1
|
He X, Chen L, Baumgartner T. Modified Viologen- and Carbonylpyridinium-Based Electrodes for Organic Batteries. ACS APPLIED MATERIALS & INTERFACES 2024; 16:48689-48705. [PMID: 37584306 DOI: 10.1021/acsami.3c09856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/17/2023]
Abstract
Efficient electrochemical energy storage has been identified as one of the most pressing needs for a sustainable energy economy. Inorganic battery materials have traditionally been the center of attention, with the current state-of-the-art device being the lithium-ion battery. Recent pursuits have led to organic materials for their beneficial chemistry and properties, but suitable materials for organic batteries are still few and far between. This Spotlight on Applications highlights two intriguing pyridinium-based organic materials, modified viologens and carbonylpyridiniums, that have both been successfully employed in electrode materials for solid-state Li-ion-type organic batteries (LOBs). We first provide an overview of the inherent electronic properties of each building block and how they can effectively be modified while maintaining or enhancing their desirable electrochemical properties for practical applications. We then describe a range of different material designs for a battery context and their application in various organic device settings, with some examples showing competitive performance with traditional Li-ion batteries.
Collapse
Affiliation(s)
- Xiaoming He
- Key Laboratory of Applied Surface and Colloid Chemistry (Ministry of Education), School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, P.R. China
| | - Ling Chen
- Key Laboratory of Applied Surface and Colloid Chemistry (Ministry of Education), School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, P.R. China
| | - Thomas Baumgartner
- Department of Chemistry, York University, 4700 Keele Street, Toronto, Ontario M3J 1P3, Canada
| |
Collapse
|
2
|
Martínez-González E, Peljo P. Improving the Volumetric Capacity of Gallocyanine Flow Battery by Adding a Molecular Spectator. ACS APPLIED ENERGY MATERIALS 2024; 7:7169-7175. [PMID: 39268395 PMCID: PMC11388142 DOI: 10.1021/acsaem.4c00971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 08/06/2024] [Accepted: 08/09/2024] [Indexed: 09/15/2024]
Abstract
Gallocyanine (GAL) was recently introduced as a promising aqueous-soluble electroactive molecule for preparing two-electron storage alkaline flow battery (FB) negolytes. The development of a cost-effective GAL FB electrolyte is limited by the unexpectedly low solubility of GAL. In this work, the compound 7-amino-4-hydroxy-2-naphthalenesulfonic acid was introduced as a molecular spectator to modulate the solubility of GAL in KOH; this formulation allowed the preparation of a negolyte with a theoretical volumetric capacity of 32.00 Ah L-1. The cycling stability of an improved GAL electrolyte was demonstrated by operating a FB cell outside of the glovebox (bubbling N2 in the tanks). The cell exhibited a Coulombic efficiency close to 98% and began operating with 72.1% of its theoretical capacity (16.06 Ah L-1), retaining 88% of it after 110 cell cycles. This work demonstrates that significant improvement in electrolyte performance can be obtained with suitable additives and electrolyte engineering.
Collapse
Affiliation(s)
- Eduardo Martínez-González
- Department of Mechanical and Materials Engineering, Research Group of Battery Materials and Technologies, University of Turku, Vesilinnantie 5, Turku FI-20014, Finland
| | - Pekka Peljo
- Department of Mechanical and Materials Engineering, Research Group of Battery Materials and Technologies, University of Turku, Vesilinnantie 5, Turku FI-20014, Finland
| |
Collapse
|
3
|
Zhi L, Liao C, Xu P, Sun F, Fan F, Li G, Yuan Z, Li X. New Alkalescent Electrolyte Chemistry for Zinc-Ferricyanide Flow Battery. Angew Chem Int Ed Engl 2024; 63:e202403607. [PMID: 38659136 DOI: 10.1002/anie.202403607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 03/28/2024] [Accepted: 04/24/2024] [Indexed: 04/26/2024]
Abstract
Alkaline zinc-ferricyanide flow batteries are efficiency and economical as energy storage solutions. However, they suffer from low energy density and short calendar life. The strongly alkaline conditions (3 mol L-1 OH-) reduce the solubility of ferri/ferro-cyanide (normally only 0.4 mol L-1 at 25 °C) and induce the formation of zinc dendrites at the anode. Here, we report a new zinc-ferricyanide flow battery based on a mild alkalescent (pH 12) electrolyte. Using a chelating agent to rearrange ferri/ferro-cyanide ion-solvent interactions and improve salt dissociation, we increased the solubility of ferri/ferro-cyanide to 1.7 mol L-1 and prevented zinc dendrites. Our battery has an energy density of ~74 Wh L-1 catholyte at 60 °C and remains stable for 1800 cycles (1800 hours) at 0 °C and for >1400 cycles (2300 hours) at 25 °C. An alkalescent zinc-ferricyanide cell stack built using this alkalescent electrolyte stably delivers 608 W of power for ~40 days.
Collapse
Affiliation(s)
- Liping Zhi
- Division of Energy Storage, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, 116023, Dalian, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Chenyi Liao
- Laboratory of Molecular Modeling and Design, State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Science, 457 Zhongshan Road, 116023, Dalian, China
| | - Pengcheng Xu
- Division of Energy Storage, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, 116023, Dalian, China
| | - Fusai Sun
- University of Chinese Academy of Sciences, 100049, Beijing, China
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, 116023, Dalian, China
| | - Fengtao Fan
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, 116023, Dalian, China
| | - Guohui Li
- Laboratory of Molecular Modeling and Design, State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Science, 457 Zhongshan Road, 116023, Dalian, China
| | - Zhizhang Yuan
- Division of Energy Storage, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, 116023, Dalian, China
| | - Xianfeng Li
- Division of Energy Storage, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, 116023, Dalian, China
| |
Collapse
|
4
|
Liu X, Zhang H, Liu C, Wang Z, Zhang X, Yu H, Zhao Y, Li MJ, Li Y, He YL, He G. Commercializable Naphthalene Diimide Anolytes for Neutral Aqueous Organic Redox Flow Batteries. Angew Chem Int Ed Engl 2024; 63:e202405427. [PMID: 38603586 DOI: 10.1002/anie.202405427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 04/10/2024] [Accepted: 04/11/2024] [Indexed: 04/13/2024]
Abstract
Neutral aqueous organic redox flow batteries (AORFBs) hold the potential to facilitate the transition of renewable energy sources from auxiliary to primary energy, the commercial production of anolyte materials still suffers from insufficient performance of high-concentration and the high cost of the preparation problem. To overcome these challenges, this study provides a hydrothermal synthesis methodology and introduces the charged functional groups into hydrophobic naphthalene diimide cores, and prepares a series of high-performance naphthalene diimide anolytes. Under the synergistic effect of π-π stacking and H-bonding networks, the naphthalene diimide exhibits excellent structural stability and the highest water solubility (1.85 M for dex-NDI) reported to date. By employing the hydrothermal method, low-cost naphthalene diimides are successfully synthesized on a hundred-gram scale of $0.16 g-1 ($2.43 Ah-1), which is also the lowest price reported to date. The constructed full battery achieves a high electron concentration of 2.4 M, a high capacity of 54.4 Ah L-1, and a power density of 318 mW cm-2 with no significant capacity decay observed during long-duration cycling. These findings provide crucial support for the commercialization of AORFBs and pave the way for revolutionary developments in neutral AORFBs.
Collapse
Affiliation(s)
- Xu Liu
- Frontier Institute of Science and Technology, State Key Laboratory for Strength and Vibration of Mechanical Structures, Engineering Research Center of Key Materials for Efficient Utilization of Clean Energy of Shaanxi Province, Xi'an Photoelectromagnetic Functional Materials International Science and Technology Cooperation Center, Xi'an Jiaotong University, Xi'an, Shaanxi Province, 710054, China
| | - Heng Zhang
- Frontier Institute of Science and Technology, State Key Laboratory for Strength and Vibration of Mechanical Structures, Engineering Research Center of Key Materials for Efficient Utilization of Clean Energy of Shaanxi Province, Xi'an Photoelectromagnetic Functional Materials International Science and Technology Cooperation Center, Xi'an Jiaotong University, Xi'an, Shaanxi Province, 710054, China
| | - Chenjing Liu
- Frontier Institute of Science and Technology, State Key Laboratory for Strength and Vibration of Mechanical Structures, Engineering Research Center of Key Materials for Efficient Utilization of Clean Energy of Shaanxi Province, Xi'an Photoelectromagnetic Functional Materials International Science and Technology Cooperation Center, Xi'an Jiaotong University, Xi'an, Shaanxi Province, 710054, China
| | - Zengrong Wang
- Frontier Institute of Science and Technology, State Key Laboratory for Strength and Vibration of Mechanical Structures, Engineering Research Center of Key Materials for Efficient Utilization of Clean Energy of Shaanxi Province, Xi'an Photoelectromagnetic Functional Materials International Science and Technology Cooperation Center, Xi'an Jiaotong University, Xi'an, Shaanxi Province, 710054, China
| | - Xuri Zhang
- Frontier Institute of Science and Technology, State Key Laboratory for Strength and Vibration of Mechanical Structures, Engineering Research Center of Key Materials for Efficient Utilization of Clean Energy of Shaanxi Province, Xi'an Photoelectromagnetic Functional Materials International Science and Technology Cooperation Center, Xi'an Jiaotong University, Xi'an, Shaanxi Province, 710054, China
| | - Haiyan Yu
- Frontier Institute of Science and Technology, State Key Laboratory for Strength and Vibration of Mechanical Structures, Engineering Research Center of Key Materials for Efficient Utilization of Clean Energy of Shaanxi Province, Xi'an Photoelectromagnetic Functional Materials International Science and Technology Cooperation Center, Xi'an Jiaotong University, Xi'an, Shaanxi Province, 710054, China
| | - Yujie Zhao
- Frontier Institute of Science and Technology, State Key Laboratory for Strength and Vibration of Mechanical Structures, Engineering Research Center of Key Materials for Efficient Utilization of Clean Energy of Shaanxi Province, Xi'an Photoelectromagnetic Functional Materials International Science and Technology Cooperation Center, Xi'an Jiaotong University, Xi'an, Shaanxi Province, 710054, China
| | - Ming-Jia Li
- School of Mechanical Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Yinshi Li
- National Innovation Platform (Center) for Industry-Education Integration of Energy Storage Technology, Xi'an Jiaotong University, Xi'an, Shaanxi Province, 710049, China
| | - Ya-Ling He
- National Innovation Platform (Center) for Industry-Education Integration of Energy Storage Technology, Xi'an Jiaotong University, Xi'an, Shaanxi Province, 710049, China
| | - Gang He
- Frontier Institute of Science and Technology, State Key Laboratory for Strength and Vibration of Mechanical Structures, Engineering Research Center of Key Materials for Efficient Utilization of Clean Energy of Shaanxi Province, Xi'an Photoelectromagnetic Functional Materials International Science and Technology Cooperation Center, Xi'an Jiaotong University, Xi'an, Shaanxi Province, 710054, China
- National Innovation Platform (Center) for Industry-Education Integration of Energy Storage Technology, Xi'an Jiaotong University, Xi'an, Shaanxi Province, 710049, China
| |
Collapse
|
5
|
Wang Z, Liu X, Zhang X, Zhang H, Zhao Y, Li Y, Yu H, He G. Realizing one-step two-electron transfer of naphthalene diimides via a regional charge buffering strategy for aqueous organic redox flow batteries. MATERIALS HORIZONS 2024; 11:1283-1293. [PMID: 38165892 DOI: 10.1039/d3mh01485a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2024]
Abstract
Naphthalene diimide derivatives show great potential for application in neutral aqueous organic redox flow batteries (AORFBs) due to their highly conjugated molecular structure and stable two-electron storage capacity. However, the two-electron redox process of naphthalene diimides typically occurs via two separate steps with the transfer of one electron per step ("two-step two-electron" transfer process), which leads to an inevitable loss of voltage and energy. Herein, we report a novel regional charge buffering strategy that utilizes the core-substituted electron-donating group to adjust the redox properties of naphthalene diimides, realizing two electron transfer via a single-step redox process ("one-step two-electron" transfer process). The symmetrical battery testing of NDI-DEtOH revealed exceptional intrinsic stability lasting for 11 days with a daily decay rate of only 0.11%. Meanwhile, AORFBs with NDI-DMe/FcNCl and NDI-DEtOH/FcNCl exhibited a remarkable 40% improvement in peak power density at 50% state of charge (SOC) in comparison to NDI/FcNCl-based AORFBs. In addition, the battery's energy efficiency has increased by 24%, resulting in much more stable output power and significantly improved energy efficiency. These results are of great significance to practical applications of AORFBs.
Collapse
Affiliation(s)
- Zengrong Wang
- Frontier Institute of Science and Technology, Key Laboratory of Thermo-Fluid Science and Engineering of Ministry of Education, State Key Laboratory for Strength and Vibration of Mechanical Structures, Xi'an Jiaotong University, Xi'an, Shaanxi Province, 710054, China.
| | - Xu Liu
- Frontier Institute of Science and Technology, Key Laboratory of Thermo-Fluid Science and Engineering of Ministry of Education, State Key Laboratory for Strength and Vibration of Mechanical Structures, Xi'an Jiaotong University, Xi'an, Shaanxi Province, 710054, China.
| | - Xuri Zhang
- Frontier Institute of Science and Technology, Key Laboratory of Thermo-Fluid Science and Engineering of Ministry of Education, State Key Laboratory for Strength and Vibration of Mechanical Structures, Xi'an Jiaotong University, Xi'an, Shaanxi Province, 710054, China.
| | - Heng Zhang
- Frontier Institute of Science and Technology, Key Laboratory of Thermo-Fluid Science and Engineering of Ministry of Education, State Key Laboratory for Strength and Vibration of Mechanical Structures, Xi'an Jiaotong University, Xi'an, Shaanxi Province, 710054, China.
| | - Yujie Zhao
- Frontier Institute of Science and Technology, Key Laboratory of Thermo-Fluid Science and Engineering of Ministry of Education, State Key Laboratory for Strength and Vibration of Mechanical Structures, Xi'an Jiaotong University, Xi'an, Shaanxi Province, 710054, China.
| | - Yawen Li
- Frontier Institute of Science and Technology, Key Laboratory of Thermo-Fluid Science and Engineering of Ministry of Education, State Key Laboratory for Strength and Vibration of Mechanical Structures, Xi'an Jiaotong University, Xi'an, Shaanxi Province, 710054, China.
| | - Haiyan Yu
- Frontier Institute of Science and Technology, Key Laboratory of Thermo-Fluid Science and Engineering of Ministry of Education, State Key Laboratory for Strength and Vibration of Mechanical Structures, Xi'an Jiaotong University, Xi'an, Shaanxi Province, 710054, China.
| | - Gang He
- Frontier Institute of Science and Technology, Key Laboratory of Thermo-Fluid Science and Engineering of Ministry of Education, State Key Laboratory for Strength and Vibration of Mechanical Structures, Xi'an Jiaotong University, Xi'an, Shaanxi Province, 710054, China.
- Xi'an Key Laboratory of Electronic Devices and Material Chemistry, Engineering Research Center of Key Materials for Efficient Utilization of Clean Energy of Shaanxi Province, China
- Future Industrial Innovation Institute of Emerging Information Storage and Smart Sensor, Xi'an Jiaotong University, Xi'an, Shaanxi Province, 710054, China
| |
Collapse
|
6
|
Kong T, Li J, Wang W, Zhou X, Xie Y, Ma J, Li X, Wang Y. Enabling Long-Life Aqueous Organic Redox Flow Batteries with a Highly Stable, Low Redox Potential Phenazine Anolyte. ACS APPLIED MATERIALS & INTERFACES 2024; 16:752-760. [PMID: 38132704 DOI: 10.1021/acsami.3c15238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
Aqueous organic redox flow batteries (AORFBs) are considered a promising energy storage technology due to the sustainability and designability of organic active molecules. Despite this, most of AORFBs suffer from limited stability and low voltage because of the chemical instability and high redox potential of organic molecules in anolyte. Herein, we propose a new phenazine derivative, 4,4'-(phenazine-2,3-diylbis(oxy))dibutyric acid (2,3-O-DBAP), as a water-soluble and chemically stable anodic active molecules. By combining calculations and experiments, we demonstrate that 2,3-O-DBAP exhibits a higher solubility, a lower redox potential (-0.699 V vs SHE), and greater chemical stability than other O-DBAP isomers. Then, we demonstrate a long-lasting flow cell with an average discharge voltage of 1.12 V, a low fade rate of 0.0127%, and a lifespan of 62 days at pH 14 using 2,3-O-DBAP paired with ferri/ferrocyanide. The negligible self-discharge behavior also verifies the high stability of 2,3-O-DBAP. These results highlight the importance of molecular engineering for AORFBs.
Collapse
Affiliation(s)
- Taoyi Kong
- Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Institute of New Energy, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Fudan University, Shanghai 200433, China
| | - Junjie Li
- Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Wei Wang
- Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Xing Zhou
- Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Institute of New Energy, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Fudan University, Shanghai 200433, China
| | - Yihua Xie
- Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Institute of New Energy, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Fudan University, Shanghai 200433, China
| | - Jing Ma
- Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Xianfeng Li
- Division of Energy Storage, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Yonggang Wang
- Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Institute of New Energy, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Fudan University, Shanghai 200433, China
| |
Collapse
|
7
|
Mansha M, Ayub A, Khan IA, Ali S, Alzahrani AS, Khan M, Arshad M, Rauf A, Akram Khan S. Recent Development of Electrolytes for Aqueous Organic Redox Flow Batteries (Aorfbs): Current Status, Challenges, and Prospects. CHEM REC 2024; 24:e202300284. [PMID: 38010347 DOI: 10.1002/tcr.202300284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 10/20/2023] [Indexed: 11/29/2023]
Abstract
In recent years, aqueous organic redox flow batteries (AORFBs) have attracted considerable attention due to advancements in grid-level energy storage capacity research. These batteries offer remarkable benefits, including outstanding capacity retention, excellent cell performance, high energy density, and cost-effectiveness. The organic electrolytes in AORFBs exhibit adjustable redox potentials and tunable solubilities in water. Previously, various types of organic electrolytes, such as quinones, organometallic complexes, viologens, redox-active polymers, and organic salts, were extensively investigated for their electrochemical performance and stability. This study presents an overview of recently published novel organic electrolytes for AORFBs in acidic, alkaline, and neutral environments. Furthermore, it delves into the current status, challenges, and prospects of AORFBs, highlighting different strategies to overcome these challenges, with special emphasis placed on their design, composition, functionalities, and cost. A brief techno-economic analysis of various aqueous RFBs is also outlined, considering their potential scalability and integration with renewable energy systems.
Collapse
Affiliation(s)
- Muhammad Mansha
- Interdisciplinary Research Center for Hydrogen and Energy Storage, King Fahd University of Petroleum and Minerals, Dhahran, 31261, Saudi Arabia
| | - Asif Ayub
- Department of Chemistry, Islamia University Bahawalpur, 63100, Punjab, Pakistan
| | - Ibad Ali Khan
- Department of Materials Science and Engineering, College of Chemical Sciences, King Fahd University of Petroleum and Minerals, Dhahran, 31261, Saudi Arabia
| | - Shahid Ali
- Interdisciplinary Research Center for Hydrogen and Energy Storage, King Fahd University of Petroleum and Minerals, Dhahran, 31261, Saudi Arabia
| | - Atif Saeed Alzahrani
- Department of Materials Science and Engineering, College of Chemical Sciences, King Fahd University of Petroleum and Minerals, Dhahran, 31261, Saudi Arabia
| | - Majad Khan
- Interdisciplinary Research Center for Hydrogen and Energy Storage, King Fahd University of Petroleum and Minerals, Dhahran, 31261, Saudi Arabia
- Department of Chemistry, College of Chemical Sciences, King Fahd University of Petroleum and Minerals, Dhahran, 31261, Saudi Arabia
| | - Muhammad Arshad
- Department of Chemistry, Islamia University Bahawalpur, 63100, Punjab, Pakistan
| | - Abdul Rauf
- Department of Chemistry, Islamia University Bahawalpur, 63100, Punjab, Pakistan
| | - Safyan Akram Khan
- Interdisciplinary Research Center for Hydrogen and Energy Storage, King Fahd University of Petroleum and Minerals, Dhahran, 31261, Saudi Arabia
| |
Collapse
|
8
|
Zhu F, Guo W, Fu Y. Functional materials for aqueous redox flow batteries: merits and applications. Chem Soc Rev 2023; 52:8410-8446. [PMID: 37947236 DOI: 10.1039/d3cs00703k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2023]
Abstract
Redox flow batteries (RFBs) are promising electrochemical energy storage systems, offering vast potential for large-scale applications. Their unique configuration allows energy and power to be decoupled, making them highly scalable and flexible in design. Aqueous RFBs stand out as the most promising technologies, primarily due to their inexpensive supporting electrolytes and high safety. For aqueous RFBs, there has been a skyrocketing increase in studies focusing on the development of advanced functional materials that offer exceptional merits. They include redox-active materials with high solubility and stability, electrodes with excellent mechanical and chemical stability, and membranes with high ion selectivity and conductivity. This review summarizes the types of aqueous RFBs currently studied, providing an outline of the merits needed for functional materials from a practical perspective. We discuss design principles for redox-active candidates that can exhibit excellent performance, ranging from inorganic to organic active materials, and summarize the development of and need for electrode and membrane materials. Additionally, we analyze the mechanisms that cause battery performance decay from intrinsic features to external influences. We also describe current research priorities and development trends, concluding with a summary of future development directions for functional materials with valuable insights for practical applications.
Collapse
Affiliation(s)
- Fulong Zhu
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, P. R. China.
| | - Wei Guo
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, P. R. China.
| | - Yongzhu Fu
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, P. R. China.
| |
Collapse
|
9
|
Carrington ME, Sokołowski K, Jónsson E, Zhao EW, Graf AM, Temprano I, McCune JA, Grey CP, Scherman OA. Associative pyridinium electrolytes for air-tolerant redox flow batteries. Nature 2023; 623:949-955. [PMID: 38030777 PMCID: PMC10686829 DOI: 10.1038/s41586-023-06664-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 09/21/2023] [Indexed: 12/01/2023]
Abstract
Pyridinium electrolytes are promising candidates for flow-battery-based energy storage1-4. However, the mechanisms underlying both their charge-discharge processes and overall cycling stability remain poorly understood. Here we probe the redox behaviour of pyridinium electrolytes under representative flow battery conditions, offering insights into air tolerance of batteries containing these electrolytes while providing a universal physico-chemical descriptor of their reversibility. Leveraging a synthetic library of extended bispyridinium compounds, we track their performance over a wide range of potentials and identify the singlet-triplet free energy gap as a descriptor that successfully predicts the onset of previously unidentified capacity fade mechanisms. Using coupled operando nuclear magnetic resonance and electron paramagnetic resonance spectroscopies5,6, we explain the redox behaviour of these electrolytes and determine the presence of two distinct regimes (narrow and wide energy gaps) of electrochemical performance. In both regimes, we tie capacity fade to the formation of free radical species, and further show that π-dimerization plays a decisive role in suppressing reactivity between these radicals and trace impurities such as dissolved oxygen. Our findings stand in direct contrast to prevailing views surrounding the role of π-dimers in redox flow batteries1,4,7-11 and enable us to efficiently mitigate capacity fade from oxygen even on prolonged (days) exposure to air. These insights pave the way to new electrolyte systems, in which reactivity of reduced species is controlled by their propensity for intra- and intermolecular pairing of free radicals, enabling operation in air.
Collapse
Affiliation(s)
- Mark E Carrington
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, UK
- Melville Laboratory for Polymer Synthesis, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, UK
| | - Kamil Sokołowski
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, UK
- Melville Laboratory for Polymer Synthesis, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, UK
| | - Erlendur Jónsson
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, UK
| | - Evan Wenbo Zhao
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, UK
- Magnetic Resonance Research Center, Institute for Molecules and Materials, Faculty of Science, Radboud University Nijmegen, Nijmegen, The Netherlands
| | - Anton M Graf
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, UK
- Melville Laboratory for Polymer Synthesis, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, UK
| | - Israel Temprano
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, UK
| | - Jade A McCune
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, UK
- Melville Laboratory for Polymer Synthesis, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, UK
| | - Clare P Grey
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, UK.
| | - Oren A Scherman
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, UK.
- Melville Laboratory for Polymer Synthesis, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, UK.
| |
Collapse
|
10
|
Zhao Z, Liu X, Zhang M, Zhang L, Zhang C, Li X, Yu G. Development of flow battery technologies using the principles of sustainable chemistry. Chem Soc Rev 2023; 52:6031-6074. [PMID: 37539656 DOI: 10.1039/d2cs00765g] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/05/2023]
Abstract
Realizing decarbonization and sustainable energy supply by the integration of variable renewable energies has become an important direction for energy development. Flow batteries (FBs) are currently one of the most promising technologies for large-scale energy storage. This review aims to provide a comprehensive analysis of the state-of-the-art progress in FBs from the new perspectives of technological and environmental sustainability, thus guiding the future development of FB technologies. More importantly, we evaluate the current situation and future development of key materials with key aspects of green economy and decarbonization to promote sustainable development and improve the novel energy framework. Finally, we present an analysis of the current challenges and prospects on how to effectively construct low-carbon and sustainable FB materials in the future.
Collapse
Affiliation(s)
- Ziming Zhao
- Division of Energy Storage, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China.
- University of Science and Technology of China, Hefei 230026, China
| | - Xianghui Liu
- Division of Energy Storage, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China.
| | - Mengqi Zhang
- Division of Energy Storage, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China.
| | - Leyuan Zhang
- Materials Science and Engineering Program and Department of Mechanical Engineering, The University of Texas at Austin, Austin, Texas 78712, USA.
| | - Changkun Zhang
- Division of Energy Storage, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China.
| | - Xianfeng Li
- Division of Energy Storage, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China.
| | - Guihua Yu
- Materials Science and Engineering Program and Department of Mechanical Engineering, The University of Texas at Austin, Austin, Texas 78712, USA.
| |
Collapse
|
11
|
Liu X, Li T, Zhang C, Li X. Benzidine Derivatives: A Class of High Redox Potential Molecules for Aqueous Organic Flow Batteries. Angew Chem Int Ed Engl 2023; 62:e202307796. [PMID: 37389543 DOI: 10.1002/anie.202307796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 06/29/2023] [Accepted: 06/30/2023] [Indexed: 07/01/2023]
Abstract
The development of water-soluble redox-active molecules with high potentials is one of the effective ways to enhance the energy density of aqueous organic flow batteries (AOFBs). Herein, a series of promising N-substituted benzidine analogues as water-soluble catholyte candidates with controllable redox potentials (0.78-1.01 V vs. standard hydrogen electrode (SHE)) were obtained by the molecular engineering of aqueous irreversible benzidines. Theoretical calculations reveal that the redox potentials of these benzidine derivatives in acidic solution are determined by their electronic structure and alkalinity. Among these benzidine derivatives, N,N,N',N'-tetraethylbenzidine(TEB) shows both high redox potential (0.82 V vs. SHE) and good solubility (1.1 M). Pairing with H4 [Si(W3 O10 )4 ] anolyte, the cell displayed discharge capacity retention of 99.4 % per cycle and a high coulombic efficiency (CE) of ∼100 % over 1200 cycles. The stable discharge capacity of 41.8 Ah L-1 was achieved at the 1.0 M TEB catholyte with a CE of 97.2 % and energy efficiency (EE) of 91.2 %, demonstrating that N-substituted benzidines could be promising for AOFBs.
Collapse
Affiliation(s)
- Xianghui Liu
- Division of Energy Storage, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Tianyu Li
- Division of Energy Storage, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Changkun Zhang
- Division of Energy Storage, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Xianfeng Li
- Division of Energy Storage, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| |
Collapse
|
12
|
Chen B, Huang H, Lin J, Zhu K, Yang L, Wang X, Chen J. Doping Engineering of M-N-C Electrocatalyst Based Membrane-Electrode Assembly for High-Performance Aqueous Polysulfides Redox Flow Batteries. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2206949. [PMID: 37066747 DOI: 10.1002/advs.202206949] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 02/28/2023] [Indexed: 06/04/2023]
Abstract
Polysulfides aqueous redox flow batteries (PS-ARFBs) with large theoretical capacity and low cost are one of the most promising solutions for large-scale energy storage technology. However, sluggish electrochemical redox kinetics and nonnegligible crossover of aqueous polysulfides restrict the battery performances. Herein, it is found that the Co, Zn dual-doped N-C complex have enhanced electrochemical adsorption behaviors for Na2 S2 . It exhibits significantly electrochemical redox activity compared to the bare glassy carbon electrode. And the redox reversibility is also improved from ΔV = 210 mV on Zn-doped N-C complex to ΔV = 164 mV on Co, Zn-doped N-C complex. Furthermore, membrane-electrode assembly (MEA) based on Co, Zn-doped N-C complex is firstly proposed to enhance the redox performances and relieve the crossover in PS-ARFBs. Thus, an impressively high and reversible capacity of 157.5 Ah L-1 for Na2 S2 with a high capacity utilization of 97.9% could be achieved. Moreover, a full cell PS-ARFB with Na2 S2 anolyte and Na4 [Fe(CN)6 ] catholyte exhibits high energy efficiency ≈88.4% at 10 mA cm-2 . A very low capacity decay rate of 0.0025% per cycle is also achieved at 60 mA cm-2 over 200 cycles.
Collapse
Affiliation(s)
- Bixian Chen
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Engineering Research Center of Electrochemical Technologies of Ministry of Education, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian, 361005, China
| | - Huan Huang
- Beijing Synchrotron Radiation Laboratory, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China
| | - Jiande Lin
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Engineering Research Center of Electrochemical Technologies of Ministry of Education, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian, 361005, China
| | - Kailing Zhu
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Engineering Research Center of Electrochemical Technologies of Ministry of Education, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian, 361005, China
| | - Le Yang
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Engineering Research Center of Electrochemical Technologies of Ministry of Education, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian, 361005, China
| | - Xiang Wang
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Engineering Research Center of Electrochemical Technologies of Ministry of Education, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian, 361005, China
| | - Jiajia Chen
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Engineering Research Center of Electrochemical Technologies of Ministry of Education, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian, 361005, China
| |
Collapse
|
13
|
Li W, Liao S, Xiang Z, Huang M, Fu Z, Li L, Liang Z. Thermodynamic regulation over nano-heterogeneous structure of electrolyte solution to improve stability of flow batteries. Chem Eng Sci 2023. [DOI: 10.1016/j.ces.2023.118534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
14
|
Kong T, Liu J, Zhou X, Xu J, Xie Y, Chen J, Li X, Wang Y. Stable Operation of Aqueous Organic Redox Flow Batteries in Air Atmosphere. Angew Chem Int Ed Engl 2023; 62:e202214819. [PMID: 36495124 DOI: 10.1002/anie.202214819] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 12/06/2022] [Accepted: 12/08/2022] [Indexed: 12/14/2022]
Abstract
As a green route for large-scale energy storage, aqueous organic redox flow batteries (AORFBs) are attracting extensive attention. However, most of the reported AORFBs were operated in an inert atmosphere. Herein, we clarify this issue by using the reported AORFB (i.e., 3, 3'-(9,10-anthraquinone-diyl)bis(3-methylbutanoicacid) (DPivOHAQ)||Ferrocyanide) as an example. We demonstrate that the dissolved O2 can oxidize the discharged DPivOHAQ in anolyte, leading to capacity-imbalance between anolyte and catholyte. Therefore, this cell shows continuous capacity fading when operated in an air atmosphere. We propose a simple strategy for this challenge, in which the oxygen evolution reaction (OER) in catholyte is employed to balance oxygen reduction reaction (ORR) in anolyte. When using the Ni(OH)2 -modifed carbon felt (CF) as a current collector for catholyte, this cell shows an excellent stability in air atmosphere because the Ni(OH)2 -induced OER capacity in catholyte exactly balances the ORR capacity in anolyte. Such O2 -balance strategy facilitates AORFBs' practical application.
Collapse
Affiliation(s)
- Taoyi Kong
- Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Institute of New Energy, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Fudan University, Shanghai, 200433, China
| | - Jun Liu
- Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Institute of New Energy, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Fudan University, Shanghai, 200433, China
| | - Xing Zhou
- Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Institute of New Energy, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Fudan University, Shanghai, 200433, China
| | - Jie Xu
- Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Institute of New Energy, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Fudan University, Shanghai, 200433, China
| | - Yihua Xie
- Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Institute of New Energy, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Fudan University, Shanghai, 200433, China
| | - Jiawei Chen
- Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Institute of New Energy, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Fudan University, Shanghai, 200433, China
| | - Xianfeng Li
- Division of Energy Storage, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Yonggang Wang
- Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Institute of New Energy, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Fudan University, Shanghai, 200433, China
| |
Collapse
|
15
|
Zhu F, Guo W, Fu Y. Molecular Engineering of Organic Species for Aqueous Redox Flow Batteries. Chem Asian J 2023; 18:e202201098. [PMID: 36454229 DOI: 10.1002/asia.202201098] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 11/29/2022] [Accepted: 11/30/2022] [Indexed: 12/03/2022]
Abstract
Redox flow batteries (RFBs) are promising candidates for large-scale energy storage systems (ESSs) due to their unique architecture that can decouple energy and power. Aqueous RFBs based on organic molecules (AORFBs) work with a non-flammable and intrinsically safe aqueous electrolyte, and organic compounds are performed as redox couples. The application of redox-active organics tremendously expands the development space of RFBs owing to the highly tunable molecule structure. Molecular engineering enables the exceptional merits in solubility, stability, and redox potential of different organic molecules. Herein, this review summarizes the application of molecular engineering to several organic compounds, focusing on the fundamental overview of their physicochemical properties and design strategies. We discuss the electrochemical merits and performances along with the intrinsic properties of the designed organic components. Finally, we outline the requirements for rational design of innovative organics to motivate more valuable research and present the prospect of molecule engineering used in AORFBs.
Collapse
Affiliation(s)
- Fulong Zhu
- College of Chemistry, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Wei Guo
- College of Chemistry, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Yongzhu Fu
- College of Chemistry, Zhengzhou University, Zhengzhou, 450001, P. R. China
| |
Collapse
|
16
|
Xiang Z, Li W, Wan K, Fu Z, Liang Z. Aggregation of Electrochemically Active Conjugated Organic Molecules and Its Impact on Aqueous Organic Redox Flow Batteries. Angew Chem Int Ed Engl 2023; 62:e202214601. [PMID: 36383209 DOI: 10.1002/anie.202214601] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Indexed: 11/17/2022]
Abstract
Molecule aggregation in solution is acknowledged to be universal and can regulate the molecule's physiochemical properties, which however has been rarely investigated in electrochemistry. Herein, an electrochemical method is developed to quantitatively study the aggregation behavior of the target molecule methyl viologen dichloride. It is found that the oxidation state dicationic ions stay discrete, while the singly-reduced state monoradicals yield a concentration-dependent aggregation behavior. As a result, the molecule's energy level and its redox potential can be effectively regulated. This work does not only provide a method to investigate the molecular aggregation, but also demonstrates the feasibility to tune redox flow battery's performance by regulating the aggregation behavior.
Collapse
Affiliation(s)
- Zhipeng Xiang
- Guangdong Provincial Key Laboratory of Fuel Cell Technology, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510641, P. R. China
| | - Wenjin Li
- Guangdong Provincial Key Laboratory of Fuel Cell Technology, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510641, P. R. China
| | - Kai Wan
- Guangdong Provincial Key Laboratory of Fuel Cell Technology, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510641, P. R. China
| | - Zhiyong Fu
- Guangdong Provincial Key Laboratory of Fuel Cell Technology, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510641, P. R. China
| | - Zhenxing Liang
- Guangdong Provincial Key Laboratory of Fuel Cell Technology, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510641, P. R. China
| |
Collapse
|
17
|
Zhang X, Liu X, Zhang H, Wang Z, Zhang Y, Li G, Li MJ, He G. Robust Chalcogenophene Viologens as Anolytes for Long-Life Aqueous Organic Redox Flow Batteries with High Battery Voltage. ACS APPLIED MATERIALS & INTERFACES 2022; 14:48727-48733. [PMID: 36257057 DOI: 10.1021/acsami.2c14195] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
A series of chalcogenophene viologens ([(NPr)2FV]Cl4, [(NPr)2TV]Cl4, and [(NPr)2SeV]Cl4) as anolytes for neutral aqueous organic redox flow batteries (AORFBs) via a combination of chalcogenophenes (furan, thiophene, and selenophene) and viologens are reported. The chalcogenophene viologens showed narrow HOMO-LUMO energy gap, high solubility, and stable electrochemical properties. Compared with the parent [(NPr)2V]Cl4, the introduction of π-conjugated chalcogenophene groups reduced the redox potential and enhanced the stability of their free radical state, which endowed the chalcogenophene viologens/FcNCl-based AORFBs with a higher theoretical battery voltage of 1.20 V and enhanced stability for one-electron storage. In particular, the [(NPr)2FV]Cl4/FcNCl-based AORFB exhibited excellent long-cycle stability for 3000 cycles with 0.0006% capacity decay per cycle for one-electron storage and 300 cycles with 0.06% capacity decay per cycle for two-electron storage at a charge voltage of 1.9 V (1.42 V theoretical battery voltage). This work provided a new strategy for regulating the voltage and improving the performance of neutral AORFBs.
Collapse
Affiliation(s)
- Xuri Zhang
- Key Laboratory of Thermo-Fluid Science and Engineering of Ministry of Education, School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi Province 710049, China
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi Province 710054, China
| | - Xu Liu
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi Province 710054, China
| | - Heng Zhang
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi Province 710054, China
| | - Zengrong Wang
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi Province 710054, China
| | - Yueyan Zhang
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi Province 710054, China
| | - Guoping Li
- Key Laboratory of Thermo-Fluid Science and Engineering of Ministry of Education, School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi Province 710049, China
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi Province 710054, China
| | - Ming-Jia Li
- Key Laboratory of Thermo-Fluid Science and Engineering of Ministry of Education, School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi Province 710049, China
| | - Gang He
- Key Laboratory of Thermo-Fluid Science and Engineering of Ministry of Education, School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi Province 710049, China
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi Province 710054, China
| |
Collapse
|
18
|
Gao M, Salla M, Song Y, Wang Q. High‐Power Near‐Neutral Aqueous All Organic Redox Flow Battery Enabled with a Pair of Anionic Redox Species. Angew Chem Int Ed Engl 2022; 61:e202208223. [DOI: 10.1002/anie.202208223] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Indexed: 11/08/2022]
Affiliation(s)
- Mengqi Gao
- Department of Materials Science and Engineering College of Design and Engineering National University of Singapore Singapore 117574 Singapore
| | - Manohar Salla
- Department of Materials Science and Engineering College of Design and Engineering National University of Singapore Singapore 117574 Singapore
| | - Yuxi Song
- Department of Materials Science and Engineering College of Design and Engineering National University of Singapore Singapore 117574 Singapore
| | - Qing Wang
- Department of Materials Science and Engineering College of Design and Engineering National University of Singapore Singapore 117574 Singapore
| |
Collapse
|
19
|
Liu Y, Yuan X, Huang M, Xiang Z, Hu S, Fu Z, Guo X, Liang Z. Redox-Modulated Host–Guest Complex Realizing Stable Two-Electron Storage Viologen for Flow Battery. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c02272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Yufeng Liu
- Guangdong Provincial Key Laboratory of Fuel Cell Technology, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, China
| | - Xianzhi Yuan
- Guangdong Provincial Key Laboratory of Fuel Cell Technology, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, China
| | - Mingbao Huang
- Guangdong Provincial Key Laboratory of Fuel Cell Technology, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, China
| | - Zhipeng Xiang
- Guangdong Provincial Key Laboratory of Fuel Cell Technology, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, China
| | - Shuzhi Hu
- Guangdong Provincial Key Laboratory of Fuel Cell Technology, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, China
| | - Zhiyong Fu
- Guangdong Provincial Key Laboratory of Fuel Cell Technology, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, China
| | - Xuhong Guo
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Zhenxing Liang
- Guangdong Provincial Key Laboratory of Fuel Cell Technology, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, China
| |
Collapse
|
20
|
Gao M, Salla M, Song Y, Wang Q. High‐power Near‐neutral Aqueous All Organic Redox Flow Battery Enabled with a Pair of Anionic Redox Species. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202208223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Mengqi Gao
- National University of Singapore Materials Science and Engineering SINGAPORE
| | - Manohar Salla
- National University of Singapore Materials Science and Engineering SINGAPORE
| | - Yuxi Song
- National University of Singapore Materials Science and Engineering SINGAPORE
| | - Qing Wang
- National University of Singapore Department of Materials Science and Engineering SINGAPORE
| |
Collapse
|
21
|
Advanced anion-selective membranes with pendant quaternary ammonium for neutral aqueous supporting redox flow battery. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120748] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
22
|
Tang G, Liu Y, Li Y, Peng K, Zuo P, Yang Z, Xu T. Designing Robust Two-Electron Storage Extended Bipyridinium Anolytes for pH-Neutral Aqueous Organic Redox Flow Batteries. JACS AU 2022; 2:1214-1222. [PMID: 35647585 PMCID: PMC9131478 DOI: 10.1021/jacsau.2c00184] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 04/21/2022] [Accepted: 04/21/2022] [Indexed: 06/15/2023]
Abstract
Bipyridinium derivatives represent the most extensively explored anolyte materials for pH-neutral aqueous organic redox flow batteries, and most derivatives feature two separate electron-transfer steps that cause a sharp decrease in cell voltage during discharge. Here, we propose a strategy to fulfill the concurrent two-electron electrochemical reaction by designing extended bipyridinium derivatives (exBPs) with a reduced energy difference between the lowest unoccupied molecular orbital of exBPs and the β-highest occupied molecular orbital of the singly reduced form. To demonstrate, a series of exBPs are synthesized and exhibit a single peak at redox potentials of -0.75 to -0.91 V (vs standard hydrogen electrode (SHE)), as opposed to the two peaks of most bipyridinium derivatives. Cyclic voltammetry along with diffusion-ordered spectroscopy and rotating disk electrode experiments confirm that this peak corresponds to a concurrent two-electron transfer. When examined in full-flowing cells, all exBPs demonstrate one charge/discharge plateau and two-electron storage. Continuous galvanostatic cell cycling reveals the side reactions leading to capacity fading, and we disclose the underlying mechanism by identifying the degradation products. By prohibiting the dimerization/β-elimination side reactions, we acquire a 0.5 M (1 M e-) exDMeBP/FcNCl cell with a high capacity of 22.35 Ah L-1 and a capacity retention rate of 99.95% per cycle.
Collapse
Affiliation(s)
- Gonggen Tang
- Department
of Applied Chemistry, School of Chemistry and Material Science, University of Science and Technology of China, 96 Jinzhai Road, Hefei 230026, China
| | - Yahua Liu
- School
of Chemistry and Chemical Engineering, Hefei
University of Technology, Hefei, Anhui 230009, China
| | - Yuanyuan Li
- Department
of Applied Chemistry, School of Chemistry and Material Science, University of Science and Technology of China, 96 Jinzhai Road, Hefei 230026, China
| | - Kang Peng
- Department
of Applied Chemistry, School of Chemistry and Material Science, University of Science and Technology of China, 96 Jinzhai Road, Hefei 230026, China
| | - Peipei Zuo
- Department
of Applied Chemistry, School of Chemistry and Material Science, University of Science and Technology of China, 96 Jinzhai Road, Hefei 230026, China
| | - Zhengjin Yang
- Department
of Applied Chemistry, School of Chemistry and Material Science, University of Science and Technology of China, 96 Jinzhai Road, Hefei 230026, China
| | - Tongwen Xu
- Department
of Applied Chemistry, School of Chemistry and Material Science, University of Science and Technology of China, 96 Jinzhai Road, Hefei 230026, China
| |
Collapse
|
23
|
Fu X, Xia C, Qu J, Lei S, Zuo X, Mao Z, Liu Q, Luo P, Zhang R, Hu S. Enhanced specific capacitance and stability of polyaniline by Nafion doping. ChemElectroChem 2022. [DOI: 10.1002/celc.202200312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Xudong Fu
- Hubei University of Technology School of Materials and Chemical Engineering CHINA
| | - Chunguang Xia
- Hubei University of Technology School of Materials and Chemical Engineering CHINA
| | - Jingwen Qu
- Hubei University of Technology School of Materials and Chemical Engineering CHINA
| | - Shulin Lei
- Hubei University of Technology School of Materials and Chemical Engineering CHINA
| | - Xingping Zuo
- Hubei University of Technology School of Materials and Chemical Engineering CHINA
| | - Zihan Mao
- Hubei University of Technology School of Materials and Chemical Engineering CHINA
| | - Qingting Liu
- Hubei University of Technology School of Materials and Chemical Engineering CHINA
| | - Ping Luo
- Hubei University of Technology School of Materials and Chemical Engineering CHINA
| | - Rong Zhang
- Hubei University of Technology School of Materials and Chemical Engineering CHINA
| | - Shengfei Hu
- Hubei University of Technology NO. 28 Nanli Road, Hongshan District, Wuhan City, Hubei Province, China 430068 Wuhan CHINA
| |
Collapse
|
24
|
Popat Y, Trudgeon D, Zhang C, Walsh FC, Connor P, Li X. Carbon Materials as Positive Electrodes in Bromine-Based Flow Batteries. Chempluschem 2022; 87:e202100441. [PMID: 35023636 DOI: 10.1002/cplu.202100441] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 12/25/2021] [Indexed: 11/09/2022]
Abstract
Bromine based redox flow batteries (RFBs) can provide sustainable energy storage due to the abundance of bromine. Such devices pair Br2 /Br- at the positive electrode with complementary redox couples at the negative electrode. Due to the highly corrosive nature of bromine, electrode materials need to be corrosion resistant and durable. The positive electrode requires good electrochemical activity and reversibility for the Br2 /Br- couple. Carbon materials enjoy the advantages of low cost, excellent electrical conductivity, chemical resistance, wide operational potential ranges, modifiable surface properties, and high surface area. Here carbon based materials for bromine electrodes are reviewed, with a focus on application in zinc-bromine, hydrogen-bromine, and polysulphide-bromine RFB systems, aiming to provide an overview of carbon materials to be used for design and development of bromine electrodes with improved performance. Aspects deserving further R&D are highlighted.
Collapse
Affiliation(s)
- Yaksh Popat
- Renewable Energy group, College of Engineering, Mathematics and Physical Sciences, University of Exeter, Penryn campus, Cornwall, TR10 9FE, United Kingdom
| | - David Trudgeon
- Renewable Energy group, College of Engineering, Mathematics and Physical Sciences, University of Exeter, Penryn campus, Cornwall, TR10 9FE, United Kingdom
| | - Caiping Zhang
- National Active Distribution Network Technology Research Centre, Beijing Jiaotong University, Beijing, 100044, P. R. China
| | - Frank C Walsh
- Electrochemical Engineering Laboratory, Energy Technology Research Group, Engineering Sciences and the Environment, University of Southampton, Southampton, SO17 1BJ, United Kingdom
| | - Peter Connor
- Renewable Energy group, College of Engineering, Mathematics and Physical Sciences, University of Exeter, Penryn campus, Cornwall, TR10 9FE, United Kingdom
| | - Xiaohong Li
- Renewable Energy group, College of Engineering, Mathematics and Physical Sciences, University of Exeter, Penryn campus, Cornwall, TR10 9FE, United Kingdom
| |
Collapse
|
25
|
Wang Z, Fan Q, Guo W, Yang C, Fu Y. Biredox-Ionic Anthraquinone-Coupled Ethylviologen Composite Enables Reversible Multielectron Redox Chemistry for Li-Organic Batteries. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2103632. [PMID: 34716685 PMCID: PMC8728824 DOI: 10.1002/advs.202103632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 09/23/2021] [Indexed: 06/13/2023]
Abstract
Organic compounds bearing redox-active ionic pairs as electrode materials for high-performance rechargeable batteries have gained growing attention owing to the properties of synthetic tunability, high theoretical capacity, and low solubility. Herein, an innovative biredox-ionic composite, i.e., ethylviologen dianthraquinone-2-sulfonate (EV-AQ2 ), affording multiple and reversible active sites as a cathode material in lithium-organic batteries is reported. EV-AQ2 exhibits a high initial capacity of 199.2 mAh g-1 at 0.1 C rate, which corresponds to the transfer of two electrons from one redox couple EV2+ /EV0 and four electrons from two redox-active AQ- anions. It is notable that EV-AQ2 shows remarkably improved cyclability compared to the precursors. The capacity retention is 89% and the Coulombic efficiency approaches 100% over 120 cycles at 0.5 C rate. The results offer evidence that AQ- into the EV2+ scaffold with multiple redox sites are promising in developing high-energy-density organic rechargeable batteries.
Collapse
Affiliation(s)
- Zhongju Wang
- College of ChemistryZhengzhou UniversityZhengzhou450001P. R. China
| | - Qianqian Fan
- College of ChemistryZhengzhou UniversityZhengzhou450001P. R. China
| | - Wei Guo
- College of ChemistryZhengzhou UniversityZhengzhou450001P. R. China
| | - Changchun Yang
- College of ChemistryZhengzhou UniversityZhengzhou450001P. R. China
| | - Yongzhu Fu
- College of ChemistryZhengzhou UniversityZhengzhou450001P. R. China
| |
Collapse
|
26
|
Li H, Fan H, Hu B, Hu L, Chang G, Song J. Spatial Structure Regulation: A Rod‐Shaped Viologen Enables Long Lifetime in Aqueous Redox Flow Batteries. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202110010] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Hongbin Li
- State Key Laboratory for Mechanical Behavior of Materials Shaanxi International Research Center for Soft Matter Xi'an Jiaotong University Xi'an 710049 China
| | - Hao Fan
- State Key Laboratory for Mechanical Behavior of Materials Shaanxi International Research Center for Soft Matter Xi'an Jiaotong University Xi'an 710049 China
| | - Bo Hu
- State Key Laboratory for Mechanical Behavior of Materials Shaanxi International Research Center for Soft Matter Xi'an Jiaotong University Xi'an 710049 China
| | - Linlin Hu
- State Key Laboratory for Mechanical Behavior of Materials Shaanxi International Research Center for Soft Matter Xi'an Jiaotong University Xi'an 710049 China
| | - Gang Chang
- Instrumental Analysis Center of Xi'an Jiaotong University Xi'an 710049 China
| | - Jiangxuan Song
- State Key Laboratory for Mechanical Behavior of Materials Shaanxi International Research Center for Soft Matter Xi'an Jiaotong University Xi'an 710049 China
| |
Collapse
|
27
|
Li H, Fan H, Hu B, Hu L, Chang G, Song J. Spatial Structure Regulation: A Rod-Shaped Viologen Enables Long Lifetime in Aqueous Redox Flow Batteries. Angew Chem Int Ed Engl 2021; 60:26971-26977. [PMID: 34647654 DOI: 10.1002/anie.202110010] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Indexed: 11/07/2022]
Abstract
A stable rod-like sulfonated viologen (R-Vi) derivative is developed through a spatial-structure-adjustment strategy for neutral aqueous organic redox flow batteries (AORFBs). The obtained R-Vi features four individual methyl groups on the 2,2',6,6'-positions of the 4,4'-bipyridine core ring. The tethered methyls confine the movement of the alkyl chain as well as the sulfonic anion, thus driving the spatial structure from sigmoid to rod shape. The R-Vi with weak charge attraction and large molecular dimension displays an ultralow membrane permeability that is only 14.7 % of that of typical sigmoid viologen. Moreover, the electron-donating effect of methyls endows R-Vi with the lowest redox potential of -0.55 V vs. SHE among one-electron-storage viologen-based AORFBs. The AORFB with the R-Vi anolyte and a K4 Fe(CN)6 catholyte exhibits an energy efficiency up to 87 % and extremely low capacity-fade rate of 0.007 % per cycle in 3200 continuous cycles.
Collapse
Affiliation(s)
- Hongbin Li
- State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Hao Fan
- State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Bo Hu
- State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Linlin Hu
- State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Gang Chang
- Instrumental Analysis Center of, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Jiangxuan Song
- State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, Xi'an Jiaotong University, Xi'an, 710049, China
| |
Collapse
|
28
|
Pan M, Lu Y, Lu S, Yu B, Wei J, Liu Y, Jin Z. The Dual Role of Bridging Phenylene in an Extended Bipyridine System for High-Voltage and Stable Two-Electron Storage in Redox Flow Batteries. ACS APPLIED MATERIALS & INTERFACES 2021; 13:44174-44183. [PMID: 34496562 DOI: 10.1021/acsami.1c09019] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Aqueous organic redox flow batteries (AORFBs) are regarded as a promising solution for grid-scale and sustainable energy storage, but some long-standing problems such as low energy density and cycling stability should be resolved. Herein, a highly soluble bipyridine modified with a bridging phenylene group and two quaternary ammonium terminals, namely, [(NPr)2PV]·4Cl, was synthesized and used as an ultralow-potential and two-electron storage anolyte for AORFBs. The phenylene group, which is linked but not coplanar with the two pyridinium redox centers, can thus prevent their communication and result in an exceptionally low redox potential (-0.77 V vs standard hydrogen electrode, 2e-). Moreover, the introduction of a phenylene group can warrant a certain degree of large π-conjugation effects and mitigate the intramolecular Coulombic repulsion between the two positively charged pyridinium centers, thus helping to enhance the electrochemical stability. When paired with 4-trimethylammonium-TEMPO as the catholyte, [(NPr)2PV]·4Cl enabled an exceptionally high cell voltage up to 1.71 V. The AORFB delivers outstanding battery performances, specifically, ∼89% energy efficiency, ∼100% Coulombic efficiency, and ∼99.94% capacity retention per cycle during a long-term cycling process. The two overlapped single-electron reductions of [(NPr)2PV]·4Cl from the initial cationic form to the monoradical form and then to the quinoid form during the charging process were clearly verified by a series of spectroscopic techniques, including no-deuterium nuclear magnetic resonance and electron paramagnetic resonance. This work presents a significant improvement for the construction of high-voltage AORFBs by virtue of the designability, diversity, and tunability of multiredox organic molecules.
Collapse
Affiliation(s)
- Mingguang Pan
- MOE Key Laboratory of Mesoscopic Chemistry, MOE Key Laboratory of High Performance Polymer Materials and Technology, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Yan Lu
- MOE Key Laboratory of Mesoscopic Chemistry, MOE Key Laboratory of High Performance Polymer Materials and Technology, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Shuyu Lu
- MOE Key Laboratory of Mesoscopic Chemistry, MOE Key Laboratory of High Performance Polymer Materials and Technology, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Bo Yu
- MOE Key Laboratory of Mesoscopic Chemistry, MOE Key Laboratory of High Performance Polymer Materials and Technology, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Jie Wei
- MOE Key Laboratory of Mesoscopic Chemistry, MOE Key Laboratory of High Performance Polymer Materials and Technology, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Yuzhu Liu
- MOE Key Laboratory of Mesoscopic Chemistry, MOE Key Laboratory of High Performance Polymer Materials and Technology, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Zhong Jin
- MOE Key Laboratory of Mesoscopic Chemistry, MOE Key Laboratory of High Performance Polymer Materials and Technology, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
- Shenzhen Research Institute of Nanjing University, Shenzhen 518057, China
| |
Collapse
|
29
|
Huang J, Hu S, Yuan X, Xiang Z, Huang M, Wan K, Piao J, Fu Z, Liang Z. Radical Stabilization of a Tripyridinium–Triazine Molecule Enables Reversible Storage of Multiple Electrons. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202107216] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Jinghua Huang
- Key Laboratory of Fuel Cell Technology of Guangdong Province School of Chemistry and Chemical Engineering South China University of Technology Guangzhou 510641 P. R. China
| | - Shuzhi Hu
- Key Laboratory of Fuel Cell Technology of Guangdong Province School of Chemistry and Chemical Engineering South China University of Technology Guangzhou 510641 P. R. China
- School of Materials Science and Engineering Sun Yat-sen University Guangzhou 510275 P. R. China
| | - Xianzhi Yuan
- Key Laboratory of Fuel Cell Technology of Guangdong Province School of Chemistry and Chemical Engineering South China University of Technology Guangzhou 510641 P. R. China
| | - Zhipeng Xiang
- Key Laboratory of Fuel Cell Technology of Guangdong Province School of Chemistry and Chemical Engineering South China University of Technology Guangzhou 510641 P. R. China
| | - Mingbao Huang
- Key Laboratory of Fuel Cell Technology of Guangdong Province School of Chemistry and Chemical Engineering South China University of Technology Guangzhou 510641 P. R. China
| | - Kai Wan
- Key Laboratory of Fuel Cell Technology of Guangdong Province School of Chemistry and Chemical Engineering South China University of Technology Guangzhou 510641 P. R. China
| | - Jinhua Piao
- School of Food Science and Engineering South China University of Technology Guangzhou 510641 P. R. China
| | - Zhiyong Fu
- Key Laboratory of Fuel Cell Technology of Guangdong Province School of Chemistry and Chemical Engineering South China University of Technology Guangzhou 510641 P. R. China
| | - Zhenxing Liang
- Key Laboratory of Fuel Cell Technology of Guangdong Province School of Chemistry and Chemical Engineering South China University of Technology Guangzhou 510641 P. R. China
| |
Collapse
|
30
|
Huang J, Hu S, Yuan X, Xiang Z, Huang M, Wan K, Piao J, Fu Z, Liang Z. Radical Stabilization of a Tripyridinium-Triazine Molecule Enables Reversible Storage of Multiple Electrons. Angew Chem Int Ed Engl 2021; 60:20921-20925. [PMID: 34288300 DOI: 10.1002/anie.202107216] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 07/16/2021] [Indexed: 11/08/2022]
Abstract
A novel organic molecule, 2,4,6-tris[1-(trimethylamonium)propyl-4-pyridiniumyl]-1,3,5-triazine hexachloride, was developed as a reversible six-electron storage electrolyte for use in an aqueous redox flow battery (ARFB). Physicochemical characterization reveals that the molecule evolves from a radical to a biradical and finally to a quinoid structure upon accepting four electrons. Both the diffusion coefficient and the rate constant were sufficiently high to run a flow battery with low concentration and kinetics polarization losses. In a demonstration unit, the assembled flow battery affords a high specific capacity of 33.0 Ah L-1 and a peak power density of 273 mW cm-2 . This work highlights the rational design of electroactive organics that can manipulate multi-electron transfer in a reversible way, which will pave the way to development of energy-dense, manageable and low-cost ARFBs.
Collapse
Affiliation(s)
- Jinghua Huang
- Key Laboratory of Fuel Cell Technology of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510641, P. R. China
| | - Shuzhi Hu
- Key Laboratory of Fuel Cell Technology of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510641, P. R. China.,School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, P. R. China
| | - Xianzhi Yuan
- Key Laboratory of Fuel Cell Technology of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510641, P. R. China
| | - Zhipeng Xiang
- Key Laboratory of Fuel Cell Technology of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510641, P. R. China
| | - Mingbao Huang
- Key Laboratory of Fuel Cell Technology of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510641, P. R. China
| | - Kai Wan
- Key Laboratory of Fuel Cell Technology of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510641, P. R. China
| | - Jinhua Piao
- School of Food Science and Engineering, South China University of Technology, Guangzhou, 510641, P. R. China
| | - Zhiyong Fu
- Key Laboratory of Fuel Cell Technology of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510641, P. R. China
| | - Zhenxing Liang
- Key Laboratory of Fuel Cell Technology of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510641, P. R. China
| |
Collapse
|