1
|
Sutter E, Kisslinger K, Wu L, Zhu Y, Yang S, Camino F, Nam CY, Sutter P. Single Crystalline GeSe Van Der Waals Ribbons With Uniform Layer Stacking, High Carrier Mobility, and Adjustable Edge Morphology. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024:e2406129. [PMID: 39329465 DOI: 10.1002/smll.202406129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 09/08/2024] [Indexed: 09/28/2024]
Abstract
Performance of the group IV monochalcogenide GeSe in solar cells, electronic, and optoelectronic devices is expected to improve when high-quality single crystalline material is used rather than polycrystalline films. Crystalline flakes represent an attractive alternative to bulk single crystals as their synthesis may be developed to be scalable, faster, and with higher overall yield. However, large - and especially large and thin - single crystal flakes are notoriously hard to synthesize. Here it is demonstrated that vapor-liquid-solid growth combined with direct lateral vapor-solid incorporation produces high-quality single crystalline GeSe ribbons with tens of micrometers size and controllable thickness. Electron microscopy shows that the ribbons exhibit perfect equilibrium (AB) van der Waals stacking order without extended defects across the entire thickness, in contrast to the conventional case of substrate-supported flakes where material is added via layer-by-layer nucleation and growth on the basal plane. Electrical measurements show anisotropic transport and a high Hall mobility of 85 cm2 V-1 s-1, on par with the best single crystals to date. Growth from mixed GeSe and SnSe vapors, finally, yields ribbons with unchanged structure and composition but with jagged edges, promising for applications that rely on ample chemically active edge sites, such as catalysis or photocatalysis.
Collapse
Affiliation(s)
- Eli Sutter
- Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
- Nebraska Center for Materials and Nanoscience, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
| | - Kim Kisslinger
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, NY, 11973, USA
| | - Lijun Wu
- Condensed Matter Physics and Materials Science Department, Brookhaven National Laboratory, Upton, NY, 11973, USA
| | - Yimei Zhu
- Condensed Matter Physics and Materials Science Department, Brookhaven National Laboratory, Upton, NY, 11973, USA
| | - Seunghoon Yang
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, NY, 11973, USA
- Department of Electrical and Computer Engineering, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
| | - Fernando Camino
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, NY, 11973, USA
| | - Chang-Yong Nam
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, NY, 11973, USA
| | - Peter Sutter
- Department of Electrical and Computer Engineering, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
| |
Collapse
|
2
|
Song H, Ji S, Kang SG, Shin N. Contact Geometry-Dependent Excitonic Emission in Mixed-Dimensional van der Waals Heterostructures. ACS NANO 2024; 18:19179-19189. [PMID: 38990759 PMCID: PMC11271179 DOI: 10.1021/acsnano.4c04770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 07/03/2024] [Accepted: 07/05/2024] [Indexed: 07/13/2024]
Abstract
Manipulation of excitonic emission in two-dimensional (2D) materials via the assembly of van der Waals (vdW) heterostructures unlocks numerous opportunities for engineering their photonic and optoelectronic properties. In this work, we introduce a category of mixed-dimensional vdW heterostructures, integrating 2D materials with one-dimensional (1D) semiconductor nanowires composed of vdW layers. This configuration induces spatially distinct localized excitonic emissions through a tailored interfacial heterolayer atomic arrangement. By precisely adjusting both the axial and sidewall facet orientations of bottom-up grown PbI2 vdW nanowires and by transferring them onto 1L WSe2 flakes, we establish vdW heterointerfaces with either perpendicular or parallel interatomic arrangements. The edge-standing heterojunction, featuring perpendicular PbI2 layers atop WSe2, promotes efficient charge transfer through the edges and coupled localized states, leading to an enhanced redshifted excitonic emission. Conversely, the layer-by-layer heterointerface, where PbI2 layers are in parallel contact with WSe2, exhibits substantial quenching due to deep midgap states in a type-II alignment, as evidenced by power-dependent measurements and first-principle calculations. Our results introduce a method for actively manipulating excitonic emissions in 2D transition metal dichalcogenides (TMDs) through edge engineering, highlighting their potential in the development of various quantum devices.
Collapse
Affiliation(s)
- Hyukjin Song
- Department
of Chemical Engineering, Inha University, Incheon 22212, Republic of Korea
- Program
in Smart Digital Engineering, Inha University, Incheon 22212, Republic of Korea
| | - Sumin Ji
- Program
in Smart Digital Engineering, Inha University, Incheon 22212, Republic of Korea
- Program
in Biomedical Science and Engineering, Inha
University, Incheon 22212, Republic of Korea
| | - Sung Gu Kang
- School
of Chemical Engineering, University of Ulsan, Ulsan 680-749, Republic of Korea
| | - Naechul Shin
- Department
of Chemical Engineering, Inha University, Incheon 22212, Republic of Korea
- Program
in Smart Digital Engineering, Inha University, Incheon 22212, Republic of Korea
- Program
in Biomedical Science and Engineering, Inha
University, Incheon 22212, Republic of Korea
| |
Collapse
|
3
|
Sutter E, Kisslinger K, Unocic RR, Burns K, Hachtel J, Sutter P. Photonics in Multimaterial Lateral Heterostructures Combining Group IV Chalcogenide van der Waals Semiconductors. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2307372. [PMID: 38054819 DOI: 10.1002/smll.202307372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 11/25/2023] [Indexed: 12/07/2023]
Abstract
Lateral heterostructures combining two multilayer group IV chalcogenide van der Waals semiconductors have attracted interest for optoelectronics, twistronics, and valleytronics, owing to their structural anisotropy, bulk-like electronic properties, enhanced optical thickness, and vertical interfaces enabling in-plane charge manipulation/separation, perpendicular to the trajectory of incident light. Group IV monochalcogenides support propagating photonic waveguide modes, but their interference gives rise to complex light emission patterns throughout the visible/near-infrared range both in uniform flakes and single-interface lateral heterostructures. Here, this work demonstrates the judicious integration of pure and alloyed monochalcogenide crystals into multimaterial heterostructures with unique photonic properties, notably the ability to select photonic modes with targeted discrete energies through geometric factors rather than band engineering. SnS-GeS1-xSex-GeSe-GeS1-xSex heterostructures with a GeS1-xSex active layer sandwiched laterally between GeSe and SnS, semiconductors with similar optical constants but smaller bandgaps, were designed and realized via sequential vapor transport synthesis. Raman spectroscopy, electron microscopy/diffraction, and energy-dispersive X-ray spectroscopy confirm a high crystal quality of the laterally stitched components with sharp interfaces. Nanometer-scale cathodoluminescence spectroscopy provides evidence for a facile transfer of electron-hole pairs across the lateral interfaces and demonstrates the selection of photon emission at discrete energies in the laterally embedded active (GeS1- xSex) part of the heterostructure.
Collapse
Affiliation(s)
- Eli Sutter
- Department of Mechanical & Materials Engineering, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
| | - Kim Kisslinger
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, NY, 11973, USA
| | - Raymond R Unocic
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN, 37830, USA
| | - Kory Burns
- Department of Materials Science & Engineering, University of Virginia, Charlottesville, VA, 22904, USA
| | - Jordan Hachtel
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN, 37830, USA
| | - Peter Sutter
- Department of Electrical & Computer Engineering, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
| |
Collapse
|
4
|
Sutter P, Sutter E. Tunable 1D van der Waals Nanostructures by Vapor-Liquid-Solid Growth. Acc Chem Res 2023; 56:3235-3245. [PMID: 37938893 DOI: 10.1021/acs.accounts.3c00502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2023]
Abstract
ConspectusVapor-liquid-solid (VLS) growth using molten metal catalysts has traditionally been used to synthesize nanowires from different 3D-crystalline semiconductors. With their anisotropic structure and properties, 2D/layered semiconductors create additional opportunities for materials design when shaped into 1D nanostructures. In contrast to hexagonal 2D crystals such as graphene, h-BN, and transition metal dichalcogenides, which tend to roll up into nanotubes, VLS growth of layered group III and group IV monochalcogenides produces diverse nanowire and nanoribbon morphologies that crystallize in a bulk-like layered structure with nanometer-scale footprint and lengths exceeding tens of micrometers. In this Account, we discuss the achievable morphologies, the mechanisms governing key structural features, and the emerging functional properties of these 1D van der Waals (vdW) architectures. Recent results highlight rich sets of phenomena that qualify these materials as a distinct class of nanostructures, far beyond a mere extension of 3D-crystalline VLS nanowires to vdW crystals.The main difference between 3D- and vdW crystals, the pronounced in-plane/cross-plane anisotropy of layered materials, motivates investigating the factors governing the layer orientation. Recent research suggests that the VLS catalyst plays a key role, and that its modification via the choice of chalcogens or through modifiers added to the growth precursor can switch both the nanostructure morphology and vdW layering. In many instances, ordinary layered structures are not formed but VLS growth is dominated by morphologies─often containing a crystal defect─that present reduced or vanishing layer nucleation barriers, thus achieving fast growth and emerging as the principal synthesis product. Prominent defect morphologies include vdW bicrystals growing by a twin-plane reentrant process and chiral nanowires formed by spiral growth around an axial screw dislocation. The latter carry particular promise, e.g., for twistronics. In vdW nanowires, Eshelby twist─a progressive crystal rotation caused by the dislocation stress field─translates into interlayer twist that is precisely tunable via the wire diameter. Projected onto a helicoid vdW interface, the resulting twist moirés not only modify the electronic structure but also realize configurations without equivalent in planar systems, such as continuously variable twist and twist homojunctions.1D vdW nanostructures derive distinct functionality from both their layered structure and embedded defects. Correlated electron microscopy methods including imaging, nanobeam diffraction, as well as electron-stimulated local absorption and luminescence spectroscopies combine to an exceptionally powerful probe of this emerging functionality, identifying twist-moiré induced electronic modulations and chiral photonic modes, demonstrating the benign nature of defects in optoelectronics, and uncovering ferroelectricity via symmetry-breaking by single-layer stacking faults in vdW nanowires. Far-reaching possibilities for tuning crystal structure, morphology, and defects create a rich playground for the discovery of new functional nanomaterials based on vdW crystals. Given the prominence of defects and extensive prospects for controlling their character and placement during synthesis, 1D vdW nanostructures have the potential to cause a paradigm shift in the science of electronic materials, replacing the traditional strategy of suppressing crystal imperfections with an alternative philosophy that embraces the use of individual defects with designed properties as drivers of technology.
Collapse
Affiliation(s)
- Peter Sutter
- Department of Electrical & Computer Engineering, University of Nebraska-Lincoln, Lincoln, Nebraska 68588, United States
| | - Eli Sutter
- Department of Mechanical & Materials Engineering, University of Nebraska-Lincoln, Lincoln, Nebraska 68588, United States
- Nebraska Center for Materials and Nanoscience, University of Nebraska-Lincoln, Lincoln, Nebraska 68588, United States
| |
Collapse
|
5
|
Sutter P, Khosravi-Khorashad L, Ciobanu CV, Sutter E. Chirality and dislocation effects in single nanostructures probed by whispering gallery modes. MATERIALS HORIZONS 2023; 10:3830-3839. [PMID: 37424314 DOI: 10.1039/d3mh00693j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
Nanostructures such as nanoribbons and -wires are of interest as components for building integrated photonic systems, especially if their basic functionality as dielectric waveguides can be extended by chiroptical phenomena or modifications of their optoelectronic properties by extended defects, such as dislocations. However, conventional optical measurements typically require monodisperse (and chiral) ensembles, and identifying emerging chiral optical activity or dislocation effects in single nanostructures has remained an unmet challenge. Here we show that whispering gallery modes can probe chirality and dislocation effects in single nanowires. Wires of the van der Waals semiconductor germanium(II) sulfide (GeS), obtained by vapor-liquid-solid growth, invariably form as growth spirals around a single screw dislocation that gives rise to a chiral structure and can modify the electronic properties. Cathodoluminescence spectroscopy on single tapered GeS nanowires containing joined dislocated and defect-free segments, augmented by numerical simulations and ab-initio calculations, identifies chiral whispering gallery modes as well as a pronounced modulation of the electronic structure attributed to the screw dislocation. Our results establish chiral light-matter interactions and dislocation-induced electronic modifications in single nanostructures, paving the way for their application in multifunctional photonic architectures.
Collapse
Affiliation(s)
- Peter Sutter
- Department of Electrical and Computer Engineering, University of Nebraska-Lincoln, Lincoln, NE 68588, USA.
| | | | - Cristian V Ciobanu
- Department of Mechanical Engineering, Colorado School of Mines, Golden, CO 80401, USA
| | - Eli Sutter
- Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln, Lincoln, NE 68588, USA.
- Nebraska Center for Materials and Nanoscience, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
| |
Collapse
|
6
|
Li L, Fang S, Yu R, Chen R, Wang H, Gao X, Zha W, Yu X, Jiang L, Zhu D, Xiong Y, Liao YH, Zheng D, Yang WX, Miao J. Fast near-infrared photodetectors from p-type SnSe nanoribbons. NANOTECHNOLOGY 2023; 34:245202. [PMID: 36881863 DOI: 10.1088/1361-6528/acc1eb] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 03/07/2023] [Indexed: 06/18/2023]
Abstract
Low-dimensional tin selenide nanoribbons (SnSe NRs) show a wide range of applications in optoelectronics fields such as optical switches, photodetectors, and photovoltaic devices due to the suitable band gap, strong light-matter interaction, and high carrier mobility. However, it is still challenging to grow high-quality SnSe NRs for high-performance photodetectors so far. In this work, we successfully synthesized high-quality p-type SnSe NRs by chemical vapor deposition and then fabricated near-infrared photodetectors. The SnSe NR photodetectors show a high responsivity of 376.71 A W-1, external quantum efficiency of 5.65 × 104%, and detectivity of 8.66 × 1011Jones. In addition, the devices show a fast response time with rise and fall time of up to 43μs and 57μs, respectively. Furthermore, the spatially resolved scanning photocurrent mapping shows very strong photocurrent at the metal-semiconductor contact regions, as well as fast generation-recombination photocurrent signals. This work demonstrated that p-type SnSe NRs are promising material candidates for broad-spectrum and fast-response optoelectronic devices.
Collapse
Affiliation(s)
- Long Li
- School of Physics and Optoelectronic Engineering, Yangtze University, Jingzhou 434023, People's Republic of China
| | - Suhui Fang
- School of Physics and Optoelectronic Engineering, Yangtze University, Jingzhou 434023, People's Republic of China
| | - Ranran Yu
- School of Physics and Optoelectronic Engineering, Yangtze University, Jingzhou 434023, People's Republic of China
| | - Ruoling Chen
- School of Physics and Optoelectronic Engineering, Yangtze University, Jingzhou 434023, People's Republic of China
| | - Hailu Wang
- State Key Laboratory of Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai 200083, People's Republic of China
- Nantong Academy of Intelligent Sensing, No. 60 Chongzhou Road, Nantong 226009, People's Republic of China
| | - Xiaofeng Gao
- School of Physics and Optoelectronic Engineering, Yangtze University, Jingzhou 434023, People's Republic of China
| | - Wenjing Zha
- School of Physics and Optoelectronic Engineering, Yangtze University, Jingzhou 434023, People's Republic of China
| | - Xiangxiang Yu
- School of Physics and Optoelectronic Engineering, Yangtze University, Jingzhou 434023, People's Republic of China
| | - Long Jiang
- School of Physics and Optoelectronic Engineering, Yangtze University, Jingzhou 434023, People's Republic of China
| | - Desheng Zhu
- School of Physics and Optoelectronic Engineering, Yangtze University, Jingzhou 434023, People's Republic of China
| | - Yan Xiong
- School of Physics and Optoelectronic Engineering, Yangtze University, Jingzhou 434023, People's Republic of China
| | - Yan-Hua Liao
- School of Mathematics and Physics, Hubei Polytechnic University, Huangshi 435003, People's Republic of China
| | - Dingshan Zheng
- School of Physics and Optoelectronic Engineering, Yangtze University, Jingzhou 434023, People's Republic of China
| | - Wen-Xing Yang
- School of Physics and Optoelectronic Engineering, Yangtze University, Jingzhou 434023, People's Republic of China
| | - Jinshui Miao
- State Key Laboratory of Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai 200083, People's Republic of China
- Nantong Academy of Intelligent Sensing, No. 60 Chongzhou Road, Nantong 226009, People's Republic of China
| |
Collapse
|
7
|
Sutter E, Komsa HP, Puretzky AA, Unocic RR, Sutter P. Stacking Fault Induced Symmetry Breaking in van der Waals Nanowires. ACS NANO 2022; 16:21199-21207. [PMID: 36413759 DOI: 10.1021/acsnano.2c09172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
While traditional ferroelectrics are based on polar crystals in bulk or thin film form, two-dimensional and layered materials can support mechanisms for symmetry breaking between centrosymmetric building blocks, e.g., by creating low-symmetry interfaces in van der Waals stacks. Here, we introduce an approach toward symmetry breaking in van der Waals crystals that relies on the spontaneous incorporation of stacking faults in a nonpolar bulk layer sequence. The concept is realized in nanowires consisting of Se-rich group IV monochalcogenide (GeSe1-xSx) alloys, obtained by vapor-liquid-solid growth. The single crystalline wires adopt a layered structure in which the nonpolar A-B bulk stacking along the nanowire axis is interrupted by single-layer stacking faults with local A-A' stacking. Density functional theory explains this behavior by a reduced stacking fault formation energy in GeSe (or Se-rich GeSe1-xSx alloys). Computations demonstrate that, similar to monochalcogenide monolayers, the inserted A-layers should show a spontaneous electric polarization with a switching barrier consistent with a Curie temperature above room temperature. Second-harmonic generation signals are consistent with a variable density of stacking faults along the wires. Our results point to possible routes for designing ferroelectrics via the layer stacking in van der Waals crystals.
Collapse
Affiliation(s)
- Eli Sutter
- Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln, Lincoln, Nebraska68588, United States
- Nebraska Center for Materials and Nanoscience, University of Nebraska-Lincoln, Lincoln, Nebraska68588, United States
| | - Hannu-Pekka Komsa
- Faculty of Information Technology and Electrical Engineering, University of Oulu, FI-90014, Oulu, Finland
| | - Alexander A Puretzky
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee37830, United States
| | - Raymond R Unocic
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee37830, United States
| | - Peter Sutter
- Department of Electrical and Computer Engineering, University of Nebraska-Lincoln, Lincoln, Nebraska68588, United States
| |
Collapse
|
8
|
Sutter E, French JS, Komsa HP, Sutter P. 1D Germanium Sulfide van der Waals Bicrystals by Vapor-Liquid-Solid Growth. ACS NANO 2022; 16:3735-3743. [PMID: 35147417 DOI: 10.1021/acsnano.1c07349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Defects in two-dimensional and layered materials have attracted interest for realizing properties different from those of perfect crystals. Even stronger links between defect formation, fast growth, and emerging functionality can be found in nanostructures of van der Waals crystals, but only a few prevalent morphologies and defect-controlled synthesis processes have been identified. Here, we show that in vapor-liquid-solid growth of 1D van der Waals nanostructures, the catalyst controls the selection of the predominant (fast-growing) morphologies. Growth of layered GeS over Bi catalysts leads to two coexisting nanostructure types: chiral nanowires carrying axial screw dislocations and bicrystal nanoribbons where a central twin plane facilitates rapid growth. While Au catalysts produce exclusively dislocated nanowires, their modification with an additive triggers a switch to twinned bicrystal ribbons. Nanoscale spectroscopy shows that, while supporting fast growth, the twin defects in the distinctive layered bicrystals are electronically benign and free of nonradiative recombination centers.
Collapse
Affiliation(s)
- Eli Sutter
- Department of Mechanical and Materials Engineering and Nebraska Center for Materials and Nanoscience, University of Nebraska, Lincoln, Nebraska 68588, United States
| | - Jacob S French
- Department of Electrical and Computer Engineering, University of Nebraska, Lincoln, Nebraska 68588, United States
| | - Hannu-Pekka Komsa
- Faculty of Information Technology and Electrical Engineering, University of Oulu, FI-90014 Oulu, Finland
| | - Peter Sutter
- Department of Electrical and Computer Engineering, University of Nebraska, Lincoln, Nebraska 68588, United States
| |
Collapse
|
9
|
Zi Y, Zhu J, Hu L, Wang M, Huang W. Nanoengineering of Tin Monosulfide (SnS)‐Based Structures for Emerging Applications. SMALL SCIENCE 2021. [DOI: 10.1002/smsc.202100098] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Affiliation(s)
- You Zi
- School of Chemistry and Chemical Engineering Nantong University Nantong Jiangsu 226019 P. R. China
| | - Jun Zhu
- School of Chemistry and Chemical Engineering Nantong University Nantong Jiangsu 226019 P. R. China
| | - Lanping Hu
- School of Chemistry and Chemical Engineering Nantong University Nantong Jiangsu 226019 P. R. China
| | - Mengke Wang
- School of Chemistry and Chemical Engineering Nantong University Nantong Jiangsu 226019 P. R. China
| | - Weichun Huang
- School of Chemistry and Chemical Engineering Nantong University Nantong Jiangsu 226019 P. R. China
| |
Collapse
|
10
|
Sutter E, Sutter P. Ultrathin Twisted Germanium Sulfide van der Waals Nanowires by Bismuth Catalyzed Vapor-Liquid-Solid Growth. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2104784. [PMID: 34655159 DOI: 10.1002/smll.202104784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 09/18/2021] [Indexed: 06/13/2023]
Abstract
1D nanowires of 2D layered crystals are emerging nanostructures synthesized by combining van der Waals (vdW) epitaxy and vapor-liquid-solid (VLS) growth. Nanowires of the group IV monochalcogenide germanium sulfide (GeS) are of particular interest for twistronics due to axial screw dislocations giving rise to Eshelby twist and precision interlayer twist at helical vdW interfaces. Ultrathin vdW nanowires have not been realized, and it is not clear if confining layered crystals into extremely thin wires is even possible. If axial screw dislocations are still stable, ultrathin vdW nanowires can reach large twists and should display significant quantum confinement. Here it is shown that VLS growth over Bi catalysts yields vdW nanowires down to ≈15 nm diameter while maintaining tens of µm length. Combined electron microscopy and diffraction demonstrate that ultrathin GeS nanowires crystallize in the orthorhombic bulk structure but can realize nonequilibrium stacking that may lead to 1D ferroelectricity. Ultrathin nanowires carry screw dislocations, remain chiral, and achieve very high twist rates. Whenever the dislocation extends to the nanowire tip, it continues into the Bi catalyst. Eshelby twist analysis demonstrates that the ultrathin nanowires follow continuum predictions. Cathodoluminescence on individual nanowires, finally, shows pronounced emission blue shifts consistent with quantum confinement.
Collapse
Affiliation(s)
- Eli Sutter
- Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
- Nebraska Center for Materials and Nanoscience, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
| | - Peter Sutter
- Department of Electrical and Computer Engineering, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
| |
Collapse
|
11
|
Abstract
Two-dimensional crystals provide exceptional opportunities for integrating dissimilar materials and forming interfaces where distinct properties and phenomena emerge. To date, research has focused on two basic heterostructure types: vertical van der Waals stacks and laterally joined monolayer crystals with in-plane line interfaces. Much more diverse architectures and interface configurations can be realized in the few-layer and multilayer regime, and if mechanical stacking and single-layer growth are replaced by processes taking advantage of self-organization, conversions between polymorphs, phase separation, strain effects, and shaping into the third dimension. Here, we highlight such opportunities for engineering heterostructures, focusing on group IV chalcogenides, a class of layered semiconductors that lend themselves exceptionally well for exploring novel van der Waals architectures, as well as advanced methods including in situ microscopy during growth and nanometer-scale probes of light-matter interactions. The chosen examples point to fruitful future directions and inspire innovative developments to create unconventional van der Waals heterostructures beyond stacking.
Collapse
|
12
|
Lee S, Jung JE, Kim HG, Lee Y, Park JM, Jang J, Yoon S, Ghosh A, Kim M, Kim J, Na W, Kim J, Choi HJ, Cheong H, Kim K. γ-GeSe: A New Hexagonal Polymorph from Group IV-VI Monochalcogenides. NANO LETTERS 2021; 21:4305-4313. [PMID: 33970636 DOI: 10.1021/acs.nanolett.1c00714] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The family of group IV-VI monochalcogenides has an atomically puckered layered structure, and their atomic bond configuration suggests the possibility for the realization of various polymorphs. Here, we report the synthesis of the first hexagonal polymorph from the family of group IV-VI monochalcogenides, which is conventionally orthorhombic. Recently predicted four-atomic-thick hexagonal GeSe, so-called γ-GeSe, is synthesized and clearly identified by complementary structural characterizations, including elemental analysis, electron diffraction, high-resolution transmission electron microscopy imaging, and polarized Raman spectroscopy. The electrical and optical measurements indicate that synthesized γ-GeSe exhibits high electrical conductivity of 3 × 105 S/m, which is comparable to those of other two-dimensional layered semimetallic crystals. Moreover, γ-GeSe can be directly grown on h-BN substrates, demonstrating a bottom-up approach for constructing vertical van der Waals heterostructures incorporating γ-GeSe. The newly identified crystal symmetry of γ-GeSe warrants further studies on various physical properties of γ-GeSe.
Collapse
Affiliation(s)
- Sol Lee
- Department of Physics, Yonsei University, Seoul 03722, Korea
- Center for Nanomedicine, Institute for Basic Science (IBS), Seoul 03722, Korea
| | - Joong-Eon Jung
- Department of Physics, Yonsei University, Seoul 03722, Korea
| | - Han-Gyu Kim
- Department of Physics, Yonsei University, Seoul 03722, Korea
| | - Yangjin Lee
- Department of Physics, Yonsei University, Seoul 03722, Korea
- Center for Nanomedicine, Institute for Basic Science (IBS), Seoul 03722, Korea
| | - Je Myoung Park
- Department of Physics, Sogang University, Seoul 04107, Korea
| | - Jeongsu Jang
- Department of Physics, Yonsei University, Seoul 03722, Korea
| | - Sangho Yoon
- Department of Materials Science and Engineering, Pohang University of Science and Technology, Pohang 37673, Korea
- Center for Artificial Low Dimensional Electronic Systems, Institute for Basic Science (IBS), Pohang 37673, Korea
| | - Arnab Ghosh
- Department of Physics, Yonsei University, Seoul 03722, Korea
| | - Minseol Kim
- Department of Physics, Yonsei University, Seoul 03722, Korea
| | - Joonho Kim
- Department of Physics, Yonsei University, Seoul 03722, Korea
| | - Woongki Na
- Department of Physics, Sogang University, Seoul 04107, Korea
| | - Jonghwan Kim
- Department of Materials Science and Engineering, Pohang University of Science and Technology, Pohang 37673, Korea
- Center for Artificial Low Dimensional Electronic Systems, Institute for Basic Science (IBS), Pohang 37673, Korea
| | | | - Hyeonsik Cheong
- Department of Physics, Sogang University, Seoul 04107, Korea
| | - Kwanpyo Kim
- Department of Physics, Yonsei University, Seoul 03722, Korea
- Center for Nanomedicine, Institute for Basic Science (IBS), Seoul 03722, Korea
| |
Collapse
|
13
|
Sutter P, French JS, Khosravi Khorashad L, Argyropoulos C, Sutter E. Optoelectronics and Nanophotonics of Vapor-Liquid-Solid Grown GaSe van der Waals Nanoribbons. NANO LETTERS 2021; 21:4335-4342. [PMID: 33955765 DOI: 10.1021/acs.nanolett.1c00891] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
2D/layered semiconductors are of interest for fundamental studies and for applications in optoelectronics and photonics. Work to date focused on extended crystals, produced by exfoliation or growth and investigated by diffraction-limited spectroscopy. Processes such as vapor-liquid-solid (VLS) growth carry potential for mass-producing nanostructured van der Waals semiconductors with exceptionally high crystal quality and optoelectronic/photonic properties at least on par with those of extended flakes. Here, we demonstrate the synthesis, structure, morphology, and optoelectronics/photonics of GaSe van der Waals nanoribbons obtained by Au- and Ag-catalyzed VLS growth. Although all GaSe ribbons are high-quality basal-plane oriented single crystals, those grown at lower temperatures stand out with their remarkably uniform morphology and low edge roughness. Photoluminescence spectroscopy shows intense, narrow light emission at the GaSe bandgap energy. Nanophotonic experiments demonstrate traveling waveguide modes at visible/near-infrared energies and illustrate approaches for locally exciting and probing such photonic modes by cathodoluminescence in transmission electron microscopy.
Collapse
Affiliation(s)
- Peter Sutter
- Department of Electrical & Computer Engineering, University of Nebraska-Lincoln, Lincoln, Nebraska 68588, United States
| | - Jacob S French
- Department of Electrical & Computer Engineering, University of Nebraska-Lincoln, Lincoln, Nebraska 68588, United States
| | - Larousse Khosravi Khorashad
- Department of Electrical & Computer Engineering, University of Nebraska-Lincoln, Lincoln, Nebraska 68588, United States
| | - Christos Argyropoulos
- Department of Electrical & Computer Engineering, University of Nebraska-Lincoln, Lincoln, Nebraska 68588, United States
| | - Eli Sutter
- Department of Mechanical & Materials Engineering, University of Nebraska-Lincoln, Lincoln, Nebraska 68588, United States
| |
Collapse
|