1
|
Jhun BH, Park Y, Kim HS, Baek JH, Kim J, Lee E, Moon H, Oh C, Jung Y, Choi S, Baik MH, You Y. The degradation mechanism of multi-resonance thermally activated delayed fluorescence materials. Nat Commun 2025; 16:392. [PMID: 39755694 DOI: 10.1038/s41467-024-55620-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 12/18/2024] [Indexed: 01/06/2025] Open
Abstract
1,4-Azaborine-based arenes are promising electroluminescent emitters with thermally activated delayed fluorescence (TADF), offering narrow emission spectra and high quantum yields due to a multi-resonance (MR) effect. However, their practical application is constrained by their limited operational stability. This study investigates the degradation mechanism of MR-TADF molecules. Electroluminescent devices incorporating these compounds display varied operational lifetimes, uncorrelated with excitonic stability or external quantum efficiency roll-off. Bulk electrolysis reveals significant instability in the radical cationic forms of MR-TADF compounds, with device lifetime linked to the Faradaic yield of oxidation. Comprehensive chemical analyses corroborate that the degradation byproducts originated from intramolecular cyclization of radical cation, followed by hydrogen atom transfer. The mechanism is further supported by enhanced stability observed in a deuterated MR-TADF emitter, attributed to a secondary kinetic isotope effect. These findings provide insights into the stabilizing effects of deuteration and mechanism-driven strategies for designing MR-TADF compounds with improved operational longevity.
Collapse
Affiliation(s)
- Byung Hak Jhun
- Department of Chemical and Biomolecular Engineering, Yonsei University, Seoul, 03722, Republic of Korea
| | - Yerin Park
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon, 34141, Republic of Korea
| | - Hwang Suk Kim
- Samsung Advanced Institute of Technology, Samsung Electronics Co. Ltd, Suwon-si, Gyeonggi-do, 16678, Republic of Korea
| | - Ji Hye Baek
- Department of Chemical and Biomolecular Engineering, Yonsei University, Seoul, 03722, Republic of Korea
| | - Joonghyuk Kim
- Samsung Advanced Institute of Technology, Samsung Electronics Co. Ltd, Suwon-si, Gyeonggi-do, 16678, Republic of Korea
| | - Eunji Lee
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon, 34141, Republic of Korea
| | - Hyejin Moon
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon, 34141, Republic of Korea
| | - Changjin Oh
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon, 34141, Republic of Korea
| | - Yongsik Jung
- Samsung Advanced Institute of Technology, Samsung Electronics Co. Ltd, Suwon-si, Gyeonggi-do, 16678, Republic of Korea.
| | - Seunghee Choi
- Division of Chemical Engineering and Materials Science, Ewha Womans University, Seoul, 03760, Republic of Korea
| | - Mu-Hyun Baik
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea.
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon, 34141, Republic of Korea.
| | - Youngmin You
- Department of Chemical and Biomolecular Engineering, Yonsei University, Seoul, 03722, Republic of Korea.
| |
Collapse
|
2
|
Grotjahn S, König B. Common ground and divergence: OLED emitters as photocatalysts. Chem Commun (Camb) 2024; 60:12951-12963. [PMID: 39404669 DOI: 10.1039/d4cc04409f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2024]
Abstract
Many photocatalysts were initially developed or used as emitters for organic light emitting diodes (OLEDs). This feature article summarizes the different generations of OLED emitters and connects the photophysical processes with those relevant for photocatalysis. The focus is on the general properties OLED emitters and photocatalysts are designed for and how photocatalysis has benefitted from OLED research. Sometimes optimization of an OLED emitter leads to a better photocatalyst while some properties are optimized into opposite directions. To discover new classes of photocatalysts in the future it is important to consider what good OLED emitters and good photocatalyst have in common and where they diverge. Within recent years, fully organic thermally activated delayed fluorescence (TADF) emitters had the most significant impact in both fields and thus are discussed with specific focus.
Collapse
Affiliation(s)
- Sascha Grotjahn
- Faculty of Chemistry and Pharmacy, Institute of Organic Chemistry University of Regensburg, Universitätsstraße 31, 93053 Regensburg, Germany.
| | - Burkhard König
- Faculty of Chemistry and Pharmacy, Institute of Organic Chemistry University of Regensburg, Universitätsstraße 31, 93053 Regensburg, Germany.
| |
Collapse
|
3
|
Lee Y, Jhun BH, Woo S, Kim S, Bae J, You Y, Cho EJ. Charge-recombinative triplet sensitization of alkenes for DeMayo-type [2 + 2] cycloaddition. Chem Sci 2024; 15:12058-12066. [PMID: 39092097 PMCID: PMC11290448 DOI: 10.1039/d4sc02601b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 06/27/2024] [Indexed: 08/04/2024] Open
Abstract
Synthetic photochemistry has undergone significant development, largely owing to the development of visible-light-absorbing photocatalysts (PCs). PCs have significantly improved the efficiency and precision of cycloaddition reactions, primarily through energy or electron transfer pathways. Recent research has identified photocatalysis that does not follow energy- or electron-transfer formalisms, indicating the existence of other, undiscovered photoactivation pathways. This study unveils an alternative route: a charge-neutral photocatalytic process called charge-recombinative triplet sensitization (CRTS), a mechanism with limited precedents in synthetic chemistry. Our investigations revealed CRTS occurrence in DeMayo-type [2 + 2] cycloaddition reactions catalyzed by indole-fused organoPCs. Our mechanistic investigations, including steady-state and transient spectroscopic analyses, electrochemical investigations, and quantum chemical calculations, suggest a mechanism involving substrate activation through photoinduced electron transfer, followed by charge recombination, leading to substrate triplet state formation. Our findings provide valuable insights into the underlying photocatalytic reaction mechanisms and pave the way for the systematic design and realization of innovative photochemical processes.
Collapse
Affiliation(s)
- Yunjeong Lee
- Department of Chemistry, Chung-Ang University 84 Heukseok-ro, Dongjak-gu Seoul 06974 Republic of Korea
| | - Byung Hak Jhun
- Department of Chemical and Biomolecular Engineering, Yonsei University 50 Yonsei-ro, Seodaemun-gu Seoul 03722 Republic of Korea
| | - Sihyun Woo
- Division of Chemical Engineering and Materials Science, Ewha Womans University 52 Ewhayeodae-gil, Seodaemun-gu Seoul 03760 Republic of Korea
| | - Seoyeon Kim
- Department of Chemistry, Chung-Ang University 84 Heukseok-ro, Dongjak-gu Seoul 06974 Republic of Korea
| | - Jaehan Bae
- Department of Chemistry, Chung-Ang University 84 Heukseok-ro, Dongjak-gu Seoul 06974 Republic of Korea
| | - Youngmin You
- Department of Chemical and Biomolecular Engineering, Yonsei University 50 Yonsei-ro, Seodaemun-gu Seoul 03722 Republic of Korea
| | - Eun Jin Cho
- Department of Chemistry, Chung-Ang University 84 Heukseok-ro, Dongjak-gu Seoul 06974 Republic of Korea
| |
Collapse
|
4
|
Liu Z, Chen J, Chen L, Liu H, Yang D, Ma D, Tang BZ, Zhao Z. Simultaneously Realizing High Efficiency and High Color Rendering Index for Hybrid White Organic Light-Emitting Diodes by Ultra-Thin Design of Delayed Fluorescence Sensitized Phosphorescent Layers. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2305589. [PMID: 37828633 DOI: 10.1002/smll.202305589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 09/25/2023] [Indexed: 10/14/2023]
Abstract
In consideration of energy economization and light quality, concurrently attaining high external quantum efficiency (ηext ) and high color rendering index (CRI) is of high significance for the commercialization of hybrid white organic light-emitting diodes (WOLEDs) but is challenging. Herein, a blue luminescent molecule (2PCz-XT) consisting of a xanthone acceptor and two 3,6-diphenylcarbazole donors is prepared, which exhibits strong delayed fluorescence, short delayed fluorescence lifetime, and excellent electroluminescence property, and can sensitize green, orange, and red phosphorescent emitters efficiently. By employing 2PCz-XT as sensitizer and phosphorescent emitters as dopants, efficient two-color and three-color WOLED architectures with ultra-thin phosphorescent emitting layers (EMLs) are proposed and constructed. By incorporating a thin interlayer to modulate exciton recombination zone and reduce exciton loss, high-performance three-color hybrid WOLEDs are finally achieved, providing a high ηext of 26.8% and a high CRI value 83 simultaneously. Further configuration optimization realizes a long device operational lifetime. These WOLEDs with ultra-thin phosphorescent EMLs are among the state-of-the-art hybrid WOLEDs in the literature, demonstrating the success and applicability of the proposed device design for developing robust hybrid WOLEDs with superb efficiency and color quality.
Collapse
Affiliation(s)
- Zhangshan Liu
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou, 510640, China
| | - Jinke Chen
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou, 510640, China
| | - Letian Chen
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou, 510640, China
| | - Hao Liu
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou, 510640, China
| | - Dezhi Yang
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou, 510640, China
| | - Dongge Ma
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou, 510640, China
| | - Ben Zhong Tang
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen, Guangdong, 518172, China
| | - Zujin Zhao
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou, 510640, China
| |
Collapse
|
5
|
Kim JM, Lee KH, Lee JY. Extracting Polaron Recombination from Electroluminescence in Organic Light-Emitting Diodes by Artificial Intelligence. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2209953. [PMID: 36788120 DOI: 10.1002/adma.202209953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 02/03/2023] [Indexed: 06/18/2023]
Abstract
Direct exploring the electroluminescence (EL) of organic light-emitting diodes (OLEDs) is a challenge due to the complicated processes of polarons, excitons, and their interactions. This study demonstrated the extraction of the polaron dynamics from transient EL by predicting the recombination coefficient via artificial intelligence, overcoming multivariable kinetics problems. The performance of a machine learning (ML) model trained by various EL decay curves is significantly improved using a novel featurization method and input node optimization, achieving an R2 value of 0.947. The optimized ML model successfully predicts the recombination coefficients of actual OLEDs based on an exciplex-forming cohost, enabling the quantitative understanding of the overall polaron behavior under various electrical excitation conditions.
Collapse
Affiliation(s)
- Jae-Min Kim
- School of Chemical Engineering, Sungkyunkwan University, 2066, Seobu-ro, Jangan-gu, Suwon-si, Gyeonggi-do, 16419, Republic of Korea
| | - Kyung Hyung Lee
- School of Chemical Engineering, Sungkyunkwan University, 2066, Seobu-ro, Jangan-gu, Suwon-si, Gyeonggi-do, 16419, Republic of Korea
| | - Jun Yeob Lee
- School of Chemical Engineering, Sungkyunkwan University, 2066, Seobu-ro, Jangan-gu, Suwon-si, Gyeonggi-do, 16419, Republic of Korea
- SKKU Advanced Institute of Nano Technology, Sungkyunkwan University, 2066, Seobu-ro, Jangan-gu, Suwon-si, Gyeonggi-do, 16419, Republic of korea
- SKKU Institute of Energy Science and Technology, Sungkyunkwan University, 2066, Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do, 16419, Republic of korea
| |
Collapse
|
6
|
Kim E, Park J, Jun M, Shin H, Baek J, Kim T, Kim S, Lee J, Ahn H, Sun J, Ko SB, Hwang SH, Lee JY, Chu C, Kim S. Highly efficient and stable deep-blue organic light-emitting diode using phosphor-sensitized thermally activated delayed fluorescence. SCIENCE ADVANCES 2022; 8:eabq1641. [PMID: 36240272 PMCID: PMC9565789 DOI: 10.1126/sciadv.abq1641] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 08/29/2022] [Indexed: 06/16/2023]
Abstract
Phosphorescent and thermally activated delayed fluorescence (TADF) blue organic light-emitting diodes (OLEDs) have been developed to overcome the low efficiency of fluorescent OLEDs. However, device instability, originating from triplet excitons and polarons, limits blue OLED applications. Here, we develop a phosphor-sensitized TADF emission system with TADF emitters to achieve high efficiency and long operational lifetime. Peripheral carbazole moieties are introduced in conventional multi-resonance-type emitters containing one boron atom. The triplet exciton density of the TADF emitter is reduced by facilitating reverse intersystem crossing, and the Förster resonant energy transfer rate from phosphor sensitizer is enhanced by high absorption coefficient of the emitters. The emitter exhibited an operational lifetime of 72.9 hours with Commission Internationale de L'Eclairage chromaticity coordinate y = 0.165, which was 6.6 times longer than those of devices using conventional TADF emitters.
Collapse
Affiliation(s)
- Eungdo Kim
- Materials Research Team, Display Research Center, Samsung Display, Giheung, Gyeonggi 17113, Republic of Korea
| | - Junha Park
- Materials Research Team, Display Research Center, Samsung Display, Giheung, Gyeonggi 17113, Republic of Korea
| | - Mieun Jun
- Materials Research Team, Display Research Center, Samsung Display, Giheung, Gyeonggi 17113, Republic of Korea
| | - Hyosup Shin
- Materials Research Team, Display Research Center, Samsung Display, Giheung, Gyeonggi 17113, Republic of Korea
| | - Jangyeol Baek
- Materials Research Team, Display Research Center, Samsung Display, Giheung, Gyeonggi 17113, Republic of Korea
| | - Taeil Kim
- Materials Research Team, Display Research Center, Samsung Display, Giheung, Gyeonggi 17113, Republic of Korea
| | - Seran Kim
- Materials Research Team, Display Research Center, Samsung Display, Giheung, Gyeonggi 17113, Republic of Korea
| | - Jiyoung Lee
- Materials Research Team, Display Research Center, Samsung Display, Giheung, Gyeonggi 17113, Republic of Korea
| | - Heechoon Ahn
- Materials Research Team, Display Research Center, Samsung Display, Giheung, Gyeonggi 17113, Republic of Korea
| | - Jinwon Sun
- Materials Research Team, Display Research Center, Samsung Display, Giheung, Gyeonggi 17113, Republic of Korea
| | - Soo-Byung Ko
- Materials Research Team, Display Research Center, Samsung Display, Giheung, Gyeonggi 17113, Republic of Korea
| | - Seok-Hwan Hwang
- Materials Research Team, Display Research Center, Samsung Display, Giheung, Gyeonggi 17113, Republic of Korea
| | - Jun Yeob Lee
- School of Chemical Engineering, Sungkyunkwan University, Suwon, Gyeonggi 16419, Republic of Korea
| | - Changwoong Chu
- Materials Research Team, Display Research Center, Samsung Display, Giheung, Gyeonggi 17113, Republic of Korea
| | - Sunghan Kim
- Materials Research Team, Display Research Center, Samsung Display, Giheung, Gyeonggi 17113, Republic of Korea
| |
Collapse
|
7
|
Kim JM, Lim J, Lee JY. Understanding the charge dynamics in organic light-emitting diodes using convolutional neural network. MATERIALS HORIZONS 2022; 9:2551-2563. [PMID: 35861172 DOI: 10.1039/d2mh00373b] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Knowledge about the charge dynamics in organic light-emitting diodes (OLEDs) is a critical clue to optimize device architecture for enhancing the power efficiency and driving voltage characteristics in addition to the external quantum efficiency. In this work, we demonstrated that the charge behavior according to the operation voltage of OLEDs could be understood by introducing the convolutional neural network (CNN) of the machine learning framework without additional analysis of the unipolar charge devices. The CNN model trained using a two-dimensional (2D) modulus fingerprint simultaneously predicted the mobilities of the charge transport and emitting layers, realizing a deep understanding of the complicated data that humans cannot interpret. The machine learning model successfully describes the electrical properties of the organic layers in the actual devices configurated by different electron-transporting materials and the composition of cohosts in the emitting layer. For the first time, it was revealed that 2D fingerprints extracted using frequency- and voltage-dependent modulus spectra were effective data to represent comprehensive charge dynamics of OLEDs. The interpretation and perspective of the machine learning approach in this work were also discussed.
Collapse
Affiliation(s)
- Jae-Min Kim
- School of Chemical Engineering, Sungkyunkwan University, Suwon Campus, 2066, Seobu-ro, Jangan-gu, Suwon-si, Gyeonggi-do, 16419, Republic of Korea.
| | - Junseop Lim
- School of Chemical Engineering, Sungkyunkwan University, Suwon Campus, 2066, Seobu-ro, Jangan-gu, Suwon-si, Gyeonggi-do, 16419, Republic of Korea.
| | - Jun Yeob Lee
- School of Chemical Engineering, Sungkyunkwan University, Suwon Campus, 2066, Seobu-ro, Jangan-gu, Suwon-si, Gyeonggi-do, 16419, Republic of Korea.
| |
Collapse
|
8
|
You Y, Jeong DY. Organic Photoredox Catalysts Exhibiting Long Excited-State Lifetimes. Synlett 2022. [DOI: 10.1055/a-1608-5633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
AbstractOrganic photoredox catalysts with a long excited-state lifetime have emerged as promising alternatives to transition-metal-complex photocatalysts. This paper explains the effectiveness of using long-lifetime photoredox catalysts for organic transformations, focusing on the structures and photophysics that enable long excited-state lifetimes. The electrochemical potentials of the reported organic, long-lifetime photocatalysts are compiled and compared with those of the representative Ir(III)- and Ru(II)-based catalysts. This paper closes by providing recent demonstrations of the synthetic utility of the organic catalysts.1 Introduction2 Molecular Structure and Photophysics3 Photoredox Catalysis Performance4 Catalysis Mediated by Long-Lifetime Organic Photocatalysts4.1 Photoredox Catalytic Generation of a Radical Species and its Addition to Alkenes4.2 Photoredox Catalytic Generation of a Radical Species and its Addition to Arenes4.3 Photoredox Catalytic Generation of a Radical Species and its Addition to Imines4.4 Photoredox Catalytic Generation of a Radical Species and its Addition to Substrates Having C≡X Bonds (X=C, N)4.5 Photoredox Catalytic Generation of a Radical Species and its Bond Formation with Transition Metals4.6 Miscellaneous Reactions of Radical Species Generated by Photoredox Catalysis5 Conclusions
Collapse
|
9
|
Konidena RK, Justin Thomas KR, Park JW. Recent Advances in the Design of Multi‐Substituted Carbazoles for Optoelectronics: Synthesis and Structure‐Property Outlook. CHEMPHOTOCHEM 2022. [DOI: 10.1002/cptc.202200059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
| | - K R Justin Thomas
- Indian Institute of Technology Roorkee Department of Chemistry Haridwar Road 247667 Roorkee INDIA
| | - Jong Wook Park
- Kyunghee University College of Engineering Chemical Engineering INDIA
| |
Collapse
|
10
|
Analysis of efficiency variations in ν-DABNA based thermally activated delayed fluorescence OLED devices. J IND ENG CHEM 2021. [DOI: 10.1016/j.jiec.2021.12.024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
11
|
Benzoylphenyltriazine as a new acceptor of donor–acceptor type thermally-activated delayed-fluorescent emitters. J IND ENG CHEM 2021. [DOI: 10.1016/j.jiec.2021.07.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
12
|
Hui Yun J, Lim J, Yeob Lee J, Lee Y, Chu C. Triplet Exciton Upconverting Blue Exciplex Host for Deep Blue Phosphors. Chemistry 2021; 27:12642-12648. [PMID: 34240481 DOI: 10.1002/chem.202101819] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Indexed: 11/10/2022]
Abstract
A thermally activated delayed fluorescence (TADF)-type exciplex host employing a novel electron-transport type (n-type) type host managing positive polarons and stabilizing excitons was developed to elongate the device lifetime of deep blue phosphorescent organic light-emitting diodes (PhOLEDs). The bipolar n-type host was designed to prevent hole leakage and secure hole stability while being stabilized under excitons by introducing a CN-modified carbazole moiety as a weak donor. The TADF-type exciplex host-based blue PhOLEDs showed high (above 20 %) quantum efficiency with a deep blue color coordinate of (0.14, 0.16) and elongated device lifetime. The device operational lifetime of the blue PhOLEDs bearing the TADF-type exciplex host was extended by more than twice compared to that of the exciplex-free unipolar host. This work suggested a design concept of the n-type host to develop the TADF-type exciplex host for deep blue phosphors to reach a long lifespan in the deep blue PhOLEDs.
Collapse
Affiliation(s)
- Ju Hui Yun
- School of Chemical Engineering, Sungkyunkwan University, 2066, Seobu-ro, Jangan-gu, Suwon-si, Gyeonggi-do, 16419, Korea
| | - Junseop Lim
- School of Chemical Engineering, Sungkyunkwan University, 2066, Seobu-ro, Jangan-gu, Suwon-si, Gyeonggi-do, 16419, Korea
| | - Jun Yeob Lee
- School of Chemical Engineering, Sungkyunkwan University, 2066, Seobu-ro, Jangan-gu, Suwon-si, Gyeonggi-do, 16419, Korea
| | - Yoonkyoo Lee
- Display Research Center, Samsung Display Co., 1 Samsung-ro, Giheung-gu, Yongin, Gyeonggi-do, Korea
| | - Changwoong Chu
- Display Research Center, Samsung Display Co., 1 Samsung-ro, Giheung-gu, Yongin, Gyeonggi-do, Korea
| |
Collapse
|