1
|
Das S, Kunjam P, Moling B, Gao T, Barthelat F. Stiff morphing composite beams inspired from fish fins. Interface Focus 2024; 14:20230072. [PMID: 39081621 PMCID: PMC11285607 DOI: 10.1098/rsfs.2023.0072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 03/20/2024] [Accepted: 05/02/2024] [Indexed: 08/02/2024] Open
Abstract
Morphing materials are typically either very compliant to achieve large shape changes or very stiff but with small shape changes that require large actuation forces. Interestingly, fish fins overcome these limitations: fish fins do not contain muscles, yet they can change the shape of their fins with high precision and speed while producing large hydrodynamic forces without collapsing. Here, we present a 'stiff' morphing beam inspired from the individual rays in natural fish fins. These synthetic rays are made of acrylic (PMMA) outer beams ('hemitrichs') connected with rubber ligaments which are 3-4 orders of magnitude more compliant. Combinations of experiments and models of these synthetic rays show strong nonlinear geometrical effects: the ligaments are 'mechanically invisible' at small deformations, but they delay buckling and improve the stability of the ray at large deformations. We use the models and experiments to explore designs with variable ligament densities, and we generate design guidelines for optimum morphing shape (captured using the first moment of curvature), that capture the trade-offs between morphing compliance (ease of morphing the structure) and flexural stiffness. The design guidelines proposed here can help the development of stiff morphing bioinspired structures for a variety of applications in aerospace, biomedicine or robotics.
Collapse
Affiliation(s)
- Saurabh Das
- Department of Mechanical Engineering, University of Colorado, 427 UCB, 1111 Engineering Dr, Boulder, CO80309, USA
| | - Prashant Kunjam
- Department of Mechanical Engineering, University of Colorado, 427 UCB, 1111 Engineering Dr, Boulder, CO80309, USA
| | - Baptiste Moling
- Department of Mechanical Engineering, University of Colorado, 427 UCB, 1111 Engineering Dr, Boulder, CO80309, USA
- Ecole Polytechnique, Route de Saclay, Palaiseau91128, France
| | - Tian Gao
- Department of Mechanical Engineering, University of Colorado, 427 UCB, 1111 Engineering Dr, Boulder, CO80309, USA
| | - Francois Barthelat
- Department of Mechanical Engineering, University of Colorado, 427 UCB, 1111 Engineering Dr, Boulder, CO80309, USA
| |
Collapse
|
2
|
Das S, Kunjam P, Ebeling JF, Barthelat F. Gradients of properties increase the morphing and stiffening performance of bioinspired synthetic fin rays. BIOINSPIRATION & BIOMIMETICS 2024; 19:046011. [PMID: 38722377 DOI: 10.1088/1748-3190/ad493c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 05/09/2024] [Indexed: 05/25/2024]
Abstract
State-of-the-art morphing materials are either very compliant to achieve large shape changes (flexible metamaterials, compliant mechanisms, hydrogels), or very stiff but with infinitesimal changes in shape that require large actuation forces (metallic or composite panels with piezoelectric actuation). Morphing efficiency and structural stiffness are therefore mutually exclusive properties in current engineering morphing materials, which limits the range of their applicability. Interestingly, natural fish fins do not contain muscles, yet they can morph to large amplitudes with minimal muscular actuation forces from the base while producing large hydrodynamic forces without collapsing. This sophisticated mechanical response has already inspired several synthetic fin rays with various applications. However, most 'synthetic' fin rays have only considered uniform properties and structures along the rays while in natural fin rays, gradients of properties are prominent. In this study, we designed, modeled, fabricated and tested synthetic fin rays with bioinspired gradients of properties. The rays were composed of two hemitrichs made of a stiff polymer, joined by a much softer core region made of elastomeric ligaments. Using combinations of experiments and nonlinear mechanical models, we found that gradients in both the core region and hemitrichs can increase the morphing and stiffening response of individual rays. Introducing a positive gradient of ligament density in the core region (the density of ligament increases towards the tip of the ray) decreased the actuation force required for morphing and increased overall flexural stiffness. Introducing a gradient of property in the hemitrichs, by tapering them, produced morphing deformations that were distributed over long distances along the length of the ray. These new insights on the interplay between material architecture and properties in nonlinear regimes of deformation can improve the designs of morphing structures that combine high morphing efficiency and high stiffness from external forces, with potential applications in aerospace or robotics.
Collapse
Affiliation(s)
- Saurabh Das
- Department of Mechanical Engineering, University of Colorado, 427 UCB, 1111 Engineering Dr, Boulder, CO 80309, United States of America
| | - Prashant Kunjam
- Department of Mechanical Engineering, University of Colorado, 427 UCB, 1111 Engineering Dr, Boulder, CO 80309, United States of America
| | - Jona Faye Ebeling
- Department of Mechanical Engineering, University of Colorado, 427 UCB, 1111 Engineering Dr, Boulder, CO 80309, United States of America
- Department of Nature and Engineering, City University of Applied Sciences Bremen, Hermann-Köhl-Straße 1, 28199 Bremen, Germany
| | - Francois Barthelat
- Department of Mechanical Engineering, University of Colorado, 427 UCB, 1111 Engineering Dr, Boulder, CO 80309, United States of America
| |
Collapse
|
3
|
Gao T, Bico J, Roman B. Pneumatic cells toward absolute Gaussian morphing. Science 2023; 381:862-867. [PMID: 37616347 DOI: 10.1126/science.adi2997] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 07/20/2023] [Indexed: 08/26/2023]
Abstract
On a flat map of the Earth, continents are inevitably distorted. Reciprocally, curving a plate simultaneously in two directions requires a modification of in-plane distances, as Gauss stated in his seminal theorem. Although emerging architectured materials with programmed in-plane distortions are capable of such shape morphing, an additional control of local bending is required to precisely set the final shape of the resulting three-dimensional surface. Inspired by bulliform cells in leaves of monocotyledon plants, we show how the internal structure of flat panels can be designed to program bending and in-plane distortions simultaneously when pressurized, leading to a targeted shell shape. These surfaces with controlled stiffness and fast actuation are manufactured using consumer-grade materials and open a route to large-scale shape-morphing robotics applications.
Collapse
Affiliation(s)
- Tian Gao
- Laboratoire de Physique et Mécanique des Milieux Hétérogènes (PMMH), CNRS, ESPCI Paris, Université PSL, Sorbonne Université, Université Paris Cité, 75005 Paris, France
| | - José Bico
- Laboratoire de Physique et Mécanique des Milieux Hétérogènes (PMMH), CNRS, ESPCI Paris, Université PSL, Sorbonne Université, Université Paris Cité, 75005 Paris, France
| | - Benoît Roman
- Laboratoire de Physique et Mécanique des Milieux Hétérogènes (PMMH), CNRS, ESPCI Paris, Université PSL, Sorbonne Université, Université Paris Cité, 75005 Paris, France
| |
Collapse
|
4
|
Chen F, Miao Y, Zhang L, Chen S, Zhu X. Triply Periodic Channels Enable Soft Pneumatic Linear Actuator With Single Material and Scalability. IEEE Robot Autom Lett 2022. [DOI: 10.1109/lra.2022.3143292] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
5
|
Kam D, Levin I, Kutner Y, Lanciano O, Sharon E, Shoseyov O, Magdassi S. Wood Warping Composite by 3D Printing. Polymers (Basel) 2022; 14:polym14040733. [PMID: 35215644 PMCID: PMC8877370 DOI: 10.3390/polym14040733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 02/08/2022] [Accepted: 02/12/2022] [Indexed: 11/16/2022] Open
Abstract
Wood warping is a phenomenon known as a deformation in wood that occurs when changes in moisture content cause an unevenly volumetric change due to fiber orientation. Here we present an investigation of wood warped objects that were fabricated by 3D printing. Similar to natural wood warping, water evaporation causes volume decrease of the printed object, but in contrast, the printing pathway pattern and flow rate dictate the direction of the alignment and its intensity, all of which can be predesigned and affect the resulting structure after drying. The fabrication of the objects was performed by an extrusion-based 3D printing technique that enables the deposition of water-based inks into 3D objects. The printing ink was composed of 100% wood-based materials, wood flour, and plant-extracted natural binders cellulose nanocrystals, and xyloglucan, without the need for any additional synthetic resins. Two archetypal structures were printed: cylindrical structure and helices. In the former, we identified a new length scale that gauges the effect of gravity on the shape. In the latter, the structure exhibited a shape transition analogous to the opening of a seedpod, quantitatively reproducing theoretical predictions. Together, by carefully tuning the flow rate and printing pathway, the morphology of the fully dried wooden objects can be controlled. Hence, it is possible to design the printing of wet objects that will form different final 3D structures.
Collapse
Affiliation(s)
- Doron Kam
- Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel; (D.K.); (Y.K.); (O.L.)
- Plant Sciences and Genetics in Agriculture, the Hebrew University of Jerusalem, Rehovot 7610001, Israel
| | - Ido Levin
- Racah Institute of Physics, the Hebrew University, Jerusalem 9190401, Israel;
| | - Yinnon Kutner
- Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel; (D.K.); (Y.K.); (O.L.)
- Alpha Program, Future Scientist Center, Jerusalem 9190401, Israel
| | - Omri Lanciano
- Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel; (D.K.); (Y.K.); (O.L.)
| | - Eran Sharon
- Racah Institute of Physics, the Hebrew University, Jerusalem 9190401, Israel;
- Correspondence: (E.S.); (O.S.); (S.M.)
| | - Oded Shoseyov
- Plant Sciences and Genetics in Agriculture, the Hebrew University of Jerusalem, Rehovot 7610001, Israel
- Correspondence: (E.S.); (O.S.); (S.M.)
| | - Shlomo Magdassi
- Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel; (D.K.); (Y.K.); (O.L.)
- Correspondence: (E.S.); (O.S.); (S.M.)
| |
Collapse
|