Ahn JH, Walker LM, Whitacre JF, Matyjaszewski K. Highly Conductive Polyoxanorbornene-Based Polymer Electrolyte for Lithium-Metal Batteries. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2302932. [PMID: 37455678 PMCID: PMC10520635 DOI: 10.1002/advs.202302932] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 06/14/2023] [Indexed: 07/18/2023]
Abstract
This present study illustrates the synthesis and preparation of polyoxanorbornene-based bottlebrush polymers with poly(ethylene oxide) (PEO) side chains by ring-opening metathesis polymerization for solid polymer electrolytes (SPE). In addition to the conductive PEO side chains, the polyoxanorbornene backbones may act as another ion conductor to further promote Li-ion movement within the SPE matrix. These results suggest that these bottlebrush polymer electrolytes provide impressively high ionic conductivity of 7.12 × 10-4 S cm-1 at room temperature and excellent electrochemical performance, including high-rate capabilities and cycling stability when paired with a Li metal anode and a LiFePO4 cathode. The new design paradigm, which has dual ionic conductive pathways, provides an unexplored avenue for inventing new SPEs and emphasizes the importance of molecular engineering to develop highly stable and conductive polymer electrolytes for lithium-metal batteries (LMB).
Collapse
Affiliation(s)
- So Young An
- Department of ChemistryCarnegie Mellon University4400 Fifth AvenuePittsburghPA15213USA
| | - Xinsheng Wu
- Department of Materials Science and EngineeringCarnegie Mellon University5000 Forbes AvenuePittsburghPA15213USA
| | - Yuqi Zhao
- Department of Materials Science and EngineeringCarnegie Mellon University5000 Forbes AvenuePittsburghPA15213USA
| | - Tong Liu
- Department of ChemistryCarnegie Mellon University4400 Fifth AvenuePittsburghPA15213USA
| | - Rongguan Yin
- Department of ChemistryCarnegie Mellon University4400 Fifth AvenuePittsburghPA15213USA
| | - Jung Hyun Ahn
- Department of Chemical EngineeringCarnegie Mellon University5000 Forbes AvenuePittsburghPA15213USA
| | - Lynn M. Walker
- Department of Chemical EngineeringCarnegie Mellon University5000 Forbes AvenuePittsburghPA15213USA
| | - Jay F. Whitacre
- Department of Materials Science and EngineeringCarnegie Mellon University5000 Forbes AvenuePittsburghPA15213USA
- Scott Institute for Energy InnovationCarnegie Mellon University5000 Forbes AvenuePittsburghPA15213USA
| | | |
Collapse
|
21
|
Song J, Xu Y, Zhou Y, Wang P, Feng H, Yang J, Zhuge F, Tan Q. Cellulose-Assisted Vertically Heterostructured PEO-Based Solid Electrolytes Mitigating Li-Succinonitrile Corrosion for Lithium Metal Batteries. ACS APPLIED MATERIALS & INTERFACES 2023; 15:20897-20908. [PMID: 37074227 DOI: 10.1021/acsami.2c22562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
In the field of solid-state lithium metal batteries (SSLMBs), constructing vertically heterostructured poly(ethylene oxide) (PEO)-based solid electrolytes is an effective method to realize their tight contact with cathodes and Li anodes at the same time. Succinonitrile (SN) has been widely used in PEO-based solid electrolytes to improve the interface contact with cathodes, enhance the ionic conductivities, and obtain a high electrochemical stability window of PEO, but its application is still hindered by its intrinsic instability to Li anodes, which results in corrosion and side interactions with lithium metal. Herein, the cellulose membrane (CM) is introduced creatively into the vertically heterostructured PEO-based solid electrolytes to match the PEO-SN solid electrolytes at the cathode side. With the advantage of the interaction between -OH groups of CM and -C≡N groups in SN, the movement of free SN molecules from cathodes to Li anodes is limited effectively, resulting in a stable and durable SEI layer. In specific, the Li||LiFePO4 battery with the CM-assisted vertically heterostructured PEO-based solid electrolyte by in situ preparation delivers a discharge capacity of around 130 mAh g-1 after 300 cycles and capacity retention of 95% after 500 cycles at 0.5 C. Our work provides a solution to construct PEO-based solid electrolytes feasible to match cathodes and Li anodes effectively by intimate contact with electrodes.
Collapse
Affiliation(s)
- Jiechen Song
- State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
- Hebei Engineering Research Center of Power and Energy Storage Battery Materials, Hebei Technology Innovation Center of Advanced Energy Materials, Hebei Manufacturing Industry Innovation Center of New Energy Materials and Key Equipment, Langfang Technological Service Center of Green Industry, Langfang 065001, China
| | - Yuxing Xu
- State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
- Hebei Engineering Research Center of Power and Energy Storage Battery Materials, Hebei Technology Innovation Center of Advanced Energy Materials, Hebei Manufacturing Industry Innovation Center of New Energy Materials and Key Equipment, Langfang Technological Service Center of Green Industry, Langfang 065001, China
| | - Yuncheng Zhou
- State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
- Hebei Engineering Research Center of Power and Energy Storage Battery Materials, Hebei Technology Innovation Center of Advanced Energy Materials, Hebei Manufacturing Industry Innovation Center of New Energy Materials and Key Equipment, Langfang Technological Service Center of Green Industry, Langfang 065001, China
| | - Pengfei Wang
- State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Hailan Feng
- State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Jun Yang
- State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Fuchang Zhuge
- Gansu Daxiang Energy Technology Co. Ltd, Baiyin, Gansu 730913, China
| | - Qiangqiang Tan
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
- State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
- Hebei Engineering Research Center of Power and Energy Storage Battery Materials, Hebei Technology Innovation Center of Advanced Energy Materials, Hebei Manufacturing Industry Innovation Center of New Energy Materials and Key Equipment, Langfang Technological Service Center of Green Industry, Langfang 065001, China
| |
Collapse
|
22
|
Jena A, Bazri B, Tong Z, Iputera K, Huang JY, Wei DH, Hu SF, Liu RS. Controlling Cell Components to Design High-Voltage All-Solid-State Lithium-Ion Batteries. CHEMSUSCHEM 2023; 16:e202202151. [PMID: 36634026 DOI: 10.1002/cssc.202202151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 01/11/2023] [Indexed: 06/17/2023]
Abstract
All-solid-state batteries with solid ionic conductors packed between solid electrode films can release the dead space between them, enabling a greater number of cells to stack, generating higher voltage to the pack. This Review is focused on using high-voltage cathode materials, in which the redox peak of the components is extended beyond 4.7 V. Li-Ni-Mn-O systems are currently under investigation for use as the cathode in high-voltage cells. Solid electrolytes compatible with the cathode, including halide- and sulfide-based electrolytes, are also reviewed. Discussion extends to the compatibility between electrodes and electrolytes at such extended potentials. Moreover, control over the thickness of the anode is essential to reduce solid-electrolyte interphase formation and growth of dendrites. The Review discusses routes toward optimization of the cell components to minimize electrode-electrolyte impedance and facilitate ion transportation during the battery cycle.
Collapse
Affiliation(s)
- Anirudha Jena
- Department of Chemistry, National Taiwan University, Taipei, 106, Taiwan
- Department of Mechanical Engineering and Graduate Institute of Manufacturing Technology, National Taipei University of Technology, Taipei, 106, Taiwan
- School of Applied Sciences, Kalinga Institute of Industrial Technology, Deemed to be University Bhubaneswar, Odisha., 751024, India
| | - Behrouz Bazri
- Department of Chemistry, National Taiwan University, Taipei, 106, Taiwan
- Department of Mechanical Engineering and Graduate Institute of Manufacturing Technology, National Taipei University of Technology, Taipei, 106, Taiwan
| | - Zizheng Tong
- Department of Chemistry, National Taiwan University, Taipei, 106, Taiwan
| | - Kevin Iputera
- Department of Chemistry, National Taiwan University, Taipei, 106, Taiwan
| | - Jheng-Yi Huang
- Department of Chemistry, National Taiwan University, Taipei, 106, Taiwan
| | - Da-Hua Wei
- Department of Mechanical Engineering and Graduate Institute of Manufacturing Technology, National Taipei University of Technology, Taipei, 106, Taiwan
| | - Shu-Fen Hu
- Department of Physics, National Taiwan Normal University, Taipei, 116, Taiwan
| | - Ru-Shi Liu
- Department of Chemistry, National Taiwan University, Taipei, 106, Taiwan
| |
Collapse
|
23
|
Wu W, Luo W, Huang Y. Less is more: a perspective on thinning lithium metal towards high-energy-density rechargeable lithium batteries. Chem Soc Rev 2023; 52:2553-2572. [PMID: 36920421 DOI: 10.1039/d2cs00606e] [Citation(s) in RCA: 25] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
Abstract
Lithium (Li) metal, owing to its high specific capacity and low redox potential as a Li+ ion source in rechargeable lithium batteries, shows impressive prospects for electrochemical energy storage. However, engineering Li metal into thin foils has historically remained difficult, owing to its stickiness and fragility upon mechanical rolling. Consequently, using thick Li in battery systems betrays the original target for achieving higher energy density, results in material waste, and creates illusions on evaluating modification strategies for taming the highly reactive Li metal anode. Being apprehensive of this, in the tutorial review, we illustrate the argument of applying thin Li (<50 μm, preferably ≤30 μm) to achieve more realistic and advanced battery systems. A brief overview of Li is sketched first to help understand its role in batteries. Then, the reasons for pursuing thin Li are critically analyzed. Next, seminal technologies enabling the fabrication of thin Li are summarized and compared, which calls for the participation of experts from mechanical engineering, metallurgy, electrochemistry, and other fields. Subsequently, the possible applications of thin Li in batteries are presented. With the deployment of thin Li, there are new challenges and opportunities to encounter and an outlook is afforded thereof. Holy-grail Li metal anodes, combined with the subtraction operation in thickness and compatible modification strategies, would bring about a truly great leap forward in electrochemical energy storage.
Collapse
Affiliation(s)
- Wangyan Wu
- Institute of New Energy for Vehicles, Shanghai Key Lab. of D&A for Metal-Functional Materials, School of Materials Science and Engineering, Tongji University, Shanghai 201804, China. .,Key Laboratory of Advanced Civil Engineering Materials of Ministry of Education, School of Materials Science and Engineering, Tongji University, Shanghai 201804, China
| | - Wei Luo
- Institute of New Energy for Vehicles, Shanghai Key Lab. of D&A for Metal-Functional Materials, School of Materials Science and Engineering, Tongji University, Shanghai 201804, China. .,Key Laboratory of Advanced Civil Engineering Materials of Ministry of Education, School of Materials Science and Engineering, Tongji University, Shanghai 201804, China
| | - Yunhui Huang
- State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China.
| |
Collapse
|
24
|
Surface engineering of inorganic solid-state electrolytes via interlayers strategy for developing long-cycling quasi-all-solid-state lithium batteries. Nat Commun 2023; 14:782. [PMID: 36774375 PMCID: PMC9922298 DOI: 10.1038/s41467-023-36401-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 01/31/2023] [Indexed: 02/13/2023] Open
Abstract
Lithium metal batteries (LMBs) with inorganic solid-state electrolytes are considered promising secondary battery systems because of their higher energy content than their Li-ion counterpart. However, the LMB performance remains unsatisfactory for commercialization, primarily owing to the inability of the inorganic solid-state electrolytes to hinder lithium dendrite propagation. Here, using an Ag-coated Li6.4La3Zr1.7Ta0.3O12 (LLZTO) inorganic solid electrolyte in combination with a silver-carbon interlayer, we demonstrate the production of stable interfacially engineered lab-scale LMBs. Via experimental measurements and computational modelling, we prove that the interlayers strategy effectively regulates lithium stripping/plating and prevents dendrite penetration in the solid-state electrolyte pellet. By coupling the surface-engineered LLZTO with a lithium metal negative electrode, a high-voltage positive electrode with an ionic liquid-based liquid electrolyte solution in pouch cell configuration, we report 800 cycles at 1.6 mA/cm2 and 25 °C without applying external pressure. This cell enables an initial discharge capacity of about 3 mAh/cm2 and a discharge capacity retention of about 85%.
Collapse
|
25
|
Hu X, Chen S, Wang Z, Chen Y, Yuan B, Zhang Y, Liu W, Yu Y. Microstructure of the Li-Al-O Second Phases in Garnet Solid Electrolytes. NANO LETTERS 2023; 23:887-894. [PMID: 36648987 DOI: 10.1021/acs.nanolett.2c04135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
The microstructure of the Li7La3Zr2O12 (LLZO) garnet solid electrolyte is critical for its performance in all-solid-state lithium-ion battery. During conventional high-temperature sintering, second phases are generated at the grain boundaries due to the reaction between sintering aids and LLZO, which have an enormous effect on the performances of LLZO. However, a detailed structure study of the second phases and their impact on physical properties is lacking. Here, crystal structures of the second phases in LLZO pellets are studied in detail by transmission electron microscopy. Three different crystal structures of Li-Al-O second phases, γ-LiAlO2, α-Li5AlO4, and β-Li5AlO4 were identified, and atomic-scale lattice information was obtained by applying low-dose high-resolution imaging for these electron-beam-sensitive second phases. On this basis, the structure-property relationship of these structures was explored. It was found that sintering aids with a higher Li/Al ratio are beneficial to form Li-rich second phases, which result in more highly ionic conductive LLZO.
Collapse
Affiliation(s)
- Xiangchen Hu
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, People's Republic of China
- Shanghai Key Laboratory of High-resolution Electron Microscopy, ShanghaiTech University, Shanghai 201210, People's Republic of China
| | - Shaojie Chen
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, People's Republic of China
- Shanghai Key Laboratory of High-resolution Electron Microscopy, ShanghaiTech University, Shanghai 201210, People's Republic of China
| | - Zeyu Wang
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, People's Republic of China
- Shanghai Key Laboratory of High-resolution Electron Microscopy, ShanghaiTech University, Shanghai 201210, People's Republic of China
| | - Yu Chen
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, People's Republic of China
- Shanghai Key Laboratory of High-resolution Electron Microscopy, ShanghaiTech University, Shanghai 201210, People's Republic of China
| | - Biao Yuan
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, People's Republic of China
- Shanghai Key Laboratory of High-resolution Electron Microscopy, ShanghaiTech University, Shanghai 201210, People's Republic of China
| | - Yue Zhang
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, People's Republic of China
- Shanghai Key Laboratory of High-resolution Electron Microscopy, ShanghaiTech University, Shanghai 201210, People's Republic of China
| | - Wei Liu
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, People's Republic of China
- Shanghai Key Laboratory of High-resolution Electron Microscopy, ShanghaiTech University, Shanghai 201210, People's Republic of China
| | - Yi Yu
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, People's Republic of China
- Shanghai Key Laboratory of High-resolution Electron Microscopy, ShanghaiTech University, Shanghai 201210, People's Republic of China
| |
Collapse
|
26
|
Wang Y, Liu Y, Nguyen M, Cho J, Katyal N, Vishnugopi BS, Hao H, Fang R, Wu N, Liu P, Mukherjee PP, Nanda J, Henkelman G, Watt J, Mitlin D. Stable Anode-Free All-Solid-State Lithium Battery through Tuned Metal Wetting on the Copper Current Collector. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2206762. [PMID: 36445936 DOI: 10.1002/adma.202206762] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 10/23/2022] [Indexed: 06/16/2023]
Abstract
A stable anode-free all-solid-state battery (AF-ASSB) with sulfide-based solid-electrolyte (SE) (argyrodite Li6 PS5 Cl) is achieved by tuning wetting of lithium metal on "empty" copper current-collector. Lithiophilic 1 µm Li2 Te is synthesized by exposing the collector to tellurium vapor, followed by in situ Li activation during the first charge. The Li2 Te significantly reduces the electrodeposition/electrodissolution overpotentials and improves Coulombic efficiency (CE). During continuous electrodeposition experiments using half-cells (1 mA cm-2 ), the accumulated thickness of electrodeposited Li on Li2 Te-Cu is more than 70 µm, which is the thickness of the Li foil counter-electrode. Full AF-ASSB with NMC811 cathode delivers an initial CE of 83% at 0.2C, with a cycling CE above 99%. Cryogenic focused ion beam (Cryo-FIB) sectioning demonstrates uniform electrodeposited metal microstructure, with no signs of voids or dendrites at the collector-SE interface. Electrodissolution is uniform and complete, with Li2 Te remaining structurally stable and adherent. By contrast, an unmodified Cu current-collector promotes inhomogeneous Li electrodeposition/electrodissolution, electrochemically inactive "dead metal," dendrites that extend into SE, and thick non-uniform solid electrolyte interphase (SEI) interspersed with pores. Density functional theory (DFT) and mesoscale calculations provide complementary insight regarding nucleation-growth behavior. Unlike conventional liquid-electrolyte metal batteries, the role of current collector/support lithiophilicity has not been explored for emerging AF-ASSBs.
Collapse
Affiliation(s)
- Yixian Wang
- Materials Science and Engineering Program & Texas Materials Institute (TMI), The University of Texas at Austin, Austin, TX, 78712-1591, USA
| | - Yijie Liu
- Materials Science and Engineering Program & Texas Materials Institute (TMI), The University of Texas at Austin, Austin, TX, 78712-1591, USA
| | - Mai Nguyen
- Department of Chemistry, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Jaeyoung Cho
- Department of Chemistry, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Naman Katyal
- Department of Chemistry, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Bairav S Vishnugopi
- School of Mechanical Engineering, Purdue University, West Lafayette, IN, 47907, USA
| | - Hongchang Hao
- Materials Science and Engineering Program & Texas Materials Institute (TMI), The University of Texas at Austin, Austin, TX, 78712-1591, USA
| | - Ruyi Fang
- Materials Science and Engineering Program & Texas Materials Institute (TMI), The University of Texas at Austin, Austin, TX, 78712-1591, USA
| | - Nan Wu
- Materials Science and Engineering Program & Texas Materials Institute (TMI), The University of Texas at Austin, Austin, TX, 78712-1591, USA
| | - Pengcheng Liu
- Materials Science and Engineering Program & Texas Materials Institute (TMI), The University of Texas at Austin, Austin, TX, 78712-1591, USA
| | - Partha P Mukherjee
- School of Mechanical Engineering, Purdue University, West Lafayette, IN, 47907, USA
| | - Jagjit Nanda
- Applied Energy Division, SLAC National Laboratory, Menlo Park, CA, 94025, USA
| | - Graeme Henkelman
- Department of Chemistry, The University of Texas at Austin, Austin, TX, 78712, USA
| | - John Watt
- Center for Integrated Nanotechnologies, Los Alamos National Laboratory, Los Alamos, NM, 87545, USA
| | - David Mitlin
- Materials Science and Engineering Program & Texas Materials Institute (TMI), The University of Texas at Austin, Austin, TX, 78712-1591, USA
| |
Collapse
|
27
|
Li R, Jiang D, Du P, Yuan C, Cui X, Tang Q, Zheng J, Li Y, Lu K, Ren X, Gao S, Zhan X. Negating Na‖Na 3Zr 2Si 2PO 12 interfacial resistance for dendrite-free and "Na-less" solid-state batteries. Chem Sci 2022; 13:14132-14140. [PMID: 36540829 PMCID: PMC9728568 DOI: 10.1039/d2sc05120f] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 11/02/2022] [Indexed: 07/25/2023] Open
Abstract
Solid electrolytes hold promise in safely enabling high-energy metallic sodium (Na) anodes. However, the poor Na‖solid electrolyte interfacial contact can induce Na dendrite growth and limit Na utilization, plaguing the rate performance and energy density of current solid-state Na-metal batteries (SSSMBs). Herein, a simple and scalable Pb/C interlayer strategy is introduced to regulate the surface chemistry and improve Na wettability of Na3Zr2Si2PO12 (NZSP) solid electrolyte. The resulting NZSP exhibits a perfect Na wettability (0° contact angle) at a record-low temperature of 120 °C, a negligible room-temperature Na‖NZSP interfacial resistance of 1.5 Ω cm2, along with an ultralong cycle life of over 1800 h under 0.5 mA cm-2/0.5 mA h cm-2 symmetric cell cycling at 55 °C. Furthermore, we unprecedentedly demonstrate in situ fabrication of weight-controlled Na anodes and explore the effect of the negative/positive capacity (N/P) ratio on the cyclability of SSSMBs. Both solid-state Na3V2(PO4)3 and S full cells show superior electrochemical performance at an optimal N/P ratio of 40.0. The Pb/C interlayer modification demonstrates dual functions of stabilizing the anode interface and improving Na utilization, making it a general strategy for implementing Na metal anodes in practical SSSMBs.
Collapse
Affiliation(s)
- Rui Li
- School of Chemistry and Chemical Engineering, School of Materials Science and Engineering, Institutes of Physical Science and Information Technology, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University Hefei 230601 P. R. China
| | - Daochuan Jiang
- School of Chemistry and Chemical Engineering, School of Materials Science and Engineering, Institutes of Physical Science and Information Technology, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University Hefei 230601 P. R. China
| | - Peng Du
- School of Chemistry and Chemical Engineering, School of Materials Science and Engineering, Institutes of Physical Science and Information Technology, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University Hefei 230601 P. R. China
| | - Chenbo Yuan
- School of Chemistry and Chemical Engineering, School of Materials Science and Engineering, Institutes of Physical Science and Information Technology, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University Hefei 230601 P. R. China
| | - Xiaoyu Cui
- School of Chemistry and Chemical Engineering, School of Materials Science and Engineering, Institutes of Physical Science and Information Technology, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University Hefei 230601 P. R. China
| | - Qichen Tang
- School of Chemistry and Chemical Engineering, School of Materials Science and Engineering, Institutes of Physical Science and Information Technology, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University Hefei 230601 P. R. China
| | - Jian Zheng
- School of Chemistry and Chemical Engineering, School of Materials Science and Engineering, Institutes of Physical Science and Information Technology, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University Hefei 230601 P. R. China
| | - Yecheng Li
- Department of Materials Science and Engineering, University of Science & Technology of China Hefei 230026 P. R. China
| | - Ke Lu
- School of Chemistry and Chemical Engineering, School of Materials Science and Engineering, Institutes of Physical Science and Information Technology, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University Hefei 230601 P. R. China
| | - Xiaodi Ren
- Department of Materials Science and Engineering, University of Science & Technology of China Hefei 230026 P. R. China
| | - Shan Gao
- School of Chemistry and Chemical Engineering, School of Materials Science and Engineering, Institutes of Physical Science and Information Technology, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University Hefei 230601 P. R. China
| | - Xiaowen Zhan
- School of Chemistry and Chemical Engineering, School of Materials Science and Engineering, Institutes of Physical Science and Information Technology, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University Hefei 230601 P. R. China
| |
Collapse
|
28
|
Qin Z, Xie Y, Meng X, Qian D, Mao D, Zheng Z, Wan L, Huang Y. Grain Boundary Engineering in Ta-Doped Garnet-Type Electrolyte for Lithium Dendrite Suppression. ACS APPLIED MATERIALS & INTERFACES 2022; 14:40959-40966. [PMID: 36046979 DOI: 10.1021/acsami.2c10027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Solid-state lithium batteries (SSLBs) based on Ta-doped Li6.5La3Zr1.5Ta0.5O12 (LLZTO) suffer from lithium dendrite growth, which hinders their practical application. Herein, first principles simulations indicate that the Ta element prefers to segregate along grain boundaries in the form of Ta2O5 precipitates due to a high energy difference induced by Ta doping. Grain boundary engineering is employed to regulate the distribution of the Ta element and enhance the density of LLZTO by introducing the La2O3 additive. The sufficient La2O3 additive reacts with the Ta2O5 precipitates, while the residual La2O3 nanoparticles fill up void defects, promoting the homogeneous distribution of the Ta element and improving the relative density to ∼98%. Critical current density of the symmetric Li battery reaches 2.12 mA·cm-2 at room temperature with the solid-state electrolyte (LLZTO + 5 wt % La2O3), which increases by 41% compared to pure LLZTO. SSLBs with the LiFePO4 cathode achieve a stable cycling performance with a discharge capacity of 138.6 mA·h·g-1 after 400 cycles at 0.2 C. This work provides theoretical insights into the distribution of Ta-doped LLZTO and inhibits lithium dendrite growth through grain boundary engineering.
Collapse
Affiliation(s)
- Zhiwei Qin
- State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology, Harbin 150001, China
| | - Yuming Xie
- State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology, Harbin 150001, China
| | - Xiangchen Meng
- State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology, Harbin 150001, China
| | - Delai Qian
- School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Dongxin Mao
- State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology, Harbin 150001, China
| | - Zhen Zheng
- Center for Analysis Measurement and Computing, Harbin Institute of Technology, Harbin 150001, China
| | - Long Wan
- State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology, Harbin 150001, China
| | - Yongxian Huang
- State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology, Harbin 150001, China
| |
Collapse
|
29
|
Wu Y, Sun X, Li R, Wang C, Song D, Yang Z, Gao J, Zhang Y, Ohsaka T, Matsumoto F, Zhao F, Wu J. In situ construction of trinity artificial protective layer between lithium metal and sulfide solid electrolyte interface. Electrochem commun 2022. [DOI: 10.1016/j.elecom.2022.107377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
|
30
|
Chen S, Nie L, Hu X, Zhang Y, Zhang Y, Yu Y, Liu W. Ultrafast Sintering for Ceramic-Based All-Solid-State Lithium-Metal Batteries. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2200430. [PMID: 35643987 DOI: 10.1002/adma.202200430] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 05/25/2022] [Indexed: 06/15/2023]
Abstract
Long processing time and high temperatures are often required in sintering ceramic electrolytes, which lead to volatile element loss and high cost. Here, an ultrafast sintering method of microwave-induced carbothermal shock to fabricate various ceramic electrolytes in seconds is reported. Furthermore, it is also possible to integrate the electrode and electrolyte in one step by simultaneous co-sintering. Based on this ultrafast co-sintering technique, an all-solid-state lithium-metal battery with a high areal capacity is successfully achieved, realizing a promising electrochemical performance at room temperature. This method can extend to other various ceramic multilayer-based solid devices.
Collapse
Affiliation(s)
- Shaojie Chen
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Lu Nie
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Xiangchen Hu
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Yining Zhang
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Yue Zhang
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Yi Yu
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China
- Shanghai Key Laboratory of High-resolution Electron Microscopy, ShanghaiTech University, Shanghai, 201210, China
| | - Wei Liu
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China
- Shanghai Key Laboratory of High-resolution Electron Microscopy, ShanghaiTech University, Shanghai, 201210, China
| |
Collapse
|
31
|
Issues Concerning Interfaces with Inorganic Solid Electrolytes in All-Solid-State Lithium Metal Batteries. SUSTAINABILITY 2022. [DOI: 10.3390/su14159090] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
All-solid-state batteries have attracted wide attention for high-performance and safe batteries. The combination of solid electrolytes and lithium metal anodes makes high-energy batteries practical for next-generation high-performance devices. However, when a solid electrolyte replaces the liquid electrolyte, many different interface/interphase issues have arisen from the contact with electrodes. Poor wettability and unstable chemical/electrochemical reaction at the interfaces with lithium metal anodes will lead to poor lithium diffusion kinetics and combustion of fresh lithium and active materials in the electrolyte. Element cross-diffusion and charge layer formation at the interfaces with cathodes also impede the lithium ionic conductivity and increase the charge transfer resistance. The abovementioned interface issues hinder the electrochemical performance of all-solid-state lithium metal batteries. This review demonstrates the formation and mechanism of these interface issues between solid electrolytes and anodes/cathodes. Aiming to address the problems, we review and propose modification strategies to weaken interface resistance and improve the electrochemical performance of all-solid-state lithium metal batteries.
Collapse
|
32
|
Yuan C, Li R, Zhan X, Sprenkle VL, Li G. Stabilizing Metallic Na Anodes via Sodiophilicity Regulation: A Review. MATERIALS (BASEL, SWITZERLAND) 2022; 15:4636. [PMID: 35806761 PMCID: PMC9267197 DOI: 10.3390/ma15134636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 06/20/2022] [Accepted: 06/27/2022] [Indexed: 01/27/2023]
Abstract
This review focuses on the Na wetting challenges and relevant strategies regarding stabilizing sodium-metal anodes in sodium-metal batteries (SMBs). The Na anode is the essential component of three key energy storage systems, including molten SMBs (i.e., intermediate-temperature Na-S and ZEBRA batteries), all-solid-state SMBs, and conventional SMBs using liquid electrolytes. We begin with a general description of issues encountered by different SMB systems and point out the common challenge in Na wetting. We detail the emerging strategies of improving Na wettability and stabilizing Na metal anodes for the three types of batteries, with the emphasis on discussing various types of tactics developed for SMBs using liquid electrolytes. We conclude with a discussion of the overlooked yet critical aspects (Na metal utilization, N/P ratio, critical current density, etc.) in the existing strategies for an individual battery system and propose promising areas (anolyte incorporation and catholyte modifications for lower-temperature molten SMBs, cell evaluation under practically relevant current density and areal capacity, etc.) that we believe to be the most urgent for further pursuit. Comprehensive investigations combining complementary post-mortem, in situ, and operando analyses to elucidate cell-level structure-performance relations are advocated.
Collapse
Affiliation(s)
- Chenbo Yuan
- School of Materials Science and Engineering, School of Chemistry and Chemical Engineering, Anhui University, Hefei 230601, China; (C.Y.); (R.L.)
| | - Rui Li
- School of Materials Science and Engineering, School of Chemistry and Chemical Engineering, Anhui University, Hefei 230601, China; (C.Y.); (R.L.)
| | - Xiaowen Zhan
- School of Materials Science and Engineering, School of Chemistry and Chemical Engineering, Anhui University, Hefei 230601, China; (C.Y.); (R.L.)
| | - Vincent L. Sprenkle
- Battery Materials and Systems Group, Pacific Northwest National Laboratory, Richland, WA 99352, USA;
| | - Guosheng Li
- Battery Materials and Systems Group, Pacific Northwest National Laboratory, Richland, WA 99352, USA;
| |
Collapse
|
33
|
Li J, Qi J, Jin F, Zhang F, Zheng L, Tang L, Huang R, Xu J, Chen H, Liu M, Qiu Y, Cooper AI, Shen Y, Chen L. Room temperature all-solid-state lithium batteries based on a soluble organic cage ionic conductor. Nat Commun 2022; 13:2031. [PMID: 35440112 PMCID: PMC9018795 DOI: 10.1038/s41467-022-29743-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 03/21/2022] [Indexed: 11/26/2022] Open
Abstract
All solid-state lithium batteries (SSLBs) are poised to have higher energy density and better safety than current liquid-based Li-ion batteries, but a central requirement is effective ionic conduction pathways throughout the entire cell. Here we develop a catholyte based on an emerging class of porous materials, porous organic cages (POCs). A key feature of these Li+ conducting POCs is their solution-processibility. They can be dissolved in a cathode slurry, which allows the fabrication of solid-state cathodes using the conventional slurry coating method. These Li+ conducting cages recrystallize and grow on the surface of the cathode particles during the coating process and are therefore dispersed uniformly in the slurry-coated cathodes to form a highly effective ion-conducting network. This catholyte is shown to be compatible with cathode active materials such as LiFePO4, LiCoO2 and LiNi0.5Co0.2Mn0.3O2, and results in SSLBs with decent electrochemical performance at room temperature.
Collapse
Affiliation(s)
- Jing Li
- Shenzhen Engineering Lab of Flexible Transparent Conductive Films, School of Materials Science and Engineering, Harbin Institute of Technology, Shenzhen, 518055, China
- i-Lab, CAS Center for Excellence in Nanoscience, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences, Suzhou, 215123, China
- School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Jizhen Qi
- i-Lab, CAS Center for Excellence in Nanoscience, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences, Suzhou, 215123, China
| | - Feng Jin
- i-Lab, CAS Center for Excellence in Nanoscience, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences, Suzhou, 215123, China
| | - Fengrui Zhang
- i-Lab, CAS Center for Excellence in Nanoscience, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences, Suzhou, 215123, China
| | - Lei Zheng
- i-Lab, CAS Center for Excellence in Nanoscience, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences, Suzhou, 215123, China
| | - Lingfei Tang
- i-Lab, CAS Center for Excellence in Nanoscience, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences, Suzhou, 215123, China
| | - Rong Huang
- Vacuum Interconnected Nanotech Workstation (Nano-X), Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China
| | - Jingjing Xu
- i-Lab, CAS Center for Excellence in Nanoscience, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences, Suzhou, 215123, China
| | - Hongwei Chen
- College of Materials Science and Engineering, Huaqiao University, Xiamen, 361021, China
| | - Ming Liu
- Leverhulme Centre for Functional Materials Design, Materials Innovation Factory and Department of Chemistry, University of Liverpool, Liverpool, L697ZD, UK
| | - Yejun Qiu
- Shenzhen Engineering Lab of Flexible Transparent Conductive Films, School of Materials Science and Engineering, Harbin Institute of Technology, Shenzhen, 518055, China.
| | - Andrew I Cooper
- Leverhulme Centre for Functional Materials Design, Materials Innovation Factory and Department of Chemistry, University of Liverpool, Liverpool, L697ZD, UK.
| | - Yanbin Shen
- i-Lab, CAS Center for Excellence in Nanoscience, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences, Suzhou, 215123, China.
| | - Liwei Chen
- i-Lab, CAS Center for Excellence in Nanoscience, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences, Suzhou, 215123, China.
- Vacuum Interconnected Nanotech Workstation (Nano-X), Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China.
- In-situ Center for Physical Sciences, School of Chemistry and Chemical Engineering, Shanghai Jiaotong University, Shanghai, 200240, China.
| |
Collapse
|
34
|
Choo Y, Hwa Y, Cairns EJ. A review of the rational interfacial designs and characterizations for solid‐state lithium/sulfur cells. ELECTROCHEMICAL SCIENCE ADVANCES 2021. [DOI: 10.1002/elsa.202100154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Affiliation(s)
- Youngwoo Choo
- The School of Civil and Environmental Engineering University of Technology Sydney Ultimo New South Wales Australia
| | - Yoon Hwa
- School of Electrical, Computer and Energy Engineering Arizona State University Tempe Arizona USA
| | - Elton J. Cairns
- Department of Chemical and Biomolecular Engineering University of California Berkeley California USA
- Energy Storage and Distributed Resources Division Lawrence Berkeley National Laboratory Berkeley California USA
| |
Collapse
|
35
|
Yang L, Tao X, Huang X, Zou C, Yi L, Chen X, Zang Z, Luo Z, Wang X. Efficient Mutual-Compensating Li-Loss Strategy toward Highly Conductive Garnet Ceramics for Li-Metal Solid-State Batteries. ACS APPLIED MATERIALS & INTERFACES 2021; 13:56054-56063. [PMID: 34788000 DOI: 10.1021/acsami.1c15115] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Garnet-type Li7La3Zr2O12 (LLZO) is a promising solid-state electrolyte (SSE) due to its high Li+ conductivity and stability against lithium metal. However, wide research and application of LLZO are hampered by the difficulty in sintering highly conductive LLZO ceramics, which is mainly attributed to its poor sinterability and the hardship of controlling the Li2O atmosphere at a high sintering temperature (∼1200 °C). Herein, an efficient mutual-compensating Li-loss (MCLL) method is proposed to effectively control the Li2O atmosphere during the sintering process for highly conductive LLZO ceramics. The Li6.5La3Zr1.5Ta0.5O12 (LLZTO) ceramic SSEs sintered by the MCLL method own high relative density (96%), high Li content (5.54%), high conductivity (7.19 × 10-4 S cm-1), and large critical current density (0.85 mA cm-2), equating those sintered by a hot-pressing technique. The assembled Li-Li symmetric battery and a Li-metal solid-state battery (LMSSB) show that the as-prepared LLZTO can achieve a small interfacial resistance (17 Ω cm2) with Li metal, exhibits high electrochemical stability against Li metal, and has broad potential in the application of LMSSBs. In addition, this method can also improve the sintering efficiency, avoid the use of mother powder, and reduce raw-material cost, and thus it may promote the large-scale preparation and wide application of LLZO ceramic SSE.
Collapse
Affiliation(s)
- Li Yang
- National Base for International Science & Technology Cooperation, Hunan Province Key Laboratory of Electrochemical Energy Storage and Conversion, School of Chemistry, Xiangtan University, Xiangtan 411105, China
| | - Xiyuan Tao
- National Base for International Science & Technology Cooperation, Hunan Province Key Laboratory of Electrochemical Energy Storage and Conversion, School of Chemistry, Xiangtan University, Xiangtan 411105, China
| | - Xiao Huang
- SZU-NUS Collaborative Innovation Center for Optoelectronic Science & Technology, International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen 518060, China
| | - Changfei Zou
- National Base for International Science & Technology Cooperation, Hunan Province Key Laboratory of Electrochemical Energy Storage and Conversion, School of Chemistry, Xiangtan University, Xiangtan 411105, China
| | - Lingguang Yi
- National Base for International Science & Technology Cooperation, Hunan Province Key Laboratory of Electrochemical Energy Storage and Conversion, School of Chemistry, Xiangtan University, Xiangtan 411105, China
| | - Xiaoyi Chen
- National Base for International Science & Technology Cooperation, Hunan Province Key Laboratory of Electrochemical Energy Storage and Conversion, School of Chemistry, Xiangtan University, Xiangtan 411105, China
| | - Zihao Zang
- National Base for International Science & Technology Cooperation, Hunan Province Key Laboratory of Electrochemical Energy Storage and Conversion, School of Chemistry, Xiangtan University, Xiangtan 411105, China
| | - Zhigao Luo
- National Base for International Science & Technology Cooperation, Hunan Province Key Laboratory of Electrochemical Energy Storage and Conversion, School of Chemistry, Xiangtan University, Xiangtan 411105, China
| | - Xianyou Wang
- National Base for International Science & Technology Cooperation, Hunan Province Key Laboratory of Electrochemical Energy Storage and Conversion, School of Chemistry, Xiangtan University, Xiangtan 411105, China
| |
Collapse
|
36
|
Wang Q, Liu B, Shen Y, Wu J, Zhao Z, Zhong C, Hu W. Confronting the Challenges in Lithium Anodes for Lithium Metal Batteries. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2101111. [PMID: 34196478 PMCID: PMC8425877 DOI: 10.1002/advs.202101111] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Indexed: 05/19/2023]
Abstract
With the low redox potential of -3.04 V (vs SHE) and ultrahigh theoretical capacity of 3862 mAh g-1 , lithium metal has been considered as promising anode material. However, lithium metal battery has ever suffered a trough in the past few decades due to its safety issues. Over the years, the limited energy density of the lithium-ion battery cannot meet the growing demands of the advanced energy storage devices. Therefore, lithium metal anodes receive renewed attention, which have the potential to achieve high-energy batteries. In this review, the history of the lithium anode is reviewed first. Then the failure mechanism of the lithium anode is analyzed, including dendrite, dead lithium, corrosion, and volume expansion of the lithium anode. Further, the strategies to alleviate the lithium anode issues in recent years are discussed emphatically. Eventually, remaining challenges of these strategies and possible research directions of lithium-anode modification are presented to inspire innovation of lithium anode.
Collapse
Affiliation(s)
- Qingyu Wang
- Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education)Tianjin Key Laboratory of Composite and Functional MaterialsSchool of Materials Science and EngineeringTianjin UniversityTianjin300072China
| | - Bin Liu
- Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education)Tianjin Key Laboratory of Composite and Functional MaterialsSchool of Materials Science and EngineeringTianjin UniversityTianjin300072China
| | - Yuanhao Shen
- Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education)Tianjin Key Laboratory of Composite and Functional MaterialsSchool of Materials Science and EngineeringTianjin UniversityTianjin300072China
| | - Jingkun Wu
- Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education)Tianjin Key Laboratory of Composite and Functional MaterialsSchool of Materials Science and EngineeringTianjin UniversityTianjin300072China
| | - Zequan Zhao
- Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education)Tianjin Key Laboratory of Composite and Functional MaterialsSchool of Materials Science and EngineeringTianjin UniversityTianjin300072China
| | - Cheng Zhong
- Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education)Tianjin Key Laboratory of Composite and Functional MaterialsSchool of Materials Science and EngineeringTianjin UniversityTianjin300072China
- Joint School of National University of Singapore and Tianjin UniversityInternational Campus of Tianjin UniversityBinhai New CityFuzhou119077China
| | - Wenbin Hu
- Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education)Tianjin Key Laboratory of Composite and Functional MaterialsSchool of Materials Science and EngineeringTianjin UniversityTianjin300072China
- Joint School of National University of Singapore and Tianjin UniversityInternational Campus of Tianjin UniversityBinhai New CityFuzhou119077China
| |
Collapse
|
37
|
Stable interfaces constructed by concentrated ether electrolytes to render robust lithium metal batteries. Chin J Chem Eng 2021. [DOI: 10.1016/j.cjche.2021.03.021] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
38
|
3-Thiopheneboronic acid: an effective additive for regulation on electrode/electrolyte interphase of lithium metal battery with high-loading cathode. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.138485] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
39
|
Fang JB, Chang SZ, Ren Q, Zi TQ, Wu D, Li AD. Tailoring Stress and Ion-Transport Kinetics via a Molecular Layer Deposition-Induced Artificial Solid Electrolyte Interphase for Durable Silicon Composite Anodes. ACS APPLIED MATERIALS & INTERFACES 2021; 13:32520-32530. [PMID: 34185495 DOI: 10.1021/acsami.1c07572] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Silicon is considered as a blooming candidate material for next-generation lithium-ion batteries due to its low electrochemical potential and high theoretical capacity. However, its commercialization has been impeded by the poor cycling issue associated with severe volume changes (∼380%) upon (de)lithiation. Herein, an organic-inorganic hybrid film of titanicone via molecular layer deposition (MLD) is proposed as an artificial solid electrolyte interphase (SEI) layer for Si anodes. This rigid-soft titanicone coating with Young's modulus of 21 GPa can effectively relieve stress concentration during the lithiation process, guaranteeing the stability of the mechanical structure of a Si nanoparticles (NPs)@titanicone electrode. Benefiting from the long-strand (Ti-O-benzene-O-Ti-) unit design, the optimized Si NPs@70 cycle titanicone anode delivers a high Li+ diffusion coefficient and a low Li+ diffusion barrier, as revealed by galvanostatic intermittent titration (GITT) investigations and density functional theory (DFT) simulations, respectively. Ultimately, the Si NPs@70 cycle titanicone electrode shows high initial Coulombic efficiency (84%), long cycling stability (957 mAh g-1 after 450 cycles at 1 A g-1), a stable SEI layer, and good rate performances. The molecular-scale design of the titanicone-protected Si anodes may bring in new opportunities to realize the next-generation lithium-ion batteries as well as other rechargeable batteries.
Collapse
Affiliation(s)
- Jia-Bin Fang
- National Laboratory of Solid State Microstructures, Department of Materials Science and Engineering, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, People's Republic of China
| | - Shao-Zhong Chang
- National Laboratory of Solid State Microstructures, Department of Materials Science and Engineering, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, People's Republic of China
| | - Qiang Ren
- National Laboratory of Solid State Microstructures, Department of Materials Science and Engineering, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, People's Republic of China
| | - Tao-Qing Zi
- National Laboratory of Solid State Microstructures, Department of Materials Science and Engineering, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, People's Republic of China
| | - Di Wu
- National Laboratory of Solid State Microstructures, Department of Materials Science and Engineering, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, People's Republic of China
| | - Ai-Dong Li
- National Laboratory of Solid State Microstructures, Department of Materials Science and Engineering, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, People's Republic of China
| |
Collapse
|
40
|
Chen S, Zhang J, Wang Z, Nie L, Hu X, Yu Y, Liu W. Electrocatalytic NiCo 2O 4 Nanofiber Arrays on Carbon Cloth for Flexible and High-Loading Lithium-Sulfur Batteries. NANO LETTERS 2021; 21:5285-5292. [PMID: 34076444 DOI: 10.1021/acs.nanolett.1c01422] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Lithium-sulfur batteries have ultrahigh theoretical energy densities, which makes them one of the most promising next-generation energy storage systems. However, it is still difficult to achieve large-scale commercialization because of the severe lithium polysulfide (LiPS) shuttle effect and low sulfur loading. Here, we report a flexible lithium-sulfur battery of a high sulfur loading with the assistance of NiCo2O4 nanofiber array grown carbon cloth. The NiCo2O4 nanofibers are ideal electrocatalysts for accelerating LiPS conversion kinetics through strong chemical interactions. Therefore, the composite cathode delivers a high specific capacity of 1280 mAh g-1 at 0.2 C with a sulfur loading of 3.5 mg cm-2, and it can maintain a high specific capacity of 660 mAh g-1 after 200 cycles, showing a good cycle stability. The "layer-by-layer" stacking strategy enables the Li-S battery with a high S loading of ∼9.0 mg cm-2 to deliver a high areal capacity of 8.9 mAh cm-2.
Collapse
Affiliation(s)
- Shaojie Chen
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Jingxuan Zhang
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Zeyu Wang
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Lu Nie
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Xiangchen Hu
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Yi Yu
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Wei Liu
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| |
Collapse
|
41
|
Wei R, Chen S, Gao T, Liu W. Challenges, fabrications and horizons of oxide solid electrolytes for solid‐state lithium batteries. NANO SELECT 2021. [DOI: 10.1002/nano.202100110] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Affiliation(s)
- Ran Wei
- School of Physical Science and Technology ShanghaiTech University Shanghai China
| | - Shaojie Chen
- School of Physical Science and Technology ShanghaiTech University Shanghai China
| | - Tianyi Gao
- School of Physical Science and Technology ShanghaiTech University Shanghai China
| | - Wei Liu
- School of Physical Science and Technology ShanghaiTech University Shanghai China
| |
Collapse
|
42
|
Yang M, Liu Y, Nolan AM, Mo Y. Interfacial Atomistic Mechanisms of Lithium Metal Stripping and Plating in Solid-State Batteries. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2008081. [PMID: 33576149 DOI: 10.1002/adma.202008081] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 12/25/2020] [Indexed: 06/12/2023]
Abstract
All-solid-state batteries based on a Li metal anode represent a promising next-generation energy storage system, but are currently limited by low current density and short cycle life. Further research to improve the Li metal anode is impeded by the lack of understanding in its failure mechanisms at lithium-solid interfaces, in particular, the fundamental atomistic processes responsible for interface failure. Here, using large-scale molecular dynamics simulations, the first atomistic modeling study of lithium stripping and plating on a solid electrolyte is performed by explicitly considering key fundamental atomistic processes and interface atomistic structures. In the simulations, the interface failure initiated with the formation of nano-sized pores, and how interface structures, lithium diffusion, adhesion energy, and applied pressure affect interface failure during Li cycling are observed. By systematically varying the parameters of solid-state lithium cells in the simulations, the parameter space of applied pressures and interfacial adhesion energies that inhibit interface failure during cycling are mapped to guide selection of solid-state cells. This study establishes the atomistic modeling for Li stripping and plating, and predicts optimal solid interfaces and new strategies for the future research and development of solid-state Li-metal batteries.
Collapse
Affiliation(s)
- Menghao Yang
- Department of Materials Science and Engineering, University of Maryland, College Park, MD, 20742, USA
| | - Yunsheng Liu
- Department of Materials Science and Engineering, University of Maryland, College Park, MD, 20742, USA
| | - Adelaide M Nolan
- Department of Materials Science and Engineering, University of Maryland, College Park, MD, 20742, USA
| | - Yifei Mo
- Department of Materials Science and Engineering, University of Maryland, College Park, MD, 20742, USA
- Maryland Energy Innovation Institute, University of Maryland, College Park, MD, 20742, USA
| |
Collapse
|