1
|
Zhang X, Zhang Y, Chen Y, Cheng J, Zhang J, Shang J, Chen Y, Liu Q, An Q, Feng Z. Microbubble-Enhanced Transdermal Drug Delivery Sonoelectric Patch. ACS APPLIED MATERIALS & INTERFACES 2024; 16:49069-49082. [PMID: 39236665 DOI: 10.1021/acsami.4c10049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/07/2024]
Abstract
Transdermal drug delivery systems are highly appealing as a convenient drug delivery manner applicable to a wide variety of drugs. While most delivery relies on only passive diffusion and suffers low transdermal efficiencies. Ultrasound motivation promotes drug transdermal penetration but still calls for improvement, because only a thin proportion of the ultrasound energy is applied on the drug delivery patch and most ultrasound energy is wasted in deeper portions of biotissues. In this work, we develop a transdermal patch for enhanced drug delivery. The combination of microsized air pockets and the piezoelectric soft structure enable the conversion of an intended proportion of ultrasound energy into electric energy. The intensified drug flow and synergistic ultrasound pressure and electric field function simultaneously to enhance drug transdermal delivery. The delivery efficacy is related to the power of the ultrasound motivation, the size of the microscopic air pockets, and the chemical structure of the drug molecules. The temperature of the patch within the delivery process remains in the safe range, and the mild temperature elevation causes color changes of the thermochromic patch, used to indicate effective ultrasound-patch matching. A model delivery patch for pain release is constructed, and animal experiments indicate that the drug blood concentrations are 100% higher than the delivery using only ultrasound and even more remarkably enhanced when compared to only electric-field-motivated delivery or static delivery without external motivations.
Collapse
Affiliation(s)
- Xinyue Zhang
- Engineering Research Center of Ministry of Education for Geological Carbon Storage and Low Carbon Utilization of Resources, Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences (Beijing), Beijing 100083, People's Republic of China
| | - Yihe Zhang
- Engineering Research Center of Ministry of Education for Geological Carbon Storage and Low Carbon Utilization of Resources, Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences (Beijing), Beijing 100083, People's Republic of China
| | - Yao Chen
- Engineering Research Center of Ministry of Education for Geological Carbon Storage and Low Carbon Utilization of Resources, Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences (Beijing), Beijing 100083, People's Republic of China
| | - Jiajun Cheng
- Engineering Research Center of Ministry of Education for Geological Carbon Storage and Low Carbon Utilization of Resources, Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences (Beijing), Beijing 100083, People's Republic of China
| | - Jiahe Zhang
- Engineering Research Center of Ministry of Education for Geological Carbon Storage and Low Carbon Utilization of Resources, Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences (Beijing), Beijing 100083, People's Republic of China
| | - Jing Shang
- Engineering Research Center of Ministry of Education for Geological Carbon Storage and Low Carbon Utilization of Resources, Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences (Beijing), Beijing 100083, People's Republic of China
| | - Yunfan Chen
- Engineering Research Center of Ministry of Education for Geological Carbon Storage and Low Carbon Utilization of Resources, Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences (Beijing), Beijing 100083, People's Republic of China
| | - Qi Liu
- Engineering Research Center of Ministry of Education for Geological Carbon Storage and Low Carbon Utilization of Resources, Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences (Beijing), Beijing 100083, People's Republic of China
| | - Qi An
- Engineering Research Center of Ministry of Education for Geological Carbon Storage and Low Carbon Utilization of Resources, Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences (Beijing), Beijing 100083, People's Republic of China
| | - Zeguo Feng
- Department of Pain, The First Medical Center of Chinese PLA General Hospital, Beijing 100853, People's Republic of China
| |
Collapse
|
2
|
Fukada K, Hayashi K. Thermally Degradable Water Diffusion Barrier Assembled by Gelatin and Beeswax toward Edible Electronics. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 39076078 DOI: 10.1021/acsami.4c08493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/31/2024]
Abstract
Making ingestible devices edible facilitates diagnosis and therapy inside the body without the risk of retention; however, food materials are generally soft, absorb water molecules, and are not suitable for electronic devices. Here, we fabricated an edible water diffusion barrier film made by gelatin-beeswax composites for the encapsulation of transient electronics. Hydrophobic beeswax and hydrophilic gelatin are inherently difficult to mix; therefore, we created an emulsion simply by raising the temperature high enough to melt the materials and vigorous stirring them. As they cool, the beeswax with a relatively high solidification temperature aggregates and forms microspheres, which increases the gelatin gel's viscoelasticity and immobilizes the emulsion structure in the film. The thermoresponsive gelatin imparts degradability to the barrier and its stickiness also enables transfer of metal patterned electronics. Furthermore, we designed an edible resonator on the film and demonstrated its operation in an abdominal phantom environment; the resonator was made to be degradable in a warm aqueous solution by optimizing the composition ratio of the gelatin and beeswax. Our findings provide insight into criteria for making transient electronics on hydrophilic substrates with hydrophobic water diffusion barriers. This proof-of-concept study expands the potential of operating edible electronics in aqueous environments in harmony with the human body and nature.
Collapse
Affiliation(s)
- Kenta Fukada
- NTT Device Technology Laboratories, NTT Corporation, 3-1 Morinosato, Wakamiya, Atsugi, Kanagawa 243-0198, Japan
| | - Katsuyoshi Hayashi
- NTT Device Technology Laboratories, NTT Corporation, 3-1 Morinosato, Wakamiya, Atsugi, Kanagawa 243-0198, Japan
| |
Collapse
|
3
|
Jia L, Li Y, Ren A, Xiang T, Zhou S. Degradable and Recyclable Hydrogels for Sustainable Bioelectronics. ACS APPLIED MATERIALS & INTERFACES 2024; 16:32887-32905. [PMID: 38904545 DOI: 10.1021/acsami.4c05663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/22/2024]
Abstract
Hydrogel bioelectronics has been widely used in wearable sensors, electronic skin, human-machine interfaces, and implantable tissue-electrode interfaces, providing great convenience for human health, safety, and education. The generation of electronic waste from bioelectronic devices jeopardizes human health and the natural environment. The development of degradable and recyclable hydrogels is recognized as a paradigm for realizing the next generation of environmentally friendly and sustainable bioelectronics. This review first summarizes the wide range of applications for bioelectronics, including wearable and implantable devices. Then, the employment of natural and synthetic polymers in hydrogel bioelectronics is discussed in terms of degradability and recyclability. Finally, this work provides constructive thoughts and perspectives on the current challenges toward hydrogel bioelectronics, providing valuable insights and guidance for the future evolution of sustainable hydrogel bioelectronics.
Collapse
Affiliation(s)
- Lianghao Jia
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu 610031, China
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Yuanhong Li
- Department of Orthodontics, Shanghai Stomatological Hospital, Shanghai Key Laboratory of Craniomaxillofacial Development and Diseases, Fudan University, Shanghai 200001, China
| | - Aobo Ren
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu 610031, China
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Tao Xiang
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu 610031, China
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Shaobing Zhou
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu 610031, China
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| |
Collapse
|
4
|
Jiang X, Wu H, Xiao A, Huang Y, Yu X, Chang L. Recent Advances in Bioelectronics for Localized Drug Delivery. SMALL METHODS 2024; 8:e2301068. [PMID: 37759393 DOI: 10.1002/smtd.202301068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 09/12/2023] [Indexed: 09/29/2023]
Abstract
The last decade has witnessed remarkable advancements in bioelectronics, ushering in a new era of wearable and implantable devices for drug delivery. By utilizing miniaturized system design and/or flexible materials, bioelectronics illustrates ideal integration with target organs and tissues, making them ideal platforms for localized drug delivery. Furthermore, the development of electrically assisted drug delivery systems has enhanced the efficiency and safety of therapeutic administration, particularly for the macromolecules that encounter additional challenges in penetrating biological barriers. In this review, a concise overview of recent progress in bioelectronic devices for in vivo localized drug delivery, with highlights on the latest trends in device design, working principles, and their corresponding functionalities, is provided. The reported systems based on their targeted delivery locations as wearable systems, ingestible systems, and implantable systems are categorized. Each category is introduced in detail by highlighting the special requirements for devices and the corresponding solutions. The remaining challenges in this field and future directions are also discussed.
Collapse
Affiliation(s)
- Xinran Jiang
- Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100191, China
| | - Han Wu
- Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100191, China
| | - Ao Xiao
- Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100191, China
| | - Ya Huang
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, 999077, China
- Hong Kong Centre for Cerebro-Cardiovascular Health Engineering, Hong Kong, 999077, China
| | - Xinge Yu
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, 999077, China
- Hong Kong Centre for Cerebro-Cardiovascular Health Engineering, Hong Kong, 999077, China
- Shenzhen Research Institute, City University of Hong Kong, Shenzhen, 518057, China
| | - Lingqian Chang
- Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100191, China
| |
Collapse
|
5
|
Li J, Ding Q, Wang H, Wu Z, Gui X, Li C, Hu N, Tao K, Wu J. Engineering Smart Composite Hydrogels for Wearable Disease Monitoring. NANO-MICRO LETTERS 2023; 15:105. [PMID: 37060483 PMCID: PMC10105367 DOI: 10.1007/s40820-023-01079-5] [Citation(s) in RCA: 46] [Impact Index Per Article: 46.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 03/16/2023] [Indexed: 05/31/2023]
Abstract
Growing health awareness triggers the public's concern about health problems. People want a timely and comprehensive picture of their condition without frequent trips to the hospital for costly and cumbersome general check-ups. The wearable technique provides a continuous measurement method for health monitoring by tracking a person's physiological data and analyzing it locally or remotely. During the health monitoring process, different kinds of sensors convert physiological signals into electrical or optical signals that can be recorded and transmitted, consequently playing a crucial role in wearable techniques. Wearable application scenarios usually require sensors to possess excellent flexibility and stretchability. Thus, designing flexible and stretchable sensors with reliable performance is the key to wearable technology. Smart composite hydrogels, which have tunable electrical properties, mechanical properties, biocompatibility, and multi-stimulus sensitivity, are one of the best sensitive materials for wearable health monitoring. This review summarizes the common synthetic and performance optimization strategies of smart composite hydrogels and focuses on the current application of smart composite hydrogels in the field of wearable health monitoring.
Collapse
Affiliation(s)
- Jianye Li
- State Key Laboratory of Optoelectronic Materials and Technologies and the Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
| | - Qiongling Ding
- State Key Laboratory of Optoelectronic Materials and Technologies and the Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
| | - Hao Wang
- State Key Laboratory of Optoelectronic Materials and Technologies and the Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
| | - Zixuan Wu
- State Key Laboratory of Optoelectronic Materials and Technologies and the Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
| | - Xuchun Gui
- State Key Laboratory of Optoelectronic Materials and Technologies and the Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
| | - Chunwei Li
- Department of Otolaryngology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
| | - Ning Hu
- Department of Chemistry, Zhejiang University, Hangzhou, 310058, People's Republic of China.
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 311215, People's Republic of China.
| | - Kai Tao
- Ministry of Education Key Laboratory of Micro and Nano Systems for Aerospace, Northwestern Polytechnical University, Xi'an, 710072, People's Republic of China.
| | - Jin Wu
- State Key Laboratory of Optoelectronic Materials and Technologies and the Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China.
| |
Collapse
|
6
|
Huang H, Lyu Y, Nan K. Soft robot-enabled controlled release of oral drug formulations. SOFT MATTER 2023; 19:1269-1281. [PMID: 36723379 DOI: 10.1039/d2sm01624a] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The creation of highly effective oral drug delivery systems (ODDSs) has long been the main objective of pharmaceutical research. Multidisciplinary efforts involving materials, electronics, control, and pharmaceutical sciences encourage the development of robot-enabled ODDSs. Compared with conventional rigid robots, soft robots potentially offer better mechanical compliance and biocompatibility with biological tissues, more versatile shape control and maneuverability, and multifunctionality. In this paper, we first describe and highlight the importance of manipulating drug release kinetics, i.e. pharmaceutical kinetics. We then introduce an overview of state-of-the-art soft robot-based ODDSs comprising resident, shape-programming, locomotive, and integrated soft robots. Finally, the challenges and outlook regarding future soft robot-based ODDS development are discussed.
Collapse
Affiliation(s)
- Hao Huang
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
| | - Yidan Lyu
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China.
| | - Kewang Nan
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
7
|
Yang M, Chen P, Qu X, Zhang F, Ning S, Ma L, Yang K, Su Y, Zang J, Jiang W, Yu T, Dong X, Luo Z. Robust Neural Interfaces with Photopatternable, Bioadhesive, and Highly Conductive Hydrogels for Stable Chronic Neuromodulation. ACS NANO 2023; 17:885-895. [PMID: 36629747 DOI: 10.1021/acsnano.2c04606] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
A robust neural interface with intimate electrical coupling between neural electrodes and neural tissues is critical for stable chronic neuromodulation. The development of bioadhesive hydrogel neural electrodes is a potential approach for tightly fixing the neural electrodes on the epineurium surface to construct a robust neural interface. Herein, we construct a photopatternable, antifouling, conductive (∼6 S cm-1), bioadhesive (interfacial toughness ∼100 J m-2), soft, and elastic (∼290% strain, Young's modulus of 7.25 kPa) hydrogel to establish a robust neural interface for bioelectronics. The UV-sensitive zwitterionic monomer can facilitate the formation of an electrostatic-assembled conductive polymer PEDOT:PSS network, and it can be further photo-cross-linked into elastic polymer network. Such a semi-interpenetrating network endows the hydrogel electrodes with good conductivity. Especially, the photopatternable feature enables the facile microfabrication processes of multifunctional hydrogel (MH) interface with a characteristic size of 50 μm. The MH neural electrodes, which show improved performance of impedance, charge storage capacity, and charge injection capability, can produce effective electrical stimulation with high current density (1 mA cm-2) at ultralow voltages (±25 mV). The MH interface could realize high-efficient electrical communication at the chronic neural interface for stable recording and stimulation of a sciatic nerve in the rat model.
Collapse
Affiliation(s)
- Ming Yang
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan430074, China
| | - Ping Chen
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan430074, China
| | - Xinyu Qu
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing211816, China
| | - Fuchi Zhang
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan430030, China
| | - Shan Ning
- School of Optical and Electronic Information and Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan430074, China
| | - Li Ma
- School of Physics and Technology, Wuhan University, Wuhan430072, China
| | - Kun Yang
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan430074, China
| | - Yuming Su
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan430074, China
| | - Jianfeng Zang
- School of Optical and Electronic Information and Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan430074, China
| | - Wei Jiang
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan430030, China
| | - Ting Yu
- School of Physics and Technology, Wuhan University, Wuhan430072, China
| | - Xiaochen Dong
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing211816, China
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou221116, China
| | - Zhiqiang Luo
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan430074, China
| |
Collapse
|
8
|
Yasunaga T, Fukuoka T, Yamaguchi A, Ogawa N, Yamamoto H. Microtaggant Technology for Ensuring Traceability of Pharmaceutical Formulations: Potential for Anti-counterfeiting Measures, Distribution and Medication Management. YAKUGAKU ZASSHI 2022; 142:1255-1265. [DOI: 10.1248/yakushi.22-00147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Toshiya Yasunaga
- Laboratory of Pharmaceutical Engineering, School of Pharmacy, Aichi Gakuin University
| | | | - Akinobu Yamaguchi
- Laboratory of Advanced Science and Technology for Industry, University of Hyogo
| | - Noriko Ogawa
- Laboratory of Pharmaceutical Engineering, School of Pharmacy, Aichi Gakuin University
| | - Hiromitsu Yamamoto
- Laboratory of Pharmaceutical Engineering, School of Pharmacy, Aichi Gakuin University
| |
Collapse
|
9
|
Shariati A, Chegini Z, Ghaznavi-Rad E, Zare EN, Hosseini SM. PLGA-Based Nanoplatforms in Drug Delivery for Inhibition and Destruction of Microbial Biofilm. Front Cell Infect Microbiol 2022; 12:926363. [PMID: 35800390 PMCID: PMC9253276 DOI: 10.3389/fcimb.2022.926363] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 05/23/2022] [Indexed: 12/12/2022] Open
Abstract
The biofilm community of microorganisms has been identified as the dominant mode of microbial growth in nature and a common characteristic of different microorganisms such as Pseudomonas aeruginosa, Staphylococcus aureus, and Staphylococcus epidermidis. The biofilm structure helps in the protection from environmental threats including host immune system and antimicrobial agents. Thus, the biofilm community has led to a higher prevalence of multidrug-resistant (MDR) strains in recent years. In this regard, the use of a new class of antibiotics, natural compounds, and anti-biofilm enzymes has been considered for the destruction of the microbial biofilm. However, different drawbacks such as low penetration, high susceptibility to degradation, instability, and poor solubility in aqueous solutions limit the use of anti-biofilm agents (ABAs) in a clinical setting. As such, recent studies have been using poly lactic-co-glycolic acid (PLGA)-based nanoplatforms (PLGA NPFs) for delivery of ABAs that have reported promising results. These particles, due to proper drug loading and release kinetics, could suppress microbial attachment, colonization, and biofilm formation for a long time. Additionally, PLGA NPFs, because of the high drug-loading efficiencies, hydrophilic surface, negative charge, and electrostatic interaction, lead to effective penetration of antibiotics to the deeper layer of the biofilm, thereby eliminating the microbial biofilm. Thus, PLGA NPFs could be considered as a potential candidate for coating catheters and other medical material surfaces for inhibition and destruction of the microbial biofilm. However, the exact interaction of PLGA NPFs and the microbial biofilm should be evaluated in animal studies. Additionally, a future goal will be to develop PLGA formulations as systems that can be used for the treatment of the MDR microbial biofilm, since the exact interactions of PLGA NPFs and these biofilm structures are not elucidated. In the present review article, we have discussed various aspects of PLGA usage for inhibition and destruction of the microbial biofilm along with different methods and procedures that have been used for improving PLGA NPF efficacy against the microbial biofilm.
Collapse
Affiliation(s)
- Aref Shariati
- Molecular and Medicine Research Center, Khomein University of Medical Sciences, Khomein, Iran
| | - Zahra Chegini
- Department of Microbiology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Ehsanollah Ghaznavi-Rad
- Department of Microbiology, Faculty of Medicine, Arak University of Medical Sciences, Arak, Iran
| | | | - Seyed Mostafa Hosseini
- Department of Microbiology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
- *Correspondence: Seyed Mostafa Hosseini,
| |
Collapse
|
10
|
Liang Q, Xia X, Sun X, Yu D, Huang X, Han G, Mugo SM, Chen W, Zhang Q. Highly Stretchable Hydrogels as Wearable and Implantable Sensors for Recording Physiological and Brain Neural Signals. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2201059. [PMID: 35362243 PMCID: PMC9165511 DOI: 10.1002/advs.202201059] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Indexed: 06/01/2023]
Abstract
Recording electrophysiological information such as brain neural signals is of great importance in health monitoring and disease diagnosis. However, foreign body response and performance loss over time are major challenges stemming from the chemomechanical mismatch between sensors and tissues. Herein, microgels are utilized as large crosslinking centers in hydrogel networks to modulate the tradeoff between modulus and fatigue resistance/stretchability for producing hydrogels that closely match chemomechanical properties of neural tissues. The hydrogels exhibit notably different characteristics compared to nanoparticles reinforced hydrogels. The hydrogels exhibit relatively low modulus, good stretchability, and outstanding fatigue resistance. It is demonstrated that the hydrogels are well suited for fashioning into wearable and implantable sensors that can obtain physiological pressure signals, record the local field potentials in rat brains, and transmit signals through the injured peripheral nerves of rats. The hydrogels exhibit good chemomechanical match to tissues, negligible foreign body response, and minimal signal attenuation over an extended time, and as such is successfully demonstrated for use as long-term implantable sensory devices. This work facilitates a deeper understanding of biohybrid interfaces, while also advancing the technical design concepts for implantable neural probes that efficiently obtain physiological information.
Collapse
Affiliation(s)
- Quanduo Liang
- State Key Laboratory of Electroanalytical ChemistryChangchun Institute of Applied ChemistryChinese Academy of SciencesChangchun130022P. R. China
- School of Applied Chemistry and EngineeringUniversity of Science and Technology of ChinaHefei230026P. R. China
| | - Xiangjiao Xia
- State Key Laboratory of Electroanalytical ChemistryChangchun Institute of Applied ChemistryChinese Academy of SciencesChangchun130022P. R. China
- School of Applied Chemistry and EngineeringUniversity of Science and Technology of ChinaHefei230026P. R. China
| | - Xiguang Sun
- Bethune First Hospital of Jilin UniversityNo. 1, Xinmin StreetChangchun130061P. R. China
- Department of Oral GeriatricsHospital of StomatologyJilin UniversityChangchun130021P. R. China
| | - Dehai Yu
- Bethune First Hospital of Jilin UniversityNo. 1, Xinmin StreetChangchun130061P. R. China
- Department of Oral GeriatricsHospital of StomatologyJilin UniversityChangchun130021P. R. China
| | - Xinrui Huang
- Bethune First Hospital of Jilin UniversityNo. 1, Xinmin StreetChangchun130061P. R. China
- Department of Oral GeriatricsHospital of StomatologyJilin UniversityChangchun130021P. R. China
| | - Guanghong Han
- Department of Oral GeriatricsHospital of StomatologyJilin UniversityChangchun130021P. R. China
| | - Samuel M. Mugo
- Department of Physical SciencesMacEwan UniversityEdmontonABT5J4S2Canada
| | - Wei Chen
- State Key Laboratory of Electroanalytical ChemistryChangchun Institute of Applied ChemistryChinese Academy of SciencesChangchun130022P. R. China
- School of Applied Chemistry and EngineeringUniversity of Science and Technology of ChinaHefei230026P. R. China
| | - Qiang Zhang
- State Key Laboratory of Electroanalytical ChemistryChangchun Institute of Applied ChemistryChinese Academy of SciencesChangchun130022P. R. China
- School of Applied Chemistry and EngineeringUniversity of Science and Technology of ChinaHefei230026P. R. China
| |
Collapse
|
11
|
Chen Y, An Q, Teng K, Zhang Y, Zhao Y. Latest development and versatile applications of highly integrating drug delivery patch. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
12
|
Lee Y, Kim H, Kim Y, Noh S, Chun B, Kim J, Park C, Choi M, Park K, Lee J, Seo J. A multifunctional electronic suture for continuous strain monitoring and on-demand drug release. NANOSCALE 2021; 13:18112-18124. [PMID: 34604894 DOI: 10.1039/d1nr04508c] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Surgical sutures are widely used for closing wounds in skin. However, the monitoring of wound integrity and promoting tissue regeneration at the same time still remains a challenge. To address this, we developed a drug-releasing electronic suture system (DRESS) to monitor the suture integrity in real-time and enhance tissue regeneration by triggered drug release. DRESS was fabricated by using a single fiber with a core-shell structure consisting of a stretchable conductive fiber core and a thermoresponsive polymer shell containing drugs. The highly conductive fiber core acts as a strain sensor that enables continuous monitoring of suture strain with high sensitivity (a gauge factor of ∼686) and mechanical durability (being able to endure more than 3000 stretching cycles). The thermoresponsive shell layer composed of flexible poly(vinyl alcohol) (PVA) grafted onto poly(N-isopropylacrylamide) (PNIPAm) facilitates on-demand drug release via Joule heating. The results of an in vitro scratch assay showed a 66% decrease in wound area upon heat-activation after 48 hours demonstrating the stimuli-responsive therapeutic efficacy of DRESS by promoting cell migration. Moreover, ex vivo testing on porcine skin demonstrated the applicability of DRESS as a electronic suture. The approach used for DRESS provides insight into multifunctional sutures and offers additional therapeutic and diagnostic options for clinical applications.
Collapse
Affiliation(s)
- Yeontaek Lee
- School of Electrical and Electronic Engineering, Yonsei University, Seoul 03722, Republic of Korea.
| | - Hwajoong Kim
- Department of Robotics Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu-si, 42988, Republic of Korea.
| | - Yeonju Kim
- School of Electrical and Electronic Engineering, Yonsei University, Seoul 03722, Republic of Korea.
| | - Seungbeom Noh
- Department of Robotics Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu-si, 42988, Republic of Korea.
| | - Beomsoo Chun
- School of Electrical and Electronic Engineering, Yonsei University, Seoul 03722, Republic of Korea.
| | - Jinho Kim
- Department of Robotics Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu-si, 42988, Republic of Korea.
| | - Charnmin Park
- School of Electrical and Electronic Engineering, Yonsei University, Seoul 03722, Republic of Korea.
| | - Minyoung Choi
- Department of Robotics Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu-si, 42988, Republic of Korea.
| | - Kijun Park
- School of Electrical and Electronic Engineering, Yonsei University, Seoul 03722, Republic of Korea.
| | - Jaehong Lee
- Department of Robotics Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu-si, 42988, Republic of Korea.
| | - Jungmok Seo
- School of Electrical and Electronic Engineering, Yonsei University, Seoul 03722, Republic of Korea.
| |
Collapse
|