1
|
Xia M, Chen Y, Zhou J, Wang Y, Huang D, Zhang X. Spin-Locked WS 2 Vortex Emission via Photonic Crystal Bound States in the Continuum. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2400214. [PMID: 39054935 DOI: 10.1002/adma.202400214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 07/11/2024] [Indexed: 07/27/2024]
Abstract
Owing to their strong exciton effects and valley polarization properties, monolayer transition-metal dichalcogenides (1L TMDs) have unfolded the prospects of spin-polarized light-emitting devices. However, the wavefront control of exciton emission, which is critical to generate structured optical fields, remains elusive. In this work, the experimental demonstration of spin-locked vortex emission from monolayer Tungsten Disulfide (1L WS2) integrated with Silicon Nitride (SiNx) PhC slabs is presented. The symmetry-protected bound states in the continuum (BIC) in the SiNx PhC slabs engender azimuthal polarization field distribution in the momentum space with a topological singularity in the center of the Brillouin zone, which imposes the resonantly enhanced WS2 exciton emission with a spin-correlated spiral phase front by taking advantage of the winding topologies of resonances with the assistance of geometric phase scheme. As a result, exciton emission from 1L WS2 exhibits helical wavefront and doughnut-shaped intensity beam profile in the momentum space with topological charges locked to the spins of light. This strategy on spin-dependent excitonic vortex emission may offer the unparalleled capability of valley-polarized structured light generation for 1L TMDs.
Collapse
Affiliation(s)
- Meng Xia
- Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences (CAS), Suzhou, Jiangsu, 215123, P. R. China
| | - Yuhua Chen
- Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences (CAS), Suzhou, Jiangsu, 215123, P. R. China
| | - Jiaxin Zhou
- Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences (CAS), Suzhou, Jiangsu, 215123, P. R. China
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Yuefeng Wang
- Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences (CAS), Suzhou, Jiangsu, 215123, P. R. China
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Di Huang
- Nano Science and Technology Institute, University of Science and Technology of China, Suzhou, Jiangsu, 215123, P. R. China
| | - Xingwang Zhang
- Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences (CAS), Suzhou, Jiangsu, 215123, P. R. China
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| |
Collapse
|
2
|
Cichos F, Xia T, Yang H, Zijlstra P. The ever-expanding optics of single-molecules and nanoparticles. J Chem Phys 2024; 161:010401. [PMID: 38949895 DOI: 10.1063/5.0221680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Accepted: 06/10/2024] [Indexed: 07/03/2024] Open
Affiliation(s)
- F Cichos
- Peter Debye Institute for Soft Matter Physics, Leipzig University, Leipzig, Germany
| | - T Xia
- Institute for Immunology, School of Medicine, Tsinghua University, Beijing, China
| | - H Yang
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, USA
| | - P Zijlstra
- Department of Applied Physics and Science Education, Eindhoven University of Technology (TU/e), Eindhoven, The Netherlands
| |
Collapse
|
3
|
Kollipara PS, Wu Z, Yao K, Lin D, Ju Z, Zhang X, Jiang T, Ding H, Fang J, Li J, Korgel BA, Redwing JM, Yu G, Zheng Y. Three-Dimensional Optothermal Manipulation of Light-Absorbing Particles in Phase-Change Gel Media. ACS NANO 2024; 18:8062-8072. [PMID: 38456693 PMCID: PMC11285096 DOI: 10.1021/acsnano.3c11162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/09/2024]
Abstract
Rational manipulation and assembly of discrete colloidal particles into architected superstructures have enabled several applications in materials science and nanotechnology. Optical manipulation techniques, typically operated in fluid media, facilitate the precise arrangement of colloidal particles into superstructures by using focused laser beams. However, as the optical energy is turned off, the inherent Brownian motion of the particles in fluid media impedes the retention and reconfiguration of such superstructures. Overcoming this fundamental limitation, we present on-demand, three-dimensional (3D) optical manipulation of colloidal particles in a phase-change solid medium made of surfactant bilayers. Unlike liquid crystal media, the lack of fluid flow within the bilayer media enables the assembly and retention of colloids for diverse spatial configurations. By utilizing the optically controlled temperature-dependent interactions between the particles and their surrounding media, we experimentally exhibit the holonomic microscale control of diverse particles for repeatable, reconfigurable, and controlled colloidal arrangements in 3D. Finally, we demonstrate tunable light-matter interactions between the particles and 2D materials by successfully manipulating and retaining these particles at fixed distances from the 2D material layers. Our experimental results demonstrate that the particles can be retained for over 120 days without any change in their relative positions or degradation in the bilayers. With the capability of arranging particles in 3D configurations with long-term stability, our platform pushes the frontiers of optical manipulation for distinct applications such as metamaterial fabrication, information storage, and security.
Collapse
Affiliation(s)
- Pavana Siddhartha Kollipara
- Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Zilong Wu
- Materials Science and Engineering Program and Texas Materials Institute, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Kan Yao
- Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
- Materials Science and Engineering Program and Texas Materials Institute, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Dongdong Lin
- Qian Xuesen Collaborative Research Center of Astrochemistry and Space Life Sciences, Department of Microelectronic Science and Engineering, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Zhengyu Ju
- Materials Science and Engineering Program and Texas Materials Institute, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Xiaotian Zhang
- Department of Materials Science and Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Taizhi Jiang
- McKetta Department of Chemical Engineering and Texas Materials Institute, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Hongru Ding
- Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Jie Fang
- Materials Science and Engineering Program and Texas Materials Institute, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Jingang Li
- Materials Science and Engineering Program and Texas Materials Institute, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Brian A Korgel
- Materials Science and Engineering Program and Texas Materials Institute, The University of Texas at Austin, Austin, Texas 78712, United States
- McKetta Department of Chemical Engineering and Texas Materials Institute, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Joan M Redwing
- Department of Materials Science and Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- 2D Crystal Consortium, Materials Research Institute, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Guihua Yu
- Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
- Materials Science and Engineering Program and Texas Materials Institute, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Yuebing Zheng
- Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
- Materials Science and Engineering Program and Texas Materials Institute, The University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
4
|
Ozawa K, Adachi M, Sugimoto H, Fujii M. Photoluminescence from FRET pairs coupled with Mie-resonant silicon nanospheres. NANOSCALE 2024; 16:4039-4046. [PMID: 38344928 DOI: 10.1039/d3nr06290b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
Optically resonant nanoparticles decorated with donor-acceptor molecular pairs have been attracting attention for applications as nanoprobes in bioimaging and biosensing. We produced composite nanoparticles composed of donor-acceptor molecular pairs and silicon nanospheres (Si NSs) with diameters of 100-200 nm exhibiting Mie resonances in the visible range and studied the effect of Mie resonances on their photoluminescence properties. We showed that the photoluminescence spectra are strongly modified by Mie resonances and the spectral shape is controlled in a wide range by the Si NS size; by controlling the size, we can achieve the photoluminescence maximum from that of a donor molecule to that of an acceptor molecule almost continuously. From the photoluminescence decay properties in combination with theoretical calculations, we showed that the observed strong modification of the spectral shape is mainly due to the Purcell effect on donor and acceptor molecules, and the effect of Mie resonances on the Förster resonance energy transfer (FRET) rate is relatively small. We also showed that because of the large Purcell effect and the small FRET rate enhancement, Mie resonances decrease the FRET efficiency.
Collapse
Affiliation(s)
- Keisuke Ozawa
- Department of Electrical and Electronic Engineering, Graduate School of Engineering, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan.
| | - Masato Adachi
- Department of Electrical and Electronic Engineering, Graduate School of Engineering, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan.
| | - Hiroshi Sugimoto
- Department of Electrical and Electronic Engineering, Graduate School of Engineering, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan.
| | - Minoru Fujii
- Department of Electrical and Electronic Engineering, Graduate School of Engineering, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan.
| |
Collapse
|
5
|
Fang J, Yao K, Wang M, Yu Z, Zhang T, Jiang T, Huang S, Korgel BA, Terrones M, Alù A, Zheng Y. Observation of Room-Temperature Exciton-Polariton Emission from Wide-Ranging 2D Semiconductors Coupled with a Broadband Mie Resonator. NANO LETTERS 2023; 23:9803-9810. [PMID: 37879099 DOI: 10.1021/acs.nanolett.3c02540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2023]
Abstract
Two-dimensional exciton-polaritons in monolayer transition metal dichalcogenides (TMDs) exhibit practical advantages in valley coherence, optical nonlinearities, and even bosonic condensation owing to their light-emission capability. To achieve robust exciton-polariton emission, strong photon-exciton couplings are required at the TMD monolayer, which is challenging due to its atomic thickness. High-quality (Q) factor optical cavities with narrowband resonances are an effective approach but typically limited to a specific excitonic state of a certain TMD material. Herein, we achieve on-demand exciton-polariton emission from a wide range of TMDs at room temperature by hybridizing excitons with broadband Mie resonances spanning the whole visible spectrum. By confining broadband light at the TMD monolayer, our one type of Mie resonator on different TMDs enables enhanced light-matter interactions with multiple excitonic states simultaneously. We demonstrate multi-Rabi splittings and robust polaritonic photoluminescence in monolayer WSe2, WS2, and MoS2. The hybrid system also shows the potential to approach the ultrastrong coupling regime.
Collapse
Affiliation(s)
- Jie Fang
- Walker Department of Mechanical Engineering and Texas Materials Institute, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Kan Yao
- Walker Department of Mechanical Engineering and Texas Materials Institute, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Mingsong Wang
- Photonics Initiative, Advanced Science Research Center, City University of New York, New York, New York 10031, United States
| | - Zhuohang Yu
- Department of Materials Science and Engineering, Department of Physics, Department of Chemistry, and Center for 2-Dimensional and Layered Materials, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Tianyi Zhang
- Department of Materials Science and Engineering, Department of Physics, Department of Chemistry, and Center for 2-Dimensional and Layered Materials, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Taizhi Jiang
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Suichu Huang
- Walker Department of Mechanical Engineering and Texas Materials Institute, The University of Texas at Austin, Austin, Texas 78712, United States
- School of Mechatronics Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Brian A Korgel
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Mauricio Terrones
- Department of Materials Science and Engineering, Department of Physics, Department of Chemistry, and Center for 2-Dimensional and Layered Materials, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Andrea Alù
- Photonics Initiative, Advanced Science Research Center, City University of New York, New York, New York 10031, United States
- Physics Program, Graduate Center, City University of New York, New York, New York 10016, United States
| | - Yuebing Zheng
- Walker Department of Mechanical Engineering and Texas Materials Institute, The University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
6
|
Li S, Ai R, Chui KK, Fang Y, Lai Y, Zhuo X, Shao L, Wang J, Lin HQ. Routing the Exciton Emissions of WS 2 Monolayer with the High-Order Plasmon Modes of Ag Nanorods. NANO LETTERS 2023; 23:4183-4190. [PMID: 37158482 PMCID: PMC10214448 DOI: 10.1021/acs.nanolett.3c00054] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 05/02/2023] [Indexed: 05/10/2023]
Abstract
Locally routing the exciton emissions in two-dimensional (2D) transition-metal dichalcogenides along different directions at the nanophotonic interface is of great interest in exploiting the promising 2D excitonic systems for functional nano-optical components. However, such control has remained elusive. Herein we report on a facile plasmonic approach for electrically controlled spatial modulation of the exciton emissions in a WS2 monolayer. The emission routing is enabled by the resonance coupling between the WS2 excitons and the multipole plasmon modes in individual silver nanorods placed on a WS2 monolayer. Different from prior demonstrations, the routing effect can be modulated by the doping level of the WS2 monolayer, enabling electrical control. Our work takes advantage of the high-quality plasmon modes supported by simple rod-shaped metal nanocrystals for the angularly resolved manipulation of 2D exciton emissions. Active control is achieved, which offers great opportunities for the development of nanoscale light sources and nanophotonic devices.
Collapse
Affiliation(s)
- Shasha Li
- Beijing
Computational Science Research Center, Beijing 100193, People’s Republic of China
- Department
of Physics, The Chinese University of Hong
Kong, Shatin, Hong Kong SAR 999077, People’s Republic of China
| | - Ruoqi Ai
- Department
of Physics, The Chinese University of Hong
Kong, Shatin, Hong Kong SAR 999077, People’s Republic of China
| | - Ka Kit Chui
- Department
of Physics, The Chinese University of Hong
Kong, Shatin, Hong Kong SAR 999077, People’s Republic of China
| | - Yini Fang
- Department
of Physics, The Chinese University of Hong
Kong, Shatin, Hong Kong SAR 999077, People’s Republic of China
| | - Yunhe Lai
- Department
of Physics, The Chinese University of Hong
Kong, Shatin, Hong Kong SAR 999077, People’s Republic of China
| | - Xiaolu Zhuo
- School
of Science and Engineering, The Chinese
University of Hong Kong (Shenzhen), Shenzhen 518172, People’s Republic of China
| | - Lei Shao
- State
Key Laboratory of Optoelectronic Materials and Technologies, Guangdong
Province Key Laboratory of Display Material and Technology, School
of Electronics and Information Technology, Sun Yat-sen University, Guangzhou 510275, People’s
Republic of China
| | - Jianfang Wang
- Department
of Physics, The Chinese University of Hong
Kong, Shatin, Hong Kong SAR 999077, People’s Republic of China
| | - Hai-Qing Lin
- Beijing
Computational Science Research Center, Beijing 100193, People’s Republic of China
| |
Collapse
|
7
|
Yan J, Yang X, Liu X, Du C, Qin F, Yang M, Zheng Z, Li J. Van der Waals Heterostructures With Built-In Mie Resonances For Polarization-Sensitive Photodetection. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2207022. [PMID: 36683160 PMCID: PMC10037953 DOI: 10.1002/advs.202207022] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/28/2022] [Indexed: 06/17/2023]
Abstract
Few-layer transition metal dichalcogenides (TMDs) and their combination as van der Waals heterostructures provide a promising platform for high-performance optoelectronic devices. However, the ultrathin thickness of TMD flakes limits efficient light trapping and absorption, which triggers the hybrid construction with optical resonant cavities for enhanced light absorption. The optical structure enriched photodetectors can also be wavelength- and polarization-sensitive but require complicated fabrication. Herein, a new-type TMD-based photodetector embedded with nanoslits is proposed to enhance light trapping. Taking ReS2 as an example, strong anisotropic Mie-type optical responses arising from the intrinsic in-plane anisotropy and nanoslit-enhanced anisotropy are discovered. Owing to the nanoslit-enhanced optical resonances and band engineering, excellent photodetection performances are demonstrated with high responsivity of 27 A W-1 and short rise/decay times of 3.7/3.7 ms. More importantly, through controlling the angle between the nanoslit orientation and the polarization direction to excite different resonant modes, polarization-sensitive photodetectors with anisotropy ratios from 5.9 to 12.6 can be achieved, representing one of the most polarization-sensitive TMD-based photodetectors. The depth and orientation of nanoslits are demonstrated crucial for optimizing the anisotropy ratio. The findings bring an effective scheme to construct high-performance and polarization-sensitive photodetectors.
Collapse
Affiliation(s)
- Jiahao Yan
- Institute of NanophotonicsJinan UniversityGuangzhou511443P. R. China
| | - Xinzhu Yang
- Institute of NanophotonicsJinan UniversityGuangzhou511443P. R. China
| | - Xinyue Liu
- Institute of NanophotonicsJinan UniversityGuangzhou511443P. R. China
| | - Chun Du
- Guangdong Provincial Key Laboratory of Optical Fiber Sensing and CommunicationsInstitute of Photonics TechnologyJinan UniversityGuangzhou511443P. R. China
| | - Fei Qin
- Guangdong Provincial Key Laboratory of Optical Fiber Sensing and CommunicationsInstitute of Photonics TechnologyJinan UniversityGuangzhou511443P. R. China
| | - Mengmeng Yang
- Guangdong Provincial Key Laboratory of Information Photonics TechnologySchool of Materials and EnergyGuangdong University of TechnologyGuangzhou510006P. R. China
| | - Zhaoqiang Zheng
- Guangdong Provincial Key Laboratory of Information Photonics TechnologySchool of Materials and EnergyGuangdong University of TechnologyGuangzhou510006P. R. China
| | - Jingbo Li
- Institute of SemiconductorsSouth China Normal UniversityGuangzhou510631P. R. China
| |
Collapse
|
8
|
Li J, Yao K, Huang Y, Fang J, Kollipara PS, Fan DE, Zheng Y. Tunable Strong Coupling in Transition Metal Dichalcogenide Nanowires. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2200656. [PMID: 35793202 PMCID: PMC9420800 DOI: 10.1002/adma.202200656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 05/31/2022] [Indexed: 06/15/2023]
Abstract
Subwavelength optical resonators with spatiotemporal control of light are essential to the miniaturization of optical devices. In this work, chemically synthesized transition metal dichalcogenide (TMDC) nanowires are exploited as a new type of dielectric nanoresonators to simultaneously support pronounced excitonic and Mie resonances. Strong light-matter couplings and tunable exciton polaritons in individual nanowires are demonstrated. In addition, the excitonic responses can be reversibly modulated with excellent reproducibility, offering the potential for developing tunable optical nanodevices. Being in the mobile colloidal state with highly tunable optical properties, the TMDC nanoresonators will find promising applications in integrated active optical devices, including all-optical switches and sensors.
Collapse
Affiliation(s)
- Jingang Li
- Walker Department of Mechanical Engineering, Materials Science & Engineering Program and Texas Materials Institute, University of Texas at Austin, Austin, TX, 78712, USA
| | - Kan Yao
- Walker Department of Mechanical Engineering, Materials Science & Engineering Program and Texas Materials Institute, University of Texas at Austin, Austin, TX, 78712, USA
| | - Yun Huang
- Walker Department of Mechanical Engineering, Materials Science & Engineering Program and Texas Materials Institute, University of Texas at Austin, Austin, TX, 78712, USA
| | - Jie Fang
- Walker Department of Mechanical Engineering, Materials Science & Engineering Program and Texas Materials Institute, University of Texas at Austin, Austin, TX, 78712, USA
| | - Pavana Siddhartha Kollipara
- Walker Department of Mechanical Engineering, Materials Science & Engineering Program and Texas Materials Institute, University of Texas at Austin, Austin, TX, 78712, USA
| | - Donglei Emma Fan
- Walker Department of Mechanical Engineering, Materials Science & Engineering Program and Texas Materials Institute, University of Texas at Austin, Austin, TX, 78712, USA
| | - Yuebing Zheng
- Walker Department of Mechanical Engineering, Materials Science & Engineering Program and Texas Materials Institute, University of Texas at Austin, Austin, TX, 78712, USA
| |
Collapse
|
9
|
Fang J, Yao K, Zhang T, Wang M, Jiang T, Huang S, Korgel BA, Terrones M, Alù A, Zheng Y. Room-Temperature Observation of Near-Intrinsic Exciton Linewidth in Monolayer WS 2. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2108721. [PMID: 35170105 PMCID: PMC9012685 DOI: 10.1002/adma.202108721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 02/11/2022] [Indexed: 06/14/2023]
Abstract
The homogeneous exciton linewidth, which captures the coherent quantum dynamics of an excitonic state, is a vital parameter in exploring light-matter interactions in 2D transition metal dichalcogenides (TMDs). An efficient control of the exciton linewidth is of great significance, and in particular of its intrinsic linewidth, which determines the minimum timescale for the coherent manipulation of excitons. However, such a control is rarely achieved in TMDs at room temperature (RT). While the intrinsic A exciton linewidth is down to 7 meV in monolayer WS2 , the reported RT linewidth is typically a few tens of meV due to inevitable homogeneous and inhomogeneous broadening effects. Here, it is shown that a 7.18 meV near-intrinsic linewidth can be observed at RT when monolayer WS2 is coupled with a moderate-refractive-index hydrogenated silicon nanosphere in water. By boosting the dynamic competition between exciton and trion decay channels in WS2 through the nanosphere-supported Mie resonances, the coherent linewidth can be tuned from 35 down to 7.18 meV. Such modulation of exciton linewidth and its associated mechanism are robust even in presence of defects, easing the sample quality requirement and providing new opportunities for TMD-based nanophotonics and optoelectronics.
Collapse
Affiliation(s)
- Jie Fang
- Walker Department of Mechanical Engineering and Texas Materials Institute, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Kan Yao
- Walker Department of Mechanical Engineering and Texas Materials Institute, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Tianyi Zhang
- Department of Materials Science and Engineering, Department of Physics, Department of Chemistry and Center for 2-Dimensional and Layered Materials, The Pennsylvania State University, University Park, Park, PA, 16802, USA
| | - Mingsong Wang
- Walker Department of Mechanical Engineering and Texas Materials Institute, The University of Texas at Austin, Austin, TX, 78712, USA
- Photonics Initiative, Advanced Science Research Center, City University of New York, New York, NY, 10031, USA
- Physics Program, Graduate Center, City University of New York, New York, NY, 10016, USA
| | - Taizhi Jiang
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Suichu Huang
- Walker Department of Mechanical Engineering and Texas Materials Institute, The University of Texas at Austin, Austin, TX, 78712, USA
- School of Mechatronics Engineering, Harbin Institute of Technology, Harbin, 150001, China
| | - Brian A Korgel
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Mauricio Terrones
- Department of Materials Science and Engineering, Department of Physics, Department of Chemistry and Center for 2-Dimensional and Layered Materials, The Pennsylvania State University, University Park, Park, PA, 16802, USA
| | - Andrea Alù
- Photonics Initiative, Advanced Science Research Center, City University of New York, New York, NY, 10031, USA
- Physics Program, Graduate Center, City University of New York, New York, NY, 10016, USA
| | - Yuebing Zheng
- Walker Department of Mechanical Engineering and Texas Materials Institute, The University of Texas at Austin, Austin, TX, 78712, USA
| |
Collapse
|
10
|
Huang S, Li J, Fang J, Ding H, Huang W, Zhao X, Zheng Y. Self-Limiting Opto-Electrochemical Thinning of Transition-Metal Dichalcogenides. ACS APPLIED MATERIALS & INTERFACES 2021; 13:58966-58973. [PMID: 34851616 DOI: 10.1021/acsami.1c19163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Two-dimensional monolayer and few-layer transition-metal dichalcogenides (TMDs) are promising for advanced electronic and photonic applications due to their extraordinary optoelectronic and mechanical properties. However, it has remained challenging to produce high-quality TMD thin films with controlled thickness and desired micropatterns, which are essential for their practical implementation in functional devices. In this work, a self-limiting opto-electrochemical thinning (sOET) technique is developed for on-demand thinning and patterning of TMD flakes at high efficiency. Benefiting from optically enhanced electrochemical reactions, sOET features a low operational optical power density of down to 70 μW μm-2 to avoid photodamage and thermal damage to the thinned TMD flakes. Through selective optical excitation with different laser wavelengths based on the thickness-dependent band gaps of TMD materials, sOET enables precise control over the final thickness of TMD flakes. With the capability of thickness control and site-specific patterning, our sOET offers an effective route to fabricating high-quality TMD materials for a broad range of applications in nanoelectronics, nanomechanics, and nanophotonics.
Collapse
Affiliation(s)
- Suichu Huang
- Key Laboratory of Micro-Systems and Micro-Structures Manufacturing of Ministry of Education and School of Mechatronics Engineering, Harbin Institute of Technology, Harbin 15001, China
- Walker Department of Mechanical Engineering, Material Science and Engineering Program and Texas Material Institute, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Jingang Li
- Walker Department of Mechanical Engineering, Material Science and Engineering Program and Texas Material Institute, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Jie Fang
- Walker Department of Mechanical Engineering, Material Science and Engineering Program and Texas Material Institute, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Hongru Ding
- Walker Department of Mechanical Engineering, Material Science and Engineering Program and Texas Material Institute, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Wentao Huang
- Key Laboratory of Micro-Systems and Micro-Structures Manufacturing of Ministry of Education and School of Mechatronics Engineering, Harbin Institute of Technology, Harbin 15001, China
| | - Xuezeng Zhao
- Key Laboratory of Micro-Systems and Micro-Structures Manufacturing of Ministry of Education and School of Mechatronics Engineering, Harbin Institute of Technology, Harbin 15001, China
| | - Yuebing Zheng
- Walker Department of Mechanical Engineering, Material Science and Engineering Program and Texas Material Institute, The University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
11
|
Yao K, Zheng Y. Controlling the polarization of chiral dipolar emission with a spherical dielectric nanoantenna. J Chem Phys 2021; 155:224110. [PMID: 34911301 PMCID: PMC10423074 DOI: 10.1063/5.0072210] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 11/24/2021] [Indexed: 11/14/2022] Open
Abstract
Circularly polarized light (CPL) carrying spin angular momentum is crucial to many applications, such as quantum computing, optical communication, novel displays, and biosensing. Nonetheless, the emission from chiral molecules contains comparable CPL components with opposite handedness, resulting in low levels of CPL overall with a small dissymmetry factor and fixed handedness consistent with the handedness of the molecules. Nanoantennas have proved to be useful tools for controlling the emission properties of quantum emitters. In particular, dielectric resonators support electric and magnetic modes, which implies unparalleled opportunities to interact with chiral molecules whose emission originates from both electric and magnetic dipole transitions. In this work, we theoretically study the effects of a spherical dielectric nanoantenna on the directionality and polarization of emission from a chiral molecule. With exact analytical solutions based on generalized Mie theory, we show that directional chiral light emission and nontrivial polarization modulation, such as handedness reversal or chirality enhancement, can be achieved simultaneously for a chiral dipole tangentially coupled with a silicon nanosphere. The influence of the relative strength and orientation between the electric and magnetic dipole moments is also discussed. Our results suggest a new approach to controlling chiral dipolar emission and could benefit the development of chiral light sources.
Collapse
Affiliation(s)
- Kan Yao
- Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, Texas 78712, USA and Texas Materials Institute, The University of Texas at Austin, Austin, Texas 78712, USA
| | - Yuebing Zheng
- Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, Texas 78712, USA and Texas Materials Institute, The University of Texas at Austin, Austin, Texas 78712, USA
| |
Collapse
|
12
|
Sugimoto H, Fujii M. Colloidal Mie resonant silicon nanoparticles. NANOTECHNOLOGY 2021; 32:452001. [PMID: 34343972 DOI: 10.1088/1361-6528/ac1a44] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 08/02/2021] [Indexed: 06/13/2023]
Abstract
Nano- and microstructures of silicon (Si) exhibit electric and magnetic Mie resonances in the optical regime, providing a novel platform for controlling light at the nanoscale and enhancing light-matter interactions. In this Review, we present recent development of colloidal Si nanoparticles (NPs) that have wide range of applications in nanophotonics. Following brief summary of synthesis methods of amorphous and crystalline Si particles with high sphericity, optical responses of single Si particles placed on a substrate are overviewed. Then, the capability as a nanoantenna to control light-matter interactions is discussed in different systems. Finally, collective optical responses of Si NPs in solution are presented and the application potentials are discussed.
Collapse
Affiliation(s)
- Hiroshi Sugimoto
- Department of Electrical and Electronic Engineering, Graduate School of Engineering, Kobe University, Rokkodai, Nada, Kobe 657-8501, Japan
- JST-PRESTO, Honcho 4-1-8, Kawaguchi, Saitama 332-0012, Japan
| | - Minoru Fujii
- Department of Electrical and Electronic Engineering, Graduate School of Engineering, Kobe University, Rokkodai, Nada, Kobe 657-8501, Japan
| |
Collapse
|