1
|
Zhou Z, Song R, Xu J, Ni X, Dang Z, Zhao Z, Quan J, Dong S, Hu W, Huang D, Chen K, Wang Z, Cheng X, Raschke MB, Alù A, Jiang T. Gate-Tuning Hybrid Polaritons in Twisted α-MoO 3/Graphene Heterostructures. NANO LETTERS 2023. [PMID: 37948605 DOI: 10.1021/acs.nanolett.3c03769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2023]
Abstract
Modulating anisotropic phonon polaritons (PhPs) can open new avenues in infrared nanophotonics. Promising PhP dispersion engineering through polariton hybridization has been demonstrated by coupling gated graphene to single-layer α-MoO3. However, the mechanism underlying the gate-dependent modulation of hybridization has remained elusive. Here, using IR nanospectroscopic imaging, we demonstrate active modulation of the optical response function, quantified in measurements of gate dependence of wavelength, amplitude, and dissipation rate of the hybrid plasmon-phonon polaritons (HPPPs) in both single-layer and twisted bilayer α-MoO3/graphene heterostructures. Intriguingly, while graphene doping leads to a monotonic increase in HPPP wavelength, amplitude and dissipation rate show transition from an initially anticorrelated decrease to a correlated increase. We attribute this behavior to the intricate interplay of gate-dependent components of the HPPP complex momentum. Our results provide the foundation for active polariton control of integrated α-MoO3 nanophotonics devices.
Collapse
Affiliation(s)
- Zhou Zhou
- MOE Key Laboratory of Advanced Micro-Structured Materials, Shanghai Frontiers Science Center of Digital Optics, Institute of Precision Optical Engineering, and School of Physics Science and Engineering, Tongji University, Shanghai 200092, China
- Shanghai Institute of Intelligent Science and Technology, Tongji University, Shanghai 200092, China
| | - Renkang Song
- MOE Key Laboratory of Advanced Micro-Structured Materials, Shanghai Frontiers Science Center of Digital Optics, Institute of Precision Optical Engineering, and School of Physics Science and Engineering, Tongji University, Shanghai 200092, China
| | - Junbo Xu
- MOE Key Laboratory of Advanced Micro-Structured Materials, Shanghai Frontiers Science Center of Digital Optics, Institute of Precision Optical Engineering, and School of Physics Science and Engineering, Tongji University, Shanghai 200092, China
| | - Xiang Ni
- Photonics Initiative, Advanced Science Research Center, City University of New York, New York, New York 10031, United States
- School of Physics, Central South University, Changsha, Hunan 410083, China
| | - Zijia Dang
- Center for the Physics of Low-Dimensional Materials, School of Physics and Electronics, School of Future Technology, Henan University, Kaifeng 475004, China
| | - Zhichen Zhao
- MOE Key Laboratory of Advanced Micro-Structured Materials, Shanghai Frontiers Science Center of Digital Optics, Institute of Precision Optical Engineering, and School of Physics Science and Engineering, Tongji University, Shanghai 200092, China
| | - Jiamin Quan
- Photonics Initiative, Advanced Science Research Center, City University of New York, New York, New York 10031, United States
- Physics Program, Graduate Center, City University of New York, New York, New York 10026, United States
| | - Siyu Dong
- MOE Key Laboratory of Advanced Micro-Structured Materials, Shanghai Frontiers Science Center of Digital Optics, Institute of Precision Optical Engineering, and School of Physics Science and Engineering, Tongji University, Shanghai 200092, China
| | - Weida Hu
- State Key Laboratory of Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai 200083, China
| | - Di Huang
- MOE Key Laboratory of Advanced Micro-Structured Materials, Shanghai Frontiers Science Center of Digital Optics, Institute of Precision Optical Engineering, and School of Physics Science and Engineering, Tongji University, Shanghai 200092, China
| | - Ke Chen
- Center for the Physics of Low-Dimensional Materials, School of Physics and Electronics, School of Future Technology, Henan University, Kaifeng 475004, China
| | - Zhanshan Wang
- MOE Key Laboratory of Advanced Micro-Structured Materials, Shanghai Frontiers Science Center of Digital Optics, Institute of Precision Optical Engineering, and School of Physics Science and Engineering, Tongji University, Shanghai 200092, China
- Shanghai Institute of Intelligent Science and Technology, Tongji University, Shanghai 200092, China
| | - Xinbin Cheng
- MOE Key Laboratory of Advanced Micro-Structured Materials, Shanghai Frontiers Science Center of Digital Optics, Institute of Precision Optical Engineering, and School of Physics Science and Engineering, Tongji University, Shanghai 200092, China
- Shanghai Institute of Intelligent Science and Technology, Tongji University, Shanghai 200092, China
| | - Markus B Raschke
- Department of Physics and JILA, University of Colorado, Boulder, Colorado 80309, United States
| | - Andrea Alù
- Photonics Initiative, Advanced Science Research Center, City University of New York, New York, New York 10031, United States
- Physics Program, Graduate Center, City University of New York, New York, New York 10026, United States
| | - Tao Jiang
- MOE Key Laboratory of Advanced Micro-Structured Materials, Shanghai Frontiers Science Center of Digital Optics, Institute of Precision Optical Engineering, and School of Physics Science and Engineering, Tongji University, Shanghai 200092, China
| |
Collapse
|
2
|
Guo X, Lyu W, Chen T, Luo Y, Wu C, Yang B, Sun Z, García de Abajo FJ, Yang X, Dai Q. Polaritons in Van der Waals Heterostructures. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2201856. [PMID: 36121344 DOI: 10.1002/adma.202201856] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 08/15/2022] [Indexed: 05/17/2023]
Abstract
2D monolayers supporting a wide variety of highly confined plasmons, phonon polaritons, and exciton polaritons can be vertically stacked in van der Waals heterostructures (vdWHs) with controlled constituent layers, stacking sequence, and even twist angles. vdWHs combine advantages of 2D material polaritons, rich optical structure design, and atomic scale integration, which have greatly extended the performance and functions of polaritons, such as wide frequency range, long lifetime, ultrafast all-optical modulation, and photonic crystals for nanoscale light. Here, the state of the art of 2D material polaritons in vdWHs from the perspective of design principles and potential applications is reviewed. Some fundamental properties of polaritons in vdWHs are initially discussed, followed by recent discoveries of plasmons, phonon polaritons, exciton polaritons, and their hybrid modes in vdWHs. The review concludes with a perspective discussion on potential applications of these polaritons such as nanophotonic integrated circuits, which will benefit from the intersection between nanophotonics and materials science.
Collapse
Affiliation(s)
- Xiangdong Guo
- CAS Key Laboratory of Nanophotonic Materials and Devices, CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Wei Lyu
- CAS Key Laboratory of Nanophotonic Materials and Devices, CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Tinghan Chen
- CAS Key Laboratory of Nanophotonic Materials and Devices, CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
- School of Life Science, Peking University, Beijing, 100871, P. R. China
| | - Yang Luo
- CAS Key Laboratory of Nanophotonic Materials and Devices, CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
- School of Life Science, Peking University, Beijing, 100871, P. R. China
| | - Chenchen Wu
- CAS Key Laboratory of Nanophotonic Materials and Devices, CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Bei Yang
- CAS Key Laboratory of Nanophotonic Materials and Devices, CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Zhipei Sun
- Department of Electronics and Nanoengineering and QTF Centre of Excellence, Department of Applied Physics, Aalto University, Espoo, 02150, Finland
| | - F Javier García de Abajo
- ICFO-Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, Castelldefels, Barcelona, 08860, Spain
- ICREA-Institució Catalana de Recerca i Estudis Avançats, Passeig Lluís Companys 23, Barcelona, 08010, Spain
| | - Xiaoxia Yang
- CAS Key Laboratory of Nanophotonic Materials and Devices, CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Qing Dai
- CAS Key Laboratory of Nanophotonic Materials and Devices, CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
3
|
Aghamiri NA, Hu G, Fali A, Zhang Z, Li J, Balendhran S, Walia S, Sriram S, Edgar JH, Ramanathan S, Alù A, Abate Y. Reconfigurable hyperbolic polaritonics with correlated oxide metasurfaces. Nat Commun 2022; 13:4511. [PMID: 35922424 PMCID: PMC9349304 DOI: 10.1038/s41467-022-32287-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 07/25/2022] [Indexed: 11/13/2022] Open
Abstract
Polaritons enable subwavelength confinement and highly anisotropic flows of light over a wide spectral range, holding the promise for applications in modern nanophotonic and optoelectronic devices. However, to fully realize their practical application potential, facile methods enabling nanoscale active control of polaritons are needed. Here, we introduce a hybrid polaritonic-oxide heterostructure platform consisting of van der Waals crystals, such as hexagonal boron nitride (hBN) or alpha-phase molybdenum trioxide (α-MoO3), transferred on nanoscale oxygen vacancy patterns on the surface of prototypical correlated perovskite oxide, samarium nickel oxide, SmNiO3 (SNO). Using a combination of scanning probe microscopy and infrared nanoimaging techniques, we demonstrate nanoscale reconfigurability of complex hyperbolic phonon polaritons patterned at the nanoscale with high resolution. Hydrogenation and temperature modulation allow spatially localized conductivity modulation of SNO nanoscale patterns, enabling robust real-time modulation and nanoscale reconfiguration of hyperbolic polaritons. Our work paves the way towards nanoscale programmable metasurface engineering for reconfigurable nanophotonic applications. Phonon polaritons in anisotropic van der Waals materials enable subwavelength confinement and controllable flow of light at the nanoscale. Here, the authors exploit correlated perovskite oxide (SmNiO3) substrates with tunable conductivity to obtain real-time modulation and nanoscale reconfiguration of hyperbolic polaritons in hBN and α-MoO3 crystals.
Collapse
Affiliation(s)
| | - Guangwei Hu
- Photonics Initiative, Advanced Science Research Center, City University of New York, New York, NY, 10031, USA.,Department of Electrical and Computer Engineering, National University of Singapore, Kent Ridge, Singapore, 117583, Singapore
| | - Alireza Fali
- Department of Physics and Astronomy, University of Georgia, Athens, GA, 30602, USA
| | - Zhen Zhang
- School of Materials Engineering, Purdue University, West Lafayette, IN, 47907, USA
| | - Jiahan Li
- Tim Taylor Department of Chemical Engineering, Kansas State University, Manhattan, KN, 66506, USA
| | | | - Sumeet Walia
- School of Engineering RMIT University Melbourne, Melbourne, VIC, Australia.,Functional Materials and Microsystems Research Group and the Micro Nano Research Facility RMIT University, Melbourne, VIC, Australia
| | - Sharath Sriram
- Functional Materials and Microsystems Research Group and the Micro Nano Research Facility RMIT University, Melbourne, VIC, Australia.,ARC Centre of Excellence for Transformative Meta-Optical Systems, RMIT University, Melbourne, VIC, Australia
| | - James H Edgar
- Tim Taylor Department of Chemical Engineering, Kansas State University, Manhattan, KN, 66506, USA
| | - Shriram Ramanathan
- School of Materials Engineering, Purdue University, West Lafayette, IN, 47907, USA
| | - Andrea Alù
- Photonics Initiative, Advanced Science Research Center, City University of New York, New York, NY, 10031, USA.,Physics Program, Graduate Center, City University of New York, New York, NY, 10016, USA
| | - Yohannes Abate
- Department of Physics and Astronomy, University of Georgia, Athens, GA, 30602, USA.
| |
Collapse
|
4
|
Zeng Y, Ou Q, Liu L, Zheng C, Wang Z, Gong Y, Liang X, Zhang Y, Hu G, Yang Z, Qiu CW, Bao Q, Chen H, Dai Z. Tailoring Topological Transitions of Anisotropic Polaritons by Interface Engineering in Biaxial Crystals. NANO LETTERS 2022; 22:4260-4268. [PMID: 35442697 DOI: 10.1021/acs.nanolett.2c00399] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Polaritons in polar biaxial crystals with extreme anisotropy offer a promising route to manipulate nanoscale light-matter interactions. The dynamic modulation of their dispersion is of great significance for future integrated nano-optics but remains challenging. Here, we report tunable topological transitions in biaxial crystals enabled by interface engineering. We theoretically demonstrate such tailored polaritons at the interface of heterostructures between graphene and α-phase molybdenum trioxide (α-MoO3). The interlayer coupling can be modulated by both the stack of graphene and α-MoO3 and the magnitude of the Fermi level in graphene enabling a dynamic topological transition. More interestingly, we found that the wavefront transition occurs at a constant Fermi level when the thickness of α-MoO3 is tuned. Furthermore, we also experimentally verify the hybrid polaritons in the graphene/α-MoO3 heterostructure with different thicknesses of α-MoO3. The interface engineering offers new insights into optical topological transitions, which may shed new light on programmable polaritonics, energy transfer, and neuromorphic photonics.
Collapse
Affiliation(s)
- Yali Zeng
- Department of Physics, Xiamen University, Xiamen 361005, People's Republic of China
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117583, Singapore
| | - Qingdong Ou
- Department of Materials Science and Engineering, and ARC Centre of Excellence in Future Low-Energy Electronics Technologies (FLEET), Monash University, Clayton, Victoria 3800, Australia
| | - Lu Liu
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, People's Republic of China
| | - Chunqi Zheng
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117583, Singapore
| | - Ziyu Wang
- Department of Materials Science and Engineering, and ARC Centre of Excellence in Future Low-Energy Electronics Technologies (FLEET), Monash University, Clayton, Victoria 3800, Australia
- Institute of Materials Research and Engineering, Agency for Science Technology and Research (A*STAR), Singapore 138634, Singapore
| | - Youning Gong
- College of Electronics and Information Engineering, Shenzhen University, Shenzhen 518060, People's Republic of China
| | - Xiang Liang
- School of Energy and Power Engineering, Wuhan University of Technology, Wuhan 430063, People's Republic of China
| | - Yupeng Zhang
- College of Electronics and Information Engineering, Shenzhen University, Shenzhen 518060, People's Republic of China
| | - Guangwei Hu
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117583, Singapore
| | - Zhilin Yang
- Department of Physics, Xiamen University, Xiamen 361005, People's Republic of China
| | - Cheng-Wei Qiu
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117583, Singapore
| | - Qiaoliang Bao
- Department of Materials Science and Engineering, and ARC Centre of Excellence in Future Low-Energy Electronics Technologies (FLEET), Monash University, Clayton, Victoria 3800, Australia
| | - Huanyang Chen
- Department of Physics, Xiamen University, Xiamen 361005, People's Republic of China
| | - Zhigao Dai
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, People's Republic of China
| |
Collapse
|
5
|
Yang F, Pitchappa P, Wang N. Terahertz Reconfigurable Intelligent Surfaces (RISs) for 6G Communication Links. MICROMACHINES 2022; 13:285. [PMID: 35208409 PMCID: PMC8879315 DOI: 10.3390/mi13020285] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 02/02/2022] [Accepted: 02/04/2022] [Indexed: 02/04/2023]
Abstract
The forthcoming sixth generation (6G) communication network is envisioned to provide ultra-fast data transmission and ubiquitous wireless connectivity. The terahertz (THz) spectrum, with higher frequency and wider bandwidth, offers great potential for 6G wireless technologies. However, the THz links suffers from high loss and line-of-sight connectivity. To overcome these challenges, a cost-effective method to dynamically optimize the transmission path using reconfigurable intelligent surfaces (RISs) is widely proposed. RIS is constructed by embedding active elements into passive metasurfaces, which is an artificially designed periodic structure. However, the active elements (e.g., PIN diodes) used for 5G RIS are impractical for 6G RIS due to the cutoff frequency limitation and higher loss at THz frequencies. As such, various tuning elements have been explored to fill this THz gap between radio waves and infrared light. The focus of this review is on THz RISs with the potential to assist 6G communication functionalities including pixel-level amplitude modulation and dynamic beam manipulation. By reviewing a wide range of tuning mechanisms, including electronic approaches (complementary metal-oxide-semiconductor (CMOS) transistors, Schottky diodes, high electron mobility transistors (HEMTs), and graphene), optical approaches (photoactive semiconductor materials), phase-change materials (vanadium dioxide, chalcogenides, and liquid crystals), as well as microelectromechanical systems (MEMS), this review summarizes recent developments in THz RISs in support of 6G communication links and discusses future research directions in this field.
Collapse
Affiliation(s)
| | - Prakash Pitchappa
- Institute of Microelectronics, Agency for Science, Technology and Research, Singapore 138634, Singapore;
| | - Nan Wang
- Institute of Microelectronics, Agency for Science, Technology and Research, Singapore 138634, Singapore;
| |
Collapse
|