1
|
Li S, Xu M, Chen K, Wu Q, Li Y, Xie C, Li Y, Xu Q, Huang J, Xie H. Rational design of epoxy functionalized ionic liquids electrolyte additive for hydrogen-free and dendrite-free aqueous zinc batteries. J Colloid Interface Sci 2025; 678:934-947. [PMID: 39326165 DOI: 10.1016/j.jcis.2024.09.127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 09/02/2024] [Accepted: 09/03/2024] [Indexed: 09/28/2024]
Abstract
Despite the high safety and low cost associated with aqueous Zn-ion batteries (ZIBs), uncontrolled Zn dendrite growth and parasitic reactions induced by water significantly diminish their stability. Herein, a new epoxy functionalized ionic liquid, 4-methyl-4-glycidylmorpholin bis[(trifluoromethyl)sulfonyl]imide (MGM[TFSI]), has been developed to mitigate water reactivity for stable ZIBs. It was found that the MGM+ cation disrupts the hydrogen bond network of water, hindering its adsorption on Zn anodes, thereby suppressing water decomposition and enhancing anode stability. Additionally, preferential adsorption of MGM+ cations on the Zn anode surface mitigates tip effects, suppresses dendrite growth, and promotes the formation of a ZnF2 solid electrolyte interphase layer, effectively isolating the anode from the bulk electrolyte. As a result, benefiting from the well-designed MGM+-based electrolyte, Zn//Zn cells achieve significantly enhanced cycling stability, lasting over 2000 h at 1 mA cm-2 with 1 mAh cm-2. Furthermore, Zn//MnO2 full cells deliver remarkable stability, retaining approximately 89 % of their initial capacity after 3000 cycles at 5 A/g. This work proposes that the MGM[TFSI] additive can effectively regulate the interfacial chemistry of the Zn anode, providing an opportunity to design advanced electrolytes for highly reversible ZIBs and beyond.
Collapse
Affiliation(s)
- Shizhao Li
- Department of New Energy Science and Engineering, College of Materials and Metallurgy, Guizhou University, Huaxi District, Guiyang 550025, China
| | - Mingwei Xu
- Department of New Energy Science and Engineering, College of Materials and Metallurgy, Guizhou University, Huaxi District, Guiyang 550025, China
| | - Kui Chen
- Department of New Energy Science and Engineering, College of Materials and Metallurgy, Guizhou University, Huaxi District, Guiyang 550025, China
| | - Qing Wu
- Department of New Energy Science and Engineering, College of Materials and Metallurgy, Guizhou University, Huaxi District, Guiyang 550025, China
| | - Yue Li
- Department of New Energy Science and Engineering, College of Materials and Metallurgy, Guizhou University, Huaxi District, Guiyang 550025, China
| | - Chunhui Xie
- Department of New Energy Science and Engineering, College of Materials and Metallurgy, Guizhou University, Huaxi District, Guiyang 550025, China
| | - Yunqi Li
- Department of New Energy Science and Engineering, College of Materials and Metallurgy, Guizhou University, Huaxi District, Guiyang 550025, China
| | - Qinqin Xu
- Department of New Energy Science and Engineering, College of Materials and Metallurgy, Guizhou University, Huaxi District, Guiyang 550025, China.
| | - Jun Huang
- Department of New Energy Science and Engineering, College of Materials and Metallurgy, Guizhou University, Huaxi District, Guiyang 550025, China.
| | - Haibo Xie
- Department of New Energy Science and Engineering, College of Materials and Metallurgy, Guizhou University, Huaxi District, Guiyang 550025, China.
| |
Collapse
|
2
|
Wu K, Liu X, Ning F, Subhan S, Xie Y, Lu S, Xia Y, Yi J. Engineering of Charge Density at the Anode/Electrolyte Interface for Long-Life Zn Anode in Aqueous Zinc Ion Battery. CHEMSUSCHEM 2025; 18:e202401251. [PMID: 39046757 DOI: 10.1002/cssc.202401251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/15/2024] [Accepted: 07/24/2024] [Indexed: 07/25/2024]
Abstract
The aqueous zinc ion battery emerges as the promising candidate applied in large-scale energy storage system. However, Zn anode suffers from the issues including Zn dendrite, Hydrogen evolution reaction and corrosion. These challenges are primarily derived from the instability of anode/electrolyte interface, which is associated with the interfacial charge density distribution. In this context, the recent advancements concentrating on the strategies and mechanisms to regulate charge density at the Zn anode/electrolyte interface are summarized. Different characterization techniques for charge density distribution have been analysed, which can be applied to assess the interfacial zinc ion transport. Additionally, the charge density regulations at the Zn anode/electrolyte interface are discussed, elucidating their roles in modulating electrostatic interactions, electric field, structure of solvated zinc ion and electric double layer, respectively. Finally, the perspectives and challenges on the further research are provided to establish the stable anode/electrolyte interface by focusing on charge density modifications, which is expected to facilitate the development of aqueous zinc ion battery.
Collapse
Affiliation(s)
- Kai Wu
- Nanotechnology Research Institute/G60 STI Valley Industry & Innovation Institute, Jiaxing University, Zhejiang, 314000, China
| | - Xiaoyu Liu
- Institute for Sustainable Energy/College of Sciences, Shanghai University, Shanghai, 200444, China
| | - Fanghua Ning
- Institute for Sustainable Energy/College of Sciences, Shanghai University, Shanghai, 200444, China
| | - Sidra Subhan
- Institute for Sustainable Energy/College of Sciences, Shanghai University, Shanghai, 200444, China
- Institute of chemical sciences, University of Peshawar, KPK, 25000, Pakistan
| | - Yihua Xie
- Department of Chemistry and Institute of New Energy, Fudan University, Shanghai, 200433, China
| | - Shigang Lu
- Institute for Sustainable Energy/College of Sciences, Shanghai University, Shanghai, 200444, China
| | - Yongyao Xia
- Department of Chemistry and Institute of New Energy, Fudan University, Shanghai, 200433, China
| | - Jin Yi
- Institute for Sustainable Energy/College of Sciences, Shanghai University, Shanghai, 200444, China
| |
Collapse
|
3
|
Qiao S, Chang L, Cui Z, Wang D, Zhang W, Zhu Q. Tuning Zn-ion de-solvation chemistry with trace amount of additive towards stable Aqueous Zn anodes. J Colloid Interface Sci 2025; 677:462-471. [PMID: 39154439 DOI: 10.1016/j.jcis.2024.08.088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 08/05/2024] [Accepted: 08/12/2024] [Indexed: 08/20/2024]
Abstract
Aqueous Zn-ion batteries (AZIBs) have attracted widespread attention due to their intrinsic safety, cost-effectiveness. However, active H2O in the solvated ions [Zn(H2O)6]2+ continuously migrate to the Zn surface to trigger hydrogen evolution reaction (HER) and accelerate Zn corrosion. Herein, Zn dendrites and the related by-products have been successfully inhibited by using trace amounts of Nitrilotriacetic acid (NTA). Theoretical research indicates that two carboxyl groups of NTA molecule strongly anchored on the Zn surface and exposed another carboxyl group outside. Due to the violent interaction of carboxyl groups of NTA with H2O, the de-solvation energy barrier of solvated Zn2+ ([Zn(H2O)6]2+) on the Zn surface was obviously decreased, inhibit the active water splitting. Meanwhile, the preferential adsorption of NTA on the Zn surface increases the thickness of electric double layer EDL and provides a buffer layer to hinder the dendrite growth. Using 0.04 M NTA as additives in 2.0 M ZnSO4 electrolyte, the cycling lifespan of both Zn||Zn symmetric and Zn||MnO2 full cells is markedly prolonged. This study provides certain perspectives for trace amounts of electrolyte additives to satisfy the demand of long-cycle life AZIBs.
Collapse
Affiliation(s)
- Shizhe Qiao
- National & Local Joint Engineering Laboratory of New Energy Photoelectric Devices, College of Physics Science and Technology, Hebei University, Baoding 071002, China
| | - Le Chang
- National & Local Joint Engineering Laboratory of New Energy Photoelectric Devices, College of Physics Science and Technology, Hebei University, Baoding 071002, China
| | - Ziyang Cui
- National & Local Joint Engineering Laboratory of New Energy Photoelectric Devices, College of Physics Science and Technology, Hebei University, Baoding 071002, China
| | - Dengke Wang
- National & Local Joint Engineering Laboratory of New Energy Photoelectric Devices, College of Physics Science and Technology, Hebei University, Baoding 071002, China
| | - Wenming Zhang
- National & Local Joint Engineering Laboratory of New Energy Photoelectric Devices, College of Physics Science and Technology, Hebei University, Baoding 071002, China.
| | - Qiancheng Zhu
- National & Local Joint Engineering Laboratory of New Energy Photoelectric Devices, College of Physics Science and Technology, Hebei University, Baoding 071002, China.
| |
Collapse
|
4
|
Zhang G, Fu L, Chen Y, Fan K, Zhang C, Dai H, Guan L, Guo H, Mao M, Wang C. Constructing Quasi-Single Ion Conductors by a β-Cyclodextrin Polymer to Stabilize Zn Anode. Angew Chem Int Ed Engl 2024; 63:e202412173. [PMID: 39205422 DOI: 10.1002/anie.202412173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 08/14/2024] [Accepted: 08/28/2024] [Indexed: 09/04/2024]
Abstract
Aqueous Zn-ion batteries (AZIBs) are promising for the next-generation large-scale energy storage. However, the Zn anode remains facing challenges. Here, we report a cyclodextrin polymer (P-CD) to construct quasi-single ion conductor for coating and protecting Zn anodes. The P-CD coating layer inhibited the corrosion of Zn anode and prevented the side reaction of metal anodes. More important is that the cyclodextrin units enabled the trapping of anions through host-guest interactions and hydrogen bonds, forming a quasi-single ion conductor that elevated the Zn ion transference number (from 0.31 to 0.68), suppressed the formation of space charge regions and hence stabilized the plating/striping of Zn ions. As a result, the Zn//Zn symmetric cells coated with P-CD achieved a 70.6 times improvement in cycle life at high current densities of 10 mA cm-2 with 10 mAh cm-2. Importantly, the Zn//K1.1V3O8 (KVO) full-cells with high mass loading of cathode materials and low N/P ratio of 1.46 reached the capacity retention of 94.5 % after 1000 cycles at 10 A g-1; while the cell without coating failed only after 230 cycles. These results provide novel perspective into the control of solid-electrolyte interfaces for stabilizing Zn anode and offer a practical strategy to improve AZIBs.
Collapse
Affiliation(s)
- Guoqun Zhang
- School of Integrated Circuits Wuhan National Laboratory for Optoelectronics (WNLO) Key Laboratory of Material Chemistry for Energy Conversion and Storage, Huazhong University of Science and Technology, Wuhan, 430074, P.R. China
| | - Lulu Fu
- Department of Chemistry School of Science, Tianjin University of Science & Technology, Tianjin, 300457, P.R. China
| | - Yuan Chen
- School of Integrated Circuits Wuhan National Laboratory for Optoelectronics (WNLO) Key Laboratory of Material Chemistry for Energy Conversion and Storage, Huazhong University of Science and Technology, Wuhan, 430074, P.R. China
- Wenzhou Advanced Manufacturing Institute, Huazhong University of Science and Technology, Wenzhou, 325035, P.R. China
| | - Kun Fan
- School of Integrated Circuits Wuhan National Laboratory for Optoelectronics (WNLO) Key Laboratory of Material Chemistry for Energy Conversion and Storage, Huazhong University of Science and Technology, Wuhan, 430074, P.R. China
- Wenzhou Advanced Manufacturing Institute, Huazhong University of Science and Technology, Wenzhou, 325035, P.R. China
| | - Chenyang Zhang
- School of Integrated Circuits Wuhan National Laboratory for Optoelectronics (WNLO) Key Laboratory of Material Chemistry for Energy Conversion and Storage, Huazhong University of Science and Technology, Wuhan, 430074, P.R. China
| | - Huichao Dai
- School of Integrated Circuits Wuhan National Laboratory for Optoelectronics (WNLO) Key Laboratory of Material Chemistry for Energy Conversion and Storage, Huazhong University of Science and Technology, Wuhan, 430074, P.R. China
| | - Linnan Guan
- School of Integrated Circuits Wuhan National Laboratory for Optoelectronics (WNLO) Key Laboratory of Material Chemistry for Energy Conversion and Storage, Huazhong University of Science and Technology, Wuhan, 430074, P.R. China
| | - Haoyu Guo
- School of Integrated Circuits Wuhan National Laboratory for Optoelectronics (WNLO) Key Laboratory of Material Chemistry for Energy Conversion and Storage, Huazhong University of Science and Technology, Wuhan, 430074, P.R. China
| | - Minglei Mao
- School of Integrated Circuits Wuhan National Laboratory for Optoelectronics (WNLO) Key Laboratory of Material Chemistry for Energy Conversion and Storage, Huazhong University of Science and Technology, Wuhan, 430074, P.R. China
| | - Chengliang Wang
- School of Integrated Circuits Wuhan National Laboratory for Optoelectronics (WNLO) Key Laboratory of Material Chemistry for Energy Conversion and Storage, Huazhong University of Science and Technology, Wuhan, 430074, P.R. China
- Wenzhou Advanced Manufacturing Institute, Huazhong University of Science and Technology, Wenzhou, 325035, P.R. China
| |
Collapse
|
5
|
Tan R, He H, Wang A, Wong T, Yang Y, Iguodala S, Ye C, Liu D, Fan Z, Furedi M, He G, Guldin S, Brett DJL, McKeown NB, Song Q. Interfacial Engineering of Polymer Membranes with Intrinsic Microporosity for Dendrite-Free Zinc Metal Batteries. Angew Chem Int Ed Engl 2024; 63:e202409322. [PMID: 39195347 DOI: 10.1002/anie.202409322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 08/07/2024] [Accepted: 08/27/2024] [Indexed: 08/29/2024]
Abstract
Metallic zinc has emerged as a promising anode material for high-energy battery systems due to its high theoretical capacity (820 mAh g-1), low redox potential for two-electron reactions, cost-effectiveness and inherent safety. However, current zinc metal batteries face challenges in low coulombic efficiency and limited longevity due to uncontrollable dendrite growth, the corrosive hydrogen evolution reaction (HER) and decomposition of the aqueous ZnSO4 electrolyte. Here, we report an interfacial-engineering approach to mitigate dendrite growth and reduce corrosive reactions through the design of ultrathin selective membranes coated on the zinc anodes. The submicron-thick membranes derived from polymers of intrinsic microporosity (PIMs), featuring pores with tunable interconnectivity, facilitate regulated transport of Zn2+-ions, thereby promoting a uniform plating/stripping process. Benefiting from the protection by PIM membranes, zinc symmetric cells deliver a stable cycling performance over 1500 h at 1 mA/cm2 with a capacity of 0.5 mAh while full cells with NaMnO2 cathode operate stably at 1 A g-1 over 300 cycles without capacity decay. Our work represents a new strategy of preparing multi-functional membranes that can advance the development of safe and stable zinc metal batteries.
Collapse
Affiliation(s)
- Rui Tan
- Department of Chemical Engineering, Imperial College London, London, SW7 2AZ, UK
- Department of Chemical Engineering, Swansea University, Swansea, SA1 8EN, UK
| | - Hongzhen He
- Department of Chemical Engineering, University College London, London, WC1E 7JE, UK
| | - Anqi Wang
- Department of Chemical Engineering, Imperial College London, London, SW7 2AZ, UK
| | - Toby Wong
- Department of Chemical Engineering, Imperial College London, London, SW7 2AZ, UK
| | - Yilin Yang
- Department of Chemical Engineering, Imperial College London, London, SW7 2AZ, UK
| | - Sunshine Iguodala
- Department of Chemical Engineering, Imperial College London, London, SW7 2AZ, UK
| | - Chunchun Ye
- EaStChem School of Chemistry, University of Edinburgh, Edinburgh, EH9 3FJ, UK
| | - Dezhi Liu
- Department of Chemical Engineering, Imperial College London, London, SW7 2AZ, UK
| | - Zhiyu Fan
- Department of Chemical Engineering, Imperial College London, London, SW7 2AZ, UK
| | - Mate Furedi
- Department of Chemical Engineering, University College London, London, WC1E 7JE, UK
| | - Guanjie He
- Department of Chemistry, University College London, London, WC1E 7JE, UK
| | - Stefan Guldin
- Department of Chemical Engineering, University College London, London, WC1E 7JE, UK
| | - Dan J L Brett
- Department of Chemical Engineering, University College London, London, WC1E 7JE, UK
| | - Neil B McKeown
- EaStChem School of Chemistry, University of Edinburgh, Edinburgh, EH9 3FJ, UK
| | - Qilei Song
- Department of Chemical Engineering, Imperial College London, London, SW7 2AZ, UK
| |
Collapse
|
6
|
Ma Y, Song X, Hu W, Xiong J, Chu P, Fan Y, Zhang B, Zhou H, Liu C, Zhao Y. Recent progress and perspectives of advanced Ni-based cathodes for aqueous alkaline Zn batteries. Front Chem 2024; 12:1483867. [PMID: 39659873 PMCID: PMC11628261 DOI: 10.3389/fchem.2024.1483867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 11/13/2024] [Indexed: 12/12/2024] Open
Abstract
Rechargeable aqueous alkaline Zn-Ni batteries (AZNBs) are considered a potential contender for energy storage fields and portable devices due to their inherent safety, high output voltage, high theoretical capacity and environmental friendliness. Despite the facilitated development of AZNBs by many investigations, its practical application is still restricted by inadequate energy density, sluggish kinetics, and poor stability. Therefore, Ni-based cathodes with boosted redox chemistry and enhanced structural integrity is essential for the high-performance AZNBs. Herein, this review focus on critical bottlenecks and effective design strategies of the representative Ni-based cathode materials. Specifically, nanostructured optimization, defect engineering, ion doping, heterostructure regulation and ligand engineering have been employed from the fundamental aspects for high-energy and long-lifespan Ni-based cathodes. Finally, further exploration in failure mechanism, binder-free battery configurations, practical application scenarios, as well as battery recycling are considered as valuable directions for the future development of advanced AZNBs.
Collapse
Affiliation(s)
- Yanfen Ma
- Petro China Shen Zhen: New Energy Research Institute, Shenzhen, China
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing, China
| | - Xin Song
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing, China
| | - Wenjing Hu
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing, China
| | - Jiawei Xiong
- Mary Frances Early College of Education, The University of Georgia, Athens, GA, United States
| | - Pan Chu
- Petro China Shen Zhen: New Energy Research Institute, Shenzhen, China
| | - Yanchen Fan
- Petro China Shen Zhen: New Energy Research Institute, Shenzhen, China
| | - Biao Zhang
- Petro China Shen Zhen: New Energy Research Institute, Shenzhen, China
| | - Hongyu Zhou
- Petro China Shen Zhen: New Energy Research Institute, Shenzhen, China
| | - Chenguang Liu
- Petro China Shen Zhen: New Energy Research Institute, Shenzhen, China
| | - Yi Zhao
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing, China
| |
Collapse
|
7
|
Chen Z, Wang Y, Wu Q, Wang C, He Q, Hu T, Han X, Chen J, Zhang Y, Chen J, Yang L, Wang X, Ma Y, Zhao J. Grain Boundary Filling Empowers (002)-Textured Zn Metal Anodes with Superior Stability. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2411004. [PMID: 39300904 DOI: 10.1002/adma.202411004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 09/05/2024] [Indexed: 09/22/2024]
Abstract
Aqueous Zn battery is promising for grid-level energy storage due to its high safety and low cost, but dendrite growth and side reactions at the Zn metal anode hinder its development. Designing Zn with (002) orientation improves the stability of the Zn anode, yet grain boundaries remain susceptible to corrosion and dendrite growth. Addressing these intergranular issues is crucial for enhancing the electrochemical performance of (002)-textured Zn. Here, a strategy based on grain boundary wetting to fill intergranular regions and mitigate these issues is reported. By systematically investigating boundary fillers and filling conditions, In metal is chosen as the filler, and one-step annealing is used to synergistically convert commercial Zn foils into single (002)-textured Zn while filling In into the boundaries. The inter-crystalline-modified (002)-textured Zn (IM(002) Zn) effectively inhibits corrosion and dendrite growth, resulting in excellent stability in batteries. This work offers new insights into Zn anode protection and the development of high-energy Zn batteries.
Collapse
Affiliation(s)
- Zibo Chen
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing, 210023, P. R. China
| | - Yizhou Wang
- Materials Science and Engineering, Physical Science and Engineering Division (PSE), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Qiang Wu
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing, 210023, P. R. China
| | - Cheng Wang
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing, 210023, P. R. China
| | - Qian He
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing, 210023, P. R. China
| | - Tao Hu
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing, 210023, P. R. China
| | - Xuran Han
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing, 210023, P. R. China
| | - Jialu Chen
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing, 210023, P. R. China
| | - Yu Zhang
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing, 210023, P. R. China
| | - Jianyu Chen
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing, 210023, P. R. China
| | - Lijun Yang
- Key Laboratory of Mesoscopic Chemistry of MOE and Jiangsu Provincial Laboratory for Nanotechnology, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| | - Xuebin Wang
- National Laboratory of Solid State Microstructures (NLSSM), Collaborative Innovation Center of Advanced Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, College of Engineering and Applied Sciences, Nanjing University, Nanjing, 210093, P. R. China
| | - Yanwen Ma
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing, 210023, P. R. China
- Suzhou Vocational Institute of Industrial Technology, Suzhou, 215104, P. R. China
| | - Jin Zhao
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing, 210023, P. R. China
| |
Collapse
|
8
|
Chen W, Wang Y, Wang F, Zhang Z, Li W, Fang G, Wang F. Zinc Chemistries of Hybrid Electrolytes in Zinc Metal Batteries: From Solvent Structure to Interfaces. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2411802. [PMID: 39373284 DOI: 10.1002/adma.202411802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 09/11/2024] [Indexed: 10/08/2024]
Abstract
Along with the booming research on zinc metal batteries (ZMBs) in recent years, operational issues originated from inferior interfacial reversibility have become inevitable. Presently, single-component electrolytes represented by aqueous solution, "water-in-salt," solid, eutectic, ionic liquids, hydrogel, or organic solvent system are hard to undertake independently the task of guiding the practical application of ZMBs due to their specific limitations. The hybrid electrolytes modulate microscopic interaction mode between Zn2+ and other ions/molecules, integrating vantage of respective electrolyte systems. They even demonstrate original Zn2+ mobility pattern or interfacial chemistries mechanism distinct from single-component electrolytes, providing considerable opportunities for solving electromigration and interfacial problems in ZMBs. Therefore, it is urgent to comprehensively summarize the zinc chemistries principles, characteristics, and applications of various hybrid electrolytes employed in ZMBs. This review begins with elucidating the chemical bonding mode of Zn2+ and interfacial physicochemical theory, and then systematically elaborates the microscopic solvent structure, Zn2+ migration forms, physicochemical properties, and the zinc chemistries mechanisms at the anode/cathode interfaces in each type of hybrid electrolytes. Among of which, the scotoma and amelioration strategies for the current hybrid electrolytes are actively exposited, expecting to provide referenceable insights for further progress of future high-quality ZMBs.
Collapse
Affiliation(s)
- Wenyong Chen
- Department of Materials Science, Fudan University, Shanghai, 200433, China
| | - Yanyan Wang
- Department of Materials Science, Fudan University, Shanghai, 200433, China
| | - Fengmei Wang
- Department of Materials Science, Fudan University, Shanghai, 200433, China
| | - Zihao Zhang
- Department of Materials Science, Fudan University, Shanghai, 200433, China
| | - Wei Li
- Department of Materials Science, Fudan University, Shanghai, 200433, China
| | - Guozhao Fang
- School of Materials Science and Engineering, Key Laboratory of Electronic Packaging and Advanced Functional Materials of Hunan Province, Central South University, Changsha, 410083, China
| | - Fei Wang
- Department of Materials Science, Fudan University, Shanghai, 200433, China
| |
Collapse
|
9
|
Liu J, Shen Z, Lu CZ. Disodium Malate Electrolyte Additive Facilitates Dendrite-Free Zinc Anode: Deposition Kinetics and Interface Regulation. SMALL METHODS 2024:e2400719. [PMID: 39358958 DOI: 10.1002/smtd.202400719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 09/17/2024] [Indexed: 10/04/2024]
Abstract
Due to the presence of H2O within the solvated sheath of [Zn(H2O)6]2+ as well as reactive free water in the electrolyte bulk phase, the extended cycling of aqueous zinc-ion batteries (AZIBs) is significantly affected by detrimental side reactions and the growth of Zn dendrites. This study significantly enhances the long-term cycling stability of AZIBs by introducing a small amount of disodium malate (DM) into a 2 m ZnSO4 electrolyte solution. DM involvement in the solvation sheath of Zn2+ reduces the desolvation energy of Zn2+, thereby mitigating the corrosion and hydrogen evolution reaction (HER) of the negative electrode surface by [Zn(H2O)6]2+ ions. Additionally, DM adsorption on the zinc surface retards the reduction kinetics of Zn2+ at anode, promoting uniform distribution and predominant deposition on the flat (002) crystal plane, thus reducing dendrite formation. The assembled Zn||Zn symmetric cell exhibits stable cycling for over 500 h at 10 mA cm-2 and 5 mAh cm-2. The Zn||VO2 full cells with DM additive exhibits an ultralong cycling lifespan without capacity loss.
Collapse
Affiliation(s)
- Jiayi Liu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, China
- University of Chinese Academy of Sciences, Beijing, 101408, China
- Xiamen Key Laboratory of Rare Earth Photoelectric Functional Materials, Xiamen Institute of Rare Earth Materials, Haixi Institutes, Chinese Academy of Sciences, Xiamen, 361021, China
| | - Zhongrong Shen
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, China
- University of Chinese Academy of Sciences, Beijing, 101408, China
- Xiamen Key Laboratory of Rare Earth Photoelectric Functional Materials, Xiamen Institute of Rare Earth Materials, Haixi Institutes, Chinese Academy of Sciences, Xiamen, 361021, China
| | - Can-Zhong Lu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, China
- University of Chinese Academy of Sciences, Beijing, 101408, China
- Xiamen Key Laboratory of Rare Earth Photoelectric Functional Materials, Xiamen Institute of Rare Earth Materials, Haixi Institutes, Chinese Academy of Sciences, Xiamen, 361021, China
| |
Collapse
|
10
|
Bai M, Chen J, Li Q, Wang X, Li J, Lin X, Shao S, Li D, Wang Z. A "Zn 2+ in Salt" Interphase Enabling High-Performance Zn Metal Anodes. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2403380. [PMID: 38837583 DOI: 10.1002/smll.202403380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 05/21/2024] [Indexed: 06/07/2024]
Abstract
Zinc metal is a promising anode candidate for aqueous zinc ion batteries due to its high theoretical capacity, low cost, and high safety. However, its application is currently restricted by hydrogen evolution reactions (HER), by-product formation, and Zn dendrite growth. Herein, a "Zn2+ in salt" (ZIS) interphase is in situ constructed on the surface of the anode (ZIS@Zn). Unlike the conventional "Zn2+ in water" working environment of Zn anodes, the intrinsic hydrophobicity of the ZIS interphase isolates the anode from direct contact with the aqueous electrolyte, thereby protecting it from HER, and the accompanying side reactions. More importantly, it works as an ordered water-free ion-conducting medium, which guides uniform Zn deposition and facilitates rapid Zn2+ migration at the interface. As a result, the symmetric cells assembled with ZIS@Zn exhibit dendrite-free plating/striping at 4500 h and a high critical current of 14 mA cm-2. When matched with a vanadium-based (NVO) cathode, the full battery exhibits excellent long-term cycling stability, with 88% capacity retention after 1600 cycles. This work provides an effective strategy to promote the stability and reversibility of Zn anodes in aqueous electrolytes.
Collapse
Affiliation(s)
- Mengxi Bai
- Department of Materials Science and Engineering, College of Chemistry and Materials Science, Jinan University, Guangzhou, 511443, P. R. China
| | - Jingtao Chen
- Department of Materials Science and Engineering, College of Chemistry and Materials Science, Jinan University, Guangzhou, 511443, P. R. China
| | - Qiufen Li
- Department of Materials Science and Engineering, College of Chemistry and Materials Science, Jinan University, Guangzhou, 511443, P. R. China
| | - Xiang Wang
- Department of Materials Science and Engineering, College of Chemistry and Materials Science, Jinan University, Guangzhou, 511443, P. R. China
| | - Jiashuai Li
- Department of Materials Science and Engineering, College of Chemistry and Materials Science, Jinan University, Guangzhou, 511443, P. R. China
| | - Xiaoyan Lin
- Department of Materials Science and Engineering, College of Chemistry and Materials Science, Jinan University, Guangzhou, 511443, P. R. China
| | - Siyuan Shao
- Department of Materials Science and Engineering, College of Chemistry and Materials Science, Jinan University, Guangzhou, 511443, P. R. China
| | - Dongze Li
- Department of Materials Science and Engineering, College of Chemistry and Materials Science, Jinan University, Guangzhou, 511443, P. R. China
| | - Ziqi Wang
- Department of Materials Science and Engineering, College of Chemistry and Materials Science, Jinan University, Guangzhou, 511443, P. R. China
| |
Collapse
|
11
|
Wang X, Liu L, Hu Z, Han C, Xu X, Dou S, Li W. An electron-losing regulation strategy for stripping modulation towards a highly reversible Zn anode. Chem Sci 2024; 15:d4sc04611k. [PMID: 39355223 PMCID: PMC11440357 DOI: 10.1039/d4sc04611k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 09/19/2024] [Indexed: 10/03/2024] Open
Abstract
The practical application of aqueous zinc-ion batteries (AZIBs) is hindered by their low coulombic efficiency (CE) and unstable cycle life. Numerous electrolyte-additive-related studies have been performed, but most of the focus has been on the Zn plating process. In fact, practical AZIBs undergo stripping in practice rather than plating in the initial cycle, because the commonly used cathodes in the charged state do not have zinc ions, so a uniform stripping process is crucial for the cell performance of AZIBs. Here, we propose an electron-losing regulation strategy for stripping modulation by adding additives. Oxolane (OL) was chosen as the model additive to verify this assumption. It is found that OL adsorbs onto the uneven initial Zn surface and accelerates the dissolution of the Zn tips, thus providing a uniform Zn anode during the stripping process. The oxygen atoms in OL reduce the surface energy of Zn and promote the exposure of the Zn (002) surface during plating. Consequently, cells with the OL electrolyte additive maintained a long lifespan and showed superior reversibility with a high average CE. The findings of this work lead to a deep understanding of the underlying mechanism of Zn anode stripping and provide new guidance for designing electrolyte additives.
Collapse
Affiliation(s)
- Xinyi Wang
- State Key Laboratory for Powder Metallurgy, Central South University Changsha 410083 China
- Institute for Superconducting and Electronic Materials, Australian Institute for Innovative Materials, University of Wollongong Wollongong 2522 Australia
| | - Liyang Liu
- State Key Laboratory for Powder Metallurgy, Central South University Changsha 410083 China
| | - Zewei Hu
- State Key Laboratory for Powder Metallurgy, Central South University Changsha 410083 China
| | - Chao Han
- School of Materials Science and Engineering, Central South University Changsha 410083 China
| | - Xun Xu
- Institute for Superconducting and Electronic Materials, Australian Institute for Innovative Materials, University of Wollongong Wollongong 2522 Australia
| | - Shixue Dou
- Institute for Superconducting and Electronic Materials, Australian Institute for Innovative Materials, University of Wollongong Wollongong 2522 Australia
- Institute of Energy Materials Science, University of Shanghai for Science and Technology Shanghai 200093 China
| | - Weijie Li
- State Key Laboratory for Powder Metallurgy, Central South University Changsha 410083 China
- Institute for Superconducting and Electronic Materials, Australian Institute for Innovative Materials, University of Wollongong Wollongong 2522 Australia
| |
Collapse
|
12
|
Lin H, Cai S, Li L, Ma Z, Wang X, Liang S, Fang G, Xiao M, Luo Z. Zincophile Zn 2+ Conductor Regulation by Ultrathin Nano MoO 3 Coating for Dendrite-Free Zn Anode. SMALL METHODS 2024:e2401096. [PMID: 39268791 DOI: 10.1002/smtd.202401096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Indexed: 09/15/2024]
Abstract
Aqueous battery with nonflammable and instinctive safe properties has received great attention. However, issues related to Zn anode such as side reactions and rampant dendrite growth hinder the long-term circulation of AZMBs. Herein, an ultrathin(35 nm) MoO3 coating is deposited on the Zn anode by means of vacuum vapor deposition for the first time. Due to the peculiar layer structure of MoO3, insertion of Zn2+ in ZnxMoO3 acts as Zn2+ ion conductor, which regulates Zn2+ deposition in an ordered manner. Additionally, the MoO3 coating can also inhibit the hydrogen evolution and corrosion reactions at the interface. Therefore, both Zn//MoO3@Cu asymmetric battery and Zn symmetric battery cells manage to deliver satisfactory electrochemical performances. The symmetric cell assembled with MoO3@Zn shows a significant long cycle life of more than 1600 h at a current density of 2 mA cm-2. Meanwhile, the MoO3@Zn//Cu asymmetric cell exhibits an ultrahigh Zn deposition/stripping efficiency of 99.82% after a stable cycling of 650 h at 2 mA cm-2. This study proposes a concept of "zincophile Zn2+ conductor regulation" to dictate Zn electrodeposition and broadens novel design of vacuum evaporation for nano MoO3 modified Zn anodes.
Collapse
Affiliation(s)
- Haisheng Lin
- College of Chemistry, Xiangtan University, Xiangtan, 411105, China
| | - Shujuan Cai
- College of Chemistry, Xiangtan University, Xiangtan, 411105, China
| | - Lanyan Li
- School of Science, Hunan University of Technology and Business, Changsha, 410205, China
| | - Zhongyun Ma
- College of Chemistry, Xiangtan University, Xiangtan, 411105, China
| | - Xianyou Wang
- College of Chemistry, Xiangtan University, Xiangtan, 411105, China
| | - Shuquan Liang
- School of Materials Science and Engineering, Central South University, Changsha, 410083, P. R. China
| | - Guozhao Fang
- School of Materials Science and Engineering, Central South University, Changsha, 410083, P. R. China
| | - Manjun Xiao
- College of Chemistry, Xiangtan University, Xiangtan, 411105, China
| | - Zhigao Luo
- College of Chemistry, Xiangtan University, Xiangtan, 411105, China
- National Local Joint Engineering Laboratory for Key Materials of New Energy Storage Battery, National Base for International Science & Technology Cooperation, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, Xiangtan, 411105, China
| |
Collapse
|
13
|
Jiang Y, Xiong D, Wan Z, Yang J, He X. Mechanism-Guided Rational Design of Anode Coatings for Aqueous Zinc Ion Batteries. Chemphyschem 2024:e202400231. [PMID: 39119765 DOI: 10.1002/cphc.202400231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 08/04/2024] [Accepted: 08/08/2024] [Indexed: 08/10/2024]
Abstract
Aqueous zinc ion batteries (ZIBs) hold promises as a safer, more cost-effective, and environmental-friendly alternative to lithium-ion batteries, especially for stationary energy storage. Recent advancements in protective anode coatings, which fine-tune zinc ion solvation structure, have yielded significant improvements in the aqueous ZIB performance, addressing dendrite formation and side reactions, thereby prolonging cycle lifetime. Understanding the underlying mechanisms of these coatings as ions sieves is crucial for further optimization and achieving long-term stability, which is a key requirement for practical applications. This concept explores recent developments in ZIB anode coatings from the view of molecular mechanisms and points out future research directions.
Collapse
Affiliation(s)
- Yizhi Jiang
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, Shanghai Frontiers Science Center of Molecule Intelligent Syntheses, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200061, China
| | - Danyang Xiong
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, Shanghai Frontiers Science Center of Molecule Intelligent Syntheses, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200061, China
| | - Zheng Wan
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, Shanghai Frontiers Science Center of Molecule Intelligent Syntheses, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200061, China
| | - Jinrong Yang
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, Shanghai Frontiers Science Center of Molecule Intelligent Syntheses, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200061, China
| | - Xiao He
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, Shanghai Frontiers Science Center of Molecule Intelligent Syntheses, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200061, China
- Chongqing Key Laboratory of Precision Optics, Chongqing Institute of East China Normal University, Chongqing, 401120, China
- New York University-East China Normal University Center for Computational Chemistry, New York University Shanghai, Shanghai, 200062, China
| |
Collapse
|
14
|
Sun H, Li M, Zhu J, Ni J, Li L. Capitalizing on the Iodometric Reaction for Energetic Aqueous Energy Storage. ACS NANO 2024. [PMID: 39088790 DOI: 10.1021/acsnano.4c06252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/03/2024]
Abstract
Iodometric and iodimetric titrations represent a prevailing technique to determine the concentration of Cu2+ ions in aqueous solutions; However, their utilization in electrochemical energy storage has been overlooked due to the poor reversibility between CuI and Cu2+ related to the shuttling effect of I3- species. In this work, we developed a 4A zeolite separator capable of suppressing the free shuttling of I3- ions, thus achieving a record-high capacity retention of 95.7% upon 600 cycles. Theoretical and experimental studies reveal that the negatively charged zeolite can effectively impede the approach and penetration of I3- ions, as a result of electrostatic interaction between them. To explore the practical potential, a hybrid cell of Zn∥I2 consisting of Cu2+ redox agent has been assembled with a discharge capacity of 356 mA h g-1. The cell affords a specific energy of 443 W h kg-1 based on I2, or 193 W h kg-1 based on both electrodes. This work offers insight on the energy utilization of the iodometric reactions and advocates a Cu2+-mediated cell design that could potentially double the capacity and energy of conventional aqueous battery systems.
Collapse
Affiliation(s)
- Haowen Sun
- School of Physical Science and Technology, Center for Energy Conversion Materials & Physics (CECMP), Jiangsu Key Laboratory of Frontier Material Physics and Devices, Soochow University, Suzhou 215006, China
- Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, Suzhou 215006, China
| | - Mengxiu Li
- School of Physical Science and Technology, Center for Energy Conversion Materials & Physics (CECMP), Jiangsu Key Laboratory of Frontier Material Physics and Devices, Soochow University, Suzhou 215006, China
- Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, Suzhou 215006, China
| | - Junbing Zhu
- School of Physical Science and Technology, Center for Energy Conversion Materials & Physics (CECMP), Jiangsu Key Laboratory of Frontier Material Physics and Devices, Soochow University, Suzhou 215006, China
- Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, Suzhou 215006, China
| | - Jiangfeng Ni
- School of Physical Science and Technology, Center for Energy Conversion Materials & Physics (CECMP), Jiangsu Key Laboratory of Frontier Material Physics and Devices, Soochow University, Suzhou 215006, China
- Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, Suzhou 215006, China
| | - Liang Li
- School of Physical Science and Technology, Center for Energy Conversion Materials & Physics (CECMP), Jiangsu Key Laboratory of Frontier Material Physics and Devices, Soochow University, Suzhou 215006, China
| |
Collapse
|
15
|
Huo P, Ming X, Wang Y, Yu Q, Liang R, Sun G. Stable Zinc Anode Facilitated by Regenerated Silk Fibroin-modified Hydrogel Protective Layer. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2400565. [PMID: 38602450 DOI: 10.1002/smll.202400565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 03/10/2024] [Indexed: 04/12/2024]
Abstract
Inherent dendrite growth and side reactions of zinc anode caused by its unstable interface in aqueous electrolytes severely limit the practical applications of zinc-ion batteries (ZIBs). To overcome these challenges, a protective layer for Zn anode inspired by cytomembrane structure is developed with PVA as framework and silk fibroin gel suspension (SFs) as modifier. This PVA/SFs gel-like layer exerts similar to the solid electrolyte interphase, optimizing the anode-electrolyte interface and Zn2+ solvation structure. Through interface improvement, controlled Zn2+ migration/diffusion, and desolvation, this buffer layer effectively inhibits dendrite growth and side reactions. The additional SFs provide functional improvement and better interaction with PVA by abundant functional groups, achieving a robust and durable Zn anode with high reversibility. Thus, the PVA/SFs@Zn symmetric cell exhibits an ultra-long lifespan of 3150 h compared to bare Zn (182 h) at 1.0 mAh cm-2-1.0 mAh cm-2, and excellent reversibility with an average Coulombic efficiency of 99.04% under a large plating capacity for 800 cycles. Moreover, the PVA/SFs@Zn||PANI/CC full cells maintain over 20 000 cycles with over 80% capacity retention under harsh conditions at 5 and 10 A g-1. This SF-modified protective layer for Zn anode suggests a promising strategy for reliable and high-performance ZIBs.
Collapse
Affiliation(s)
- Peixian Huo
- Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Avenida da Universidade, Taipa, Macau SAR, 999078, China
| | - Xing Ming
- Department of Engineering Science, Faculty of Innovation Engineering, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau SAR, 999078, China
| | - Yueyang Wang
- Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Avenida da Universidade, Taipa, Macau SAR, 999078, China
| | - Qinglu Yu
- Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Avenida da Universidade, Taipa, Macau SAR, 999078, China
| | - Rui Liang
- Department of Engineering Science, Faculty of Innovation Engineering, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau SAR, 999078, China
| | - Guoxing Sun
- Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Avenida da Universidade, Taipa, Macau SAR, 999078, China
| |
Collapse
|
16
|
Ma G, Yuan W, Li X, Bi T, Niu L, Wang Y, Liu M, Wang Y, Shen Z, Zhang N. Organic Cations Texture Zinc Metal Anodes for Deep Cycling Aqueous Zinc Batteries. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2408287. [PMID: 38967293 DOI: 10.1002/adma.202408287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 06/28/2024] [Indexed: 07/06/2024]
Abstract
Manipulating the crystallographic orientation of zinc (Zn) metal to expose more (002) planes is promising to stabilize Zn anodes in aqueous electrolytes. However, there remain challenges involving the non-epitaxial electrodeposition of highly (002) textured Zn metal and the maintenance of (002) texture under deep cycling conditions. Herein, a novel organic imidazolium cations-assisted non-epitaxial electrodeposition strategy to texture electrodeposited Zn metals is developed. Taking the 1-butyl-3-methylimidazolium cation (Bmim+) as a paradigm additive, the as-prepared Zn film ((002)-Zn) manifests a compact structure and a highly (002) texture without containing (100) signal. Mechanistic studies reveal that Bmim+ featuring oriented adsorption on the Zn-(002) plane can reduce the growth rate of (002) plane to render the final exposure of (002) texture, and homogenize Zn nucleation and suppress H2 evolution to enable the compact electrodeposition. In addition, the formulated Bmim+-containing ZnSO4 electrolyte effectively sustains the (002) texture even under deep cycling conditions. Consequently, the combination of (002) texture and Bmim+-containing electrolyte endows the (002)-Zn electrode with superior cycling stability over 350 h under 20 mAh cm-2 with 72.6% depth-of-discharge, and assures the stable operation of full Zn batteries with both coin-type and pouch-type configurations, significantly outperforming the (002)-Zn and commercial Zn-based batteries in Bmim+-free electrolytes.
Collapse
Affiliation(s)
- Guoqiang Ma
- College of Chemistry and Materials Science, Key Laboratory of Analytical Science and Technology of Hebei Province, Institute of Life Science and Green Development, Hebei University, Baoding, 071002, P. R. China
| | - Wentao Yuan
- College of Chemistry and Materials Science, Key Laboratory of Analytical Science and Technology of Hebei Province, Institute of Life Science and Green Development, Hebei University, Baoding, 071002, P. R. China
| | - Xiaotong Li
- College of Chemistry and Materials Science, Key Laboratory of Analytical Science and Technology of Hebei Province, Institute of Life Science and Green Development, Hebei University, Baoding, 071002, P. R. China
| | - Tongqiang Bi
- College of Chemistry and Materials Science, Key Laboratory of Analytical Science and Technology of Hebei Province, Institute of Life Science and Green Development, Hebei University, Baoding, 071002, P. R. China
| | - Linhuan Niu
- College of Chemistry and Materials Science, Key Laboratory of Analytical Science and Technology of Hebei Province, Institute of Life Science and Green Development, Hebei University, Baoding, 071002, P. R. China
| | - Yue Wang
- College of Chemistry and Materials Science, Key Laboratory of Analytical Science and Technology of Hebei Province, Institute of Life Science and Green Development, Hebei University, Baoding, 071002, P. R. China
| | - Mengyu Liu
- College of Chemistry and Materials Science, Key Laboratory of Analytical Science and Technology of Hebei Province, Institute of Life Science and Green Development, Hebei University, Baoding, 071002, P. R. China
| | - Yuanyuan Wang
- College of Chemistry and Materials Science, Key Laboratory of Analytical Science and Technology of Hebei Province, Institute of Life Science and Green Development, Hebei University, Baoding, 071002, P. R. China
| | - Zhaoxi Shen
- College of Chemistry and Materials Science, Key Laboratory of Analytical Science and Technology of Hebei Province, Institute of Life Science and Green Development, Hebei University, Baoding, 071002, P. R. China
| | - Ning Zhang
- College of Chemistry and Materials Science, Key Laboratory of Analytical Science and Technology of Hebei Province, Institute of Life Science and Green Development, Hebei University, Baoding, 071002, P. R. China
- Hebei Research Center of the Basic Discipline of Synthetic Chemistry, Hebei University, Baoding, 071002, P. R. China
| |
Collapse
|
17
|
Li H, Li S, Hou R, Rao Y, Guo S, Chang Z, Zhou H. Recent advances in zinc-ion dehydration strategies for optimized Zn-metal batteries. Chem Soc Rev 2024; 53:7742-7783. [PMID: 38904425 DOI: 10.1039/d4cs00343h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/22/2024]
Abstract
Aqueous Zn-metal batteries have attracted increasing interest for large-scale energy storage owing to their outstanding merits in terms of safety, cost and production. However, they constantly suffer from inadequate energy density and poor cycling stability due to the presence of zinc ions in the fully hydrated solvation state. Thus, designing the dehydrated solvation structure of zinc ions can effectively address the current drawbacks of aqueous Zn-metal batteries. In this case, considering the lack of studies focused on strategies for the dehydration of zinc ions, herein, we present a systematic and comprehensive review to deepen the understanding of zinc-ion solvation regulation. Two fundamental design principles of component regulation and pre-desolvation are summarized in terms of solvation environment formation and interfacial desolvation behavior. Subsequently, specific strategy based distinct principles are carefully discussed, including preparation methods, working mechanisms, analysis approaches and performance improvements. Finally, we present a general summary of the issues addressed using zinc-ion dehydration strategies, and four critical aspects to promote zinc-ion solvation regulation are presented as an outlook, involving updating (de)solvation theories, revealing interfacial evolution, enhancing analysis techniques and developing functional materials. We believe that this review will not only stimulate more creativity in optimizing aqueous electrolytes but also provide valuable insights into designing other battery systems.
Collapse
Affiliation(s)
- Haoyu Li
- College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China.
- Shenzhen Research Institute of Nanjing University, Shenzhen 518000, China
| | - Sijie Li
- Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo 060-0814, Japan
| | - Ruilin Hou
- College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China.
- Shenzhen Research Institute of Nanjing University, Shenzhen 518000, China
| | - Yuan Rao
- College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China.
- Shenzhen Research Institute of Nanjing University, Shenzhen 518000, China
| | - Shaohua Guo
- College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China.
- Shenzhen Research Institute of Nanjing University, Shenzhen 518000, China
| | - Zhi Chang
- School of Materials Science and Engineering, Key Laboratory of Electronic Packaging and Advanced Functional Materials of Hunan Province, Central South University, Changsha, Hunan, China.
| | - Haoshen Zhou
- College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China.
| |
Collapse
|
18
|
Yang Y, Zhu R, Wu G, Yang W, Yang H, Yoo E. Universal Strike-Plating Strategy to Suppress Hydrogen Evolution for Improving Zinc Metal Reversibility. ACS NANO 2024; 18:19003-19013. [PMID: 38984530 DOI: 10.1021/acsnano.4c03074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2024]
Abstract
The development of highly reversible zinc (Zn) metal anodes is pivotal for determining the feasibility of rechargeable aqueous Zn batteries. Our research quantitively evalulates how the hydrogen evolution reaction (HER) adversely affects Zn reversibility in batteries and emphasizes the importance of substrate design in modulating HER and its associated side reactions. When the cathodic reaction is dominated by HER, the Zn electrode exhibits low plating/stripping efficiency, characterized by extensive coverage of a passivation layer that encompasses the electrochemical inactive Zn. Therefore, we propose a strike-plating strategy that modifies the pristine substrate by initiating Zn plating at a high current density for a short time. This straightforward and effective approach has been proven to suppress hydrogen evolution and transform the electrodeposition mode into one dominated by Zn reduction. Notably, Zn metal exhibits exceptionally high average reversibility of 98.80% over 200 h on a stainless steel substrate, which was typically precluded in aqueous electrolytes because of their favorable HER capability. Additionally, our strike-plating strategy demonstrates an appliable pathway to achieve high Zn reversibility on Cu substrate, showing an average efficiency of 99.83% over 540 h at a high areal capacity of 10 mAh cm-2 and high-performance Zn full cells with low N/P ratios. This research provides a foundation for future investigations into the underlying mechanisms of HER and strategies to optimize Zn-based battery performance.
Collapse
Affiliation(s)
- Yang Yang
- Graduate School of System and Information Engineering, University of Tsukuba, 1-1-1, Tennoudai, Tsukuba 305-8573, Japan
- Energy Technology Research Institute, National Institute of Advanced Industrial Science and Technology, Umezono, Tsukuba 305-8568, Japan
| | - Ruijie Zhu
- Faculty of Engineering, Hokkaido University, Sapporo, Hokkaido 060-8628, Japan
| | - Gang Wu
- Graduate School of System and Information Engineering, University of Tsukuba, 1-1-1, Tennoudai, Tsukuba 305-8573, Japan
- Energy Technology Research Institute, National Institute of Advanced Industrial Science and Technology, Umezono, Tsukuba 305-8568, Japan
| | - Wuhai Yang
- Graduate School of System and Information Engineering, University of Tsukuba, 1-1-1, Tennoudai, Tsukuba 305-8573, Japan
- Energy Technology Research Institute, National Institute of Advanced Industrial Science and Technology, Umezono, Tsukuba 305-8568, Japan
| | - Huijun Yang
- Graduate School of System and Information Engineering, University of Tsukuba, 1-1-1, Tennoudai, Tsukuba 305-8573, Japan
- Energy Technology Research Institute, National Institute of Advanced Industrial Science and Technology, Umezono, Tsukuba 305-8568, Japan
| | - Eunjoo Yoo
- Graduate School of System and Information Engineering, University of Tsukuba, 1-1-1, Tennoudai, Tsukuba 305-8573, Japan
- Energy Technology Research Institute, National Institute of Advanced Industrial Science and Technology, Umezono, Tsukuba 305-8568, Japan
| |
Collapse
|
19
|
Xu J, Han P, Jin Y, Lu H, Sun B, Gao B, He T, Xu X, Pinna N, Wang G. Hybrid Molecular Sieve-Based Interfacial Layer with Physical Confinement and Desolvation Effect for Dendrite-free Zinc Metal Anodes. ACS NANO 2024; 18:18592-18603. [PMID: 38949082 DOI: 10.1021/acsnano.4c04632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
The side reactions and dendrite growth at the interface of Zn anodes greatly limit their practical applications in Zn metal batteries. Herein, we propose a hybrid molecular sieve-based interfacial layer (denoted as Z7M3) with a hierarchical porous structure for Zn metal anodes, which contains 70 vol % microporous ZSM-5 molecular sieves and 30 vol % mesoporous MCM-41 molecular sieves. Through comprehensive molecular dynamics simulations, we demonstrate that the mesopores (∼2.5 nm) of MCM-41 can limit the disordered diffusion of free water molecules and increase the wettability of the interfacial layer toward aqueous electrolytes. In addition, the micropores (∼0.56 nm) of ZSM-5 can optimize the Zn2+ solvation structures by reducing the bonded water molecules, which simultaneously decrease the constraint force of solvated water molecules to Zn2+ ions, thus promoting the penetrability and diffusion kinetics of Zn2+ ions in Z7M3. The synergetic effects from the hybrid molecular sieves maintain a constant Zn2+ concentration on the surface of the Zn electrode during Zn deposition, contributing to dendrite-free Zn anodes. Consequently, Z7M3-coated Zn electrodes achieved excellent cycling stability in both half and full cells.
Collapse
Affiliation(s)
- Jing Xu
- Research Center of Grid Energy Storage and Battery Application, School of Electrical Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Pingan Han
- Research Center of Grid Energy Storage and Battery Application, School of Electrical Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Yang Jin
- Research Center of Grid Energy Storage and Battery Application, School of Electrical Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Hongfei Lu
- Research Center of Grid Energy Storage and Battery Application, School of Electrical Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Bing Sun
- Centre for Clean Energy Technology, School of Mathematical and Physical Sciences, Faculty of Science, University of Technology Sydney, Ultimo, New South Wales 2007, Australia
| | - Beibei Gao
- Green Catalysis Center and College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Tingting He
- School of Electrical Engineering, Beijing Jiaotong University, No. 3 Shangyuan Cun, Haidian District, Beijing 100044, China
| | - Xiaoxue Xu
- School of Biomedical Engineering, Faculty of Engineering and Information Technology, University of Technology Sydney, Ultimo, New South Wales 2007, Australia
| | - Nicola Pinna
- Department of Chemistry and the Center for the Science of Materials Berlin, Humboldt-Universität zu Berlin, Brook-Taylor-Strasse 2, Berlin 12489, Germany
| | - Guoxiu Wang
- Centre for Clean Energy Technology, School of Mathematical and Physical Sciences, Faculty of Science, University of Technology Sydney, Ultimo, New South Wales 2007, Australia
| |
Collapse
|
20
|
Cheng X, Zuo Y, Zhang Y, Zhao X, Jia L, Zhang J, Li X, Wu Z, Wang J, Lin H. Superfast Zincophilic Ion Conductor Enables Rapid Interfacial Desolvation Kinetics for Low-Temperature Zinc Metal Batteries. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2401629. [PMID: 38721863 PMCID: PMC11267323 DOI: 10.1002/advs.202401629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 04/14/2024] [Indexed: 07/25/2024]
Abstract
Low-temperature rechargeable aqueous zinc metal batteries (AZMBs) as highly promising candidates for energy storage are largely hindered by huge desolvation energy barriers and depressive Zn2+ migration kinetics. In this work, a superfast zincophilic ion conductor of layered zinc silicate nanosheet (LZS) is constructed on a metallic Zn surface, as an artificial layer and ion diffusion accelerator. The experimental and simulation results reveal the zincophilic ability and layer structure of LZS not only promote the desolvation kinetics of [Zn(H2O)6]2+ but also accelerate the Zn2+ transport kinetics across the anode/electrolyte interface, guiding uniform Zn deposition. Benefiting from these features, the LZS-modified Zn anodes showcase long-time stability (over 3300 h) and high Coulombic efficiency with ≈99.8% at 2 mA cm-2, respectively. Even reducing the environment temperature down to 0 °C, ultralong cycling stability up to 3600 h and a distinguished rate performance are realized. Consequently, the assembled Zn@LZS//V2O5-x full cells deliver superior cyclic stability (344.5 mAh g-1 after 200 cycles at 1 A g-1) and rate capability (285.3 mAh g-1 at 10 A g-1) together with a low self-discharge rate, highlighting the bright future of low-temperature AZMBs.
Collapse
Affiliation(s)
- Xiaomin Cheng
- i‐Lab & CAS Key Laboratory of Nanophotonic Materials and DevicesSuzhou Institute of Nano‐Tech and Nano‐BionicsChinese Academy of SciencesSuzhou215123P. R. China
| | - Yinze Zuo
- Institute of New Energy Materials and EngineeringCollege of Materials Science and EngineeringFuzhou UniversityFuzhou350108P. R. China
| | - Yongzheng Zhang
- State Key Laboratory of Chemical EngineeringEast China University of Science and TechnologyShanghai200237P. R. China
| | - Xinyu Zhao
- i‐Lab & CAS Key Laboratory of Nanophotonic Materials and DevicesSuzhou Institute of Nano‐Tech and Nano‐BionicsChinese Academy of SciencesSuzhou215123P. R. China
| | - Lujie Jia
- i‐Lab & CAS Key Laboratory of Nanophotonic Materials and DevicesSuzhou Institute of Nano‐Tech and Nano‐BionicsChinese Academy of SciencesSuzhou215123P. R. China
| | - Jing Zhang
- School of Materials Science and EngineeringXi'an University of TechnologyXi'an710048P. R. China
| | - Xiang Li
- State Key Laboratory of Chemical EngineeringEast China University of Science and TechnologyShanghai200237P. R. China
| | - Ziling Wu
- State Key Laboratory of Chemical EngineeringEast China University of Science and TechnologyShanghai200237P. R. China
| | - Jian Wang
- i‐Lab & CAS Key Laboratory of Nanophotonic Materials and DevicesSuzhou Institute of Nano‐Tech and Nano‐BionicsChinese Academy of SciencesSuzhou215123P. R. China
- Helmholtz Institute Ulm (HIU)D89081UlmGermany
- Karlsruhe Institute of Technology (KIT)D76021KarlsruheGermany
| | - Hongzhen Lin
- i‐Lab & CAS Key Laboratory of Nanophotonic Materials and DevicesSuzhou Institute of Nano‐Tech and Nano‐BionicsChinese Academy of SciencesSuzhou215123P. R. China
| |
Collapse
|
21
|
Zhang J, Lin C, Zeng L, Lin H, He L, Xiao F, Luo L, Xiong P, Yang X, Chen Q, Qian Q. A Hydrogel Electrolyte with High Adaptability over a Wide Temperature Range and Mechanical Stress for Long-Life Flexible Zinc-Ion Batteries. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2312116. [PMID: 38446107 DOI: 10.1002/smll.202312116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 02/08/2024] [Indexed: 03/07/2024]
Abstract
Flexible zinc-ion batteries have garnered significant attention in the realm of wearable technology. However, the instability of hydrogel electrolytes in a wide-temperature range and uncontrollable side reactions of the Zn electrode have become the main problems for practical applications. Herein, N,N-dimethylformamide (DMF) to design a binary solvent (H2O-DMF) is introduced and combined it with polyacrylamide (PAM) and ZnSO4 to synthesize a hydrogel electrolyte (denoted as PZD). The synergistic effect of DMF and PAM not only guides Zn2+ deposition on Zn(002) crystal plane and isolates H2O from the Zn anode, but also breaks the hydrogen bonding network between water to improve the wide-temperature range stability of hydrogel electrolytes. Consequently, the symmetric cell utilizing PZD can stably cycle over 5600 h at 0.5 mA cm- 2@0.5 mAh cm-2. Furthermore, the Zn//PZD//MnO2 full cell exhibits favorable wide-temperature range adaptability (for 16000 cycles at 3 A g-1 under 25 °C, 750 cycles with 98 mAh g-1 at 0.1 A g-1 under -20 °C) and outstanding mechanical properties (for lighting up the LEDs under conditions of pressure, bending, cutting, and puncture). This work proposes a useful modification for designing a high-performance hydrogel electrolyte, which provides a reference for investigating the practical flexible aqueous batteries.
Collapse
Affiliation(s)
- Jingran Zhang
- Engineering Research Center of Polymer Green Recycling of Ministry of Education, Fujian Key Laboratory of Pollution Control & Resource Reuse, College of Environmental and Resources, Fujian Normal University, Fuzhou, Fujian, 350007, P. R. China
| | - Chuyuan Lin
- Engineering Research Center of Polymer Green Recycling of Ministry of Education, Fujian Key Laboratory of Pollution Control & Resource Reuse, College of Environmental and Resources, Fujian Normal University, Fuzhou, Fujian, 350007, P. R. China
| | - Lingxing Zeng
- Engineering Research Center of Polymer Green Recycling of Ministry of Education, Fujian Key Laboratory of Pollution Control & Resource Reuse, College of Environmental and Resources, Fujian Normal University, Fuzhou, Fujian, 350007, P. R. China
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), College of Chemistry, Nankai University, Tianjin, 300071, P. R. China
| | - Hui Lin
- Engineering Research Center of Polymer Green Recycling of Ministry of Education, Fujian Key Laboratory of Pollution Control & Resource Reuse, College of Environmental and Resources, Fujian Normal University, Fuzhou, Fujian, 350007, P. R. China
| | - Lingjun He
- Engineering Research Center of Polymer Green Recycling of Ministry of Education, Fujian Key Laboratory of Pollution Control & Resource Reuse, College of Environmental and Resources, Fujian Normal University, Fuzhou, Fujian, 350007, P. R. China
| | - Fuyu Xiao
- Engineering Research Center of Polymer Green Recycling of Ministry of Education, Fujian Key Laboratory of Pollution Control & Resource Reuse, College of Environmental and Resources, Fujian Normal University, Fuzhou, Fujian, 350007, P. R. China
| | - Luteng Luo
- Engineering Research Center of Polymer Green Recycling of Ministry of Education, Fujian Key Laboratory of Pollution Control & Resource Reuse, College of Environmental and Resources, Fujian Normal University, Fuzhou, Fujian, 350007, P. R. China
| | - Peixun Xiong
- Inorganic Chemistry I, Technische Universität Dresden, Bergstrasse 66, 01069, Dresden, Germany
- Fujian Provincial Key Laboratory of Electrochemical Energy Storage Materials, Fuzhou University, Fuzhou, 350002, China
| | - Xuhui Yang
- Engineering Research Center of Polymer Green Recycling of Ministry of Education, Fujian Key Laboratory of Pollution Control & Resource Reuse, College of Environmental and Resources, Fujian Normal University, Fuzhou, Fujian, 350007, P. R. China
| | - Qinghua Chen
- Engineering Research Center of Polymer Green Recycling of Ministry of Education, Fujian Key Laboratory of Pollution Control & Resource Reuse, College of Environmental and Resources, Fujian Normal University, Fuzhou, Fujian, 350007, P. R. China
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), College of Chemistry, Nankai University, Tianjin, 300071, P. R. China
| | - Qingrong Qian
- Engineering Research Center of Polymer Green Recycling of Ministry of Education, Fujian Key Laboratory of Pollution Control & Resource Reuse, College of Environmental and Resources, Fujian Normal University, Fuzhou, Fujian, 350007, P. R. China
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), College of Chemistry, Nankai University, Tianjin, 300071, P. R. China
| |
Collapse
|
22
|
Deng Y, Liu C, Shen W, Zou J, Xiao Z, Zhang Q, Jiang Z, Li Y. Fullerenol as a nano-molecular sieve additive enables stable zinc metal anodes. J Colloid Interface Sci 2024; 674:345-352. [PMID: 38941928 DOI: 10.1016/j.jcis.2024.06.182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 06/18/2024] [Accepted: 06/23/2024] [Indexed: 06/30/2024]
Abstract
Aqueous zinc batteries (AZBs) with the advantages of safety, low cost, and sustainability are promising candidates for large-scale energy storage devices. However, the issues of interface side reactions and dendrite growth at the zinc metal anode (ZMA) significantly harm the cycling lifespan of AZBs. In this study, we designed a nano-molecular sieve additive, fullerenol (C60(OH)n), which possesses a surface rich in hydroxyl groups that can be uniformly dispersed in the aqueous solution, and captures free water in the electrolyte, thereby suppressing the occurrence of interfacial corrosion. Besides, fullerenol can be further reduced to fullerene (C60) on the surface of ZMA, holding a unique self-smoothing effect that can inhibit the growth of dendritic Zn. With the synergistic action of these two effects, the fullerenol-contained electrolyte (FE) enables dendrite-free ZMAs. The Zn-Ti half-cell using FE exhibits stable cycling over 2500 times at 5 mA cm-2 with an average Coulombic efficiency as high as 99.8 %. Additionally, the Zn-NaV3O8 cell using this electrolyte displays a capacity retention rate of 100 % after 1000 cycles at -20 °C. This work provides important insights into the molecular design of multifunctional electrolyte additives.
Collapse
Affiliation(s)
- Yu Deng
- School of Materials Science and Engineering, Key Laboratory of Green Fabrication and Surface Technology of Advanced Metal Materials of Ministry of Education, Anhui University of Technology, Maanshan 243002, China
| | - Chengkun Liu
- School of Materials Science and Engineering, Key Laboratory of Green Fabrication and Surface Technology of Advanced Metal Materials of Ministry of Education, Anhui University of Technology, Maanshan 243002, China
| | - Wangqiang Shen
- School of Materials Science and Engineering, Hefei University of Technology, Hefei 230009, China; Key Laboratory of Advanced Functional Materials and Devices of Anhui Province, Hefei University of Technology, Hefei 230009, China.
| | - Jiahang Zou
- School of Materials Science and Engineering, Key Laboratory of Green Fabrication and Surface Technology of Advanced Metal Materials of Ministry of Education, Anhui University of Technology, Maanshan 243002, China
| | - Zhengquan Xiao
- School of Materials Science and Engineering, Key Laboratory of Green Fabrication and Surface Technology of Advanced Metal Materials of Ministry of Education, Anhui University of Technology, Maanshan 243002, China
| | - Qingan Zhang
- School of Materials Science and Engineering, Key Laboratory of Green Fabrication and Surface Technology of Advanced Metal Materials of Ministry of Education, Anhui University of Technology, Maanshan 243002, China
| | - Zhipeng Jiang
- School of Materials Science and Engineering, Key Laboratory of Green Fabrication and Surface Technology of Advanced Metal Materials of Ministry of Education, Anhui University of Technology, Maanshan 243002, China; Key Laboratory of Efficient Conversion and Solid-state Storage of Hydrogen & Electricity of Anhui Province, Maanshan 243002, China.
| | - Yongtao Li
- School of Materials Science and Engineering, Key Laboratory of Green Fabrication and Surface Technology of Advanced Metal Materials of Ministry of Education, Anhui University of Technology, Maanshan 243002, China; Key Laboratory of Efficient Conversion and Solid-state Storage of Hydrogen & Electricity of Anhui Province, Maanshan 243002, China.
| |
Collapse
|
23
|
Tang L, Peng H, Kang J, Chen H, Zhang M, Liu Y, Kim DH, Liu Y, Lin Z. Zn-based batteries for sustainable energy storage: strategies and mechanisms. Chem Soc Rev 2024; 53:4877-4925. [PMID: 38595056 DOI: 10.1039/d3cs00295k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
Batteries play a pivotal role in various electrochemical energy storage systems, functioning as essential components to enhance energy utilization efficiency and expedite the realization of energy and environmental sustainability. Zn-based batteries have attracted increasing attention as a promising alternative to lithium-ion batteries owing to their cost effectiveness, enhanced intrinsic safety, and favorable electrochemical performance. In this context, substantial endeavors have been dedicated to crafting and advancing high-performance Zn-based batteries. However, some challenges, including limited discharging capacity, low operating voltage, low energy density, short cycle life, and complicated energy storage mechanism, need to be addressed in order to render large-scale practical applications. In this review, we comprehensively present recent advances in designing high-performance Zn-based batteries and in elucidating energy storage mechanisms. First, various redox mechanisms in Zn-based batteries are systematically summarized, including insertion-type, conversion-type, coordination-type, and catalysis-type mechanisms. Subsequently, the design strategies aiming at enhancing the electrochemical performance of Zn-based batteries are underscored, focusing on several aspects, including output voltage, capacity, energy density, and cycle life. Finally, challenges and future prospects of Zn-based batteries are discussed.
Collapse
Affiliation(s)
- Lei Tang
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore.
| | - Haojia Peng
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore.
| | - Jiarui Kang
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore.
| | - Han Chen
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore.
| | - Mingyue Zhang
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore.
| | - Yan Liu
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), 1 Pesek Road, Jurong Island, Singapore 627833, Republic of Singapore
| | - Dong Ha Kim
- Department of Chemistry and Nano Science, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul 03760, Republic of Korea.
| | - Yijiang Liu
- College of Chemistry, Key Lab of Environment-Friendly Chemistry and Application in Ministry of Education, Xiangtan University, Xiangtan 411105, Hunan Province, P. R. China.
| | - Zhiqun Lin
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore.
- Department of Chemistry and Nano Science, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul 03760, Republic of Korea.
| |
Collapse
|
24
|
Chen Z, Wu Q, Han X, Wang C, Chen J, Hu T, He Q, Zhu X, Yuan D, Chen J, Zhang Y, Yang L, Ma Y, Zhao J. Converting Commercial Zn Foils into Single (002)-Textured Zn with Millimeter-Sized Grains for Highly Reversible Aqueous Zinc Batteries. Angew Chem Int Ed Engl 2024; 63:e202401507. [PMID: 38407548 DOI: 10.1002/anie.202401507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 02/26/2024] [Accepted: 02/26/2024] [Indexed: 02/27/2024]
Abstract
Rechargeable aqueous zinc batteries are promising but hindered by unfavorable dendrite growth and side reactions on zinc anodes. In this study, we demonstrate a fast melting-solidification approach for effectively converting commercial Zn foils into single (002)-textured Zn featuring millimeter-sized grains. The melting process eliminates initial texture, residual stress, and grain size variations in diverse commercial Zn foils, guaranteeing the uniformity of commercial Zn foils into single (002)-textured Zn. The single (002)-texture ensures large-scale epitaxial and dense Zn deposition, while the reduction in grain boundaries significantly minimizes intergranular reactions. These features enable large grain single (002)-textured Zn shows planar and dense Zn deposition under harsh conditions (100 mA cm-2, 100 mAh cm-2), impressive reversibility in Zn||Zn symmetric cell (3280 h under 1 mA cm-2, 830 h under 10 mAh cm-2), and long cycling stability over 180 h with a high depth of discharge value of 75 %. This study successfully addresses the issue of uncontrollable texture formation in Zn foils following routine annealing treatments with temperatures below the Zn melting point. The findings of this study establish a highly efficient strategy for fabricating highly reversible single (002)-textured Zn anodes.
Collapse
Affiliation(s)
- Zibo Chen
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing, 210023, P. R. China
| | - Qiang Wu
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing, 210023, P. R. China
| | - Xuran Han
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing, 210023, P. R. China
| | - Cheng Wang
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing, 210023, P. R. China
| | - Jialu Chen
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing, 210023, P. R. China
| | - Tao Hu
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing, 210023, P. R. China
| | - Qian He
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing, 210023, P. R. China
| | - Xinyue Zhu
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing, 210023, P. R. China
| | - Du Yuan
- College of Materials Science and Engineering, Changsha University of Science and Technology, Hunan, 410004, P. R. China
| | - Jianyu Chen
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing, 210023, P. R. China
| | - Yu Zhang
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing, 210023, P. R. China
| | - Lijun Yang
- Key Laboratory of Mesoscopic Chemistry of MOE and Jiangsu Provincial Laboratory for Nanotechnology School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| | - Yanwen Ma
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing, 210023, P. R. China
- Suzhou Vocational Institute of Industrial Technology, Suzhou, 215104, P. R. China
| | - Jin Zhao
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing, 210023, P. R. China
| |
Collapse
|
25
|
Wang L, Zhang B, Zhou W, Zhao Z, Liu X, Zhao R, Sun Z, Li H, Wang X, Zhang T, Jin H, Li W, Elzatahry A, Hassan Y, Fan HJ, Zhao D, Chao D. Tandem Chemistry with Janus Mesopores Accelerator for Efficient Aqueous Batteries. J Am Chem Soc 2024; 146:6199-6208. [PMID: 38394360 DOI: 10.1021/jacs.3c14019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2024]
Abstract
A reliable solid electrolyte interphase (SEI) on the metallic Zn anode is imperative for stable Zn-based aqueous batteries. However, the incompatible Zn-ion reduction processes, scilicet simultaneous adsorption (capture) and desolvation (repulsion) of Zn2+(H2O)6, raise kinetics and stability challenges for the design of SEI. Here, we demonstrate a tandem chemistry strategy to decouple and accelerate the concurrent adsorption and desolvation processes of the Zn2+ cluster at the inner Helmholtz layer. An electrochemically assembled perforative mesopore SiO2 interphase with tandem hydrophilic -OH and hydrophobic -F groups serves as a Janus mesopores accelerator to boost a fast and stable Zn2+ reduction reaction. Combining in situ electrochemical digital holography, molecular dynamics simulations, and spectroscopic characterizations reveals that -OH groups capture Zn2+ clusters from the bulk electrolyte and then -F groups repulse coordinated H2O molecules in the solvation shell to achieve the tandem ion reduction process. The resultant symmetric batteries exhibit reversible cycles over 8000 and 2000 h under high current densities of 4 and 10 mA cm-2, respectively. The feasibility of the tandem chemistry is further evidenced in both Zn//VO2 and Zn//I2 batteries, and it might be universal to other aqueous metal-ion batteries.
Collapse
Affiliation(s)
- Lipeng Wang
- Laboratory of Advanced Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, School of Chemistry and Materials, Fudan University, Shanghai 200433, P. R. China
| | - Bao Zhang
- School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore
| | - Wanhai Zhou
- Laboratory of Advanced Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, School of Chemistry and Materials, Fudan University, Shanghai 200433, P. R. China
| | - Zaiwang Zhao
- College of Energy Materials and Chemistry, College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010070, P. R. China
| | - Xin Liu
- School of Electrical and Electronic Engineering, Harbin University of Science and Technology, Harbin 150080, P. R. China
| | - Ruizheng Zhao
- Laboratory of Advanced Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, School of Chemistry and Materials, Fudan University, Shanghai 200433, P. R. China
| | - Zhihao Sun
- Laboratory of Advanced Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, School of Chemistry and Materials, Fudan University, Shanghai 200433, P. R. China
| | - Hongpeng Li
- Laboratory of Advanced Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, School of Chemistry and Materials, Fudan University, Shanghai 200433, P. R. China
- College of Mechanical Engineering, Yangzhou University, Yangzhou 225127, P. R. China
| | - Xia Wang
- Laboratory of Advanced Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, School of Chemistry and Materials, Fudan University, Shanghai 200433, P. R. China
| | - Tengsheng Zhang
- Laboratory of Advanced Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, School of Chemistry and Materials, Fudan University, Shanghai 200433, P. R. China
| | - Hongrun Jin
- Laboratory of Advanced Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, School of Chemistry and Materials, Fudan University, Shanghai 200433, P. R. China
| | - Wei Li
- Laboratory of Advanced Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, School of Chemistry and Materials, Fudan University, Shanghai 200433, P. R. China
| | - Ahmed Elzatahry
- Department of Physics and Materials Science, College of Arts and Sciences, Qatar University, Doha 2713, Qatar
| | - Yasser Hassan
- Department of Chemistry and Earth Sciences, College of Arts and Sciences, Qatar University, Doha 2713, Qatar
| | - Hong Jin Fan
- School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore
| | - Dongyuan Zhao
- Laboratory of Advanced Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, School of Chemistry and Materials, Fudan University, Shanghai 200433, P. R. China
- College of Energy Materials and Chemistry, College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010070, P. R. China
| | - Dongliang Chao
- Laboratory of Advanced Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, School of Chemistry and Materials, Fudan University, Shanghai 200433, P. R. China
| |
Collapse
|
26
|
Chen R, Zhang G, Zhou H, Li J, Li J, Chung LH, Hu X, He J. Robust Zinc Anode Enabled by Sulfonate-Rich MOF-Modified Separator. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2305687. [PMID: 37840433 DOI: 10.1002/smll.202305687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 09/19/2023] [Indexed: 10/17/2023]
Abstract
Aqueous zinc ion batteries (ZIBs) hold great promise for large-scale energy storage; however, severe zinc dendritic growth and side reactions on the anode dramatically impede their commercial application. Herein, a Zr-based MOF (UiO-66) functionalized with a high density of sulfonic acid (─SO3 H) groups is used to modify the glass fiber (GF) separator of ZIBs, providing a unique solution for stabilizing Zn anode. Benefiting from the strong interaction between zincophilic -SO3 H and Zn2+ , this sulfonate-rich UiO-66 modified GF (GF@UiO-S2) separator not only guarantees the homogeneous distribution of ion flux, but also accelerates the ion migration kinetics. Hence, the GF@UiO-S2 separator promotes uniform Zn plating/stripping on the Zn anode and facilitates the desolvation of hydrated Zn2+ ions at the interface, which helps guide dendrite-free Zn deposition and inhibit undesired side reactions. Accordingly, the Zn||Zn symmetric cell with this separator achieves excellent cycling stability with a long cycle life exceeding 3450 h at 3 mA cm-2 . Besides, the Zn||MnO2 full cell paired with this separator delivers remarkable cyclability with 90% capacity retention after 1200 cycles. This design of metal-organic frameworks functionalized separators provides a new insight for constructing highly robust ZIBs.
Collapse
Affiliation(s)
- Ruwei Chen
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, P. R. China
| | - Gengyuan Zhang
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, P. R. China
| | - Hujing Zhou
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, P. R. China
| | - Jianrong Li
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, P. R. China
| | - Jiangtao Li
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, P. R. China
| | - Lai-Hon Chung
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, P. R. China
| | - Xuanhe Hu
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, P. R. China
| | - Jun He
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, P. R. China
| |
Collapse
|
27
|
Yang H, Lin S, Qu Y, Wang G, Xiang S, Liu F, Wang C, Tang H, Wang D, Wang Z, Liu X, Zhang Y, Wu Y. An Ultra-Low Self-Discharge Aqueous|Organic Membraneless Battery with Minimized Br 2 Cross-Over. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2307780. [PMID: 38168899 PMCID: PMC10870083 DOI: 10.1002/advs.202307780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 11/23/2023] [Indexed: 01/05/2024]
Abstract
Batteries dissolving active materials in liquids possess safety and size advantages compared to solid-based batteries, yet the intrinsic liquid properties lead to material cross-over induced self-discharge both during cycling and idle when the electrolytes are in contact, thus highly efficient and cost-effective solutions to minimize cross-over are in high demand. An ultra-low self-discharge aqueous|organic membraneless battery using dichloromethane (CH2 Cl2 ) and tetrabutylammonium bromide (TBABr) added to a zinc bromide (ZnBr2 ) solution as the electrolyte is demonstrated. The polybromide is confined in the organic phase, and bromine (Br2 ) diffusion-induced self-discharge is minimized. At 90% state of charge (SOC), the membraneless ZnBr2 |TBABr (Z|T) battery shows an open circuit voltage (OCV) drop of only 42 mV after 120 days, 152 times longer than the ZnBr2 battery, and superior to 102 previous reports from all types of liquid active material batteries. The 120-day capacity retention of 95.5% is higher than commercial zinc-nickel (Zn-Ni) batteries and vanadium redox flow batteries (VRFB, electrolytes stored separately) and close to lithium-ion (Li-ion) batteries. Z|T achieves >500 cycles (2670 h, 0.5 m electrolyte, 250 folds of membraneless ZnBr2 battery) with ≈100% Coulombic efficiency (CE). The simple and cost-effective design of Z|T provides a conceptual inspiration to regulate material cross-over in liquid-based batteries to realize extended operation.
Collapse
Affiliation(s)
- Han Yang
- School of Energy Sciences and EngineeringNanjing Tech UniversityNanjingJiangsu211816China
| | - Shiyu Lin
- School of Energy Sciences and EngineeringNanjing Tech UniversityNanjingJiangsu211816China
| | - Yunpeng Qu
- College of PhysicsGuizhou UniversityGuiyang550025China
| | - Guotao Wang
- School of Energy Sciences and EngineeringNanjing Tech UniversityNanjingJiangsu211816China
| | - Shuangfei Xiang
- School of Materials Science and Engineering and Institute of Smart Fiber MaterialsZhejiang Sci‐Tech UniversityHangzhou310018China
| | - Fuzhu Liu
- State Key Laboratory for Mechanical Behavior of MaterialsXi'an Jiaotong UniversityXi'anShaanxi710049China
| | - Chao Wang
- School of Chemistry and Chemical EngineeringYangzhou UniversityYangzhouJiangsu225002China
| | - Hao Tang
- School of Energy Sciences and EngineeringNanjing Tech UniversityNanjingJiangsu211816China
| | - Di Wang
- School of Energy Sciences and EngineeringNanjing Tech UniversityNanjingJiangsu211816China
| | - Zhoulu Wang
- School of Energy Sciences and EngineeringNanjing Tech UniversityNanjingJiangsu211816China
| | - Xiang Liu
- School of Energy Sciences and EngineeringNanjing Tech UniversityNanjingJiangsu211816China
| | - Yi Zhang
- School of Energy Sciences and EngineeringNanjing Tech UniversityNanjingJiangsu211816China
| | - Yutong Wu
- School of Energy Sciences and EngineeringNanjing Tech UniversityNanjingJiangsu211816China
| |
Collapse
|
28
|
Ge W, Peng H, Dong J, Wang G, Cui L, Sun W, Ma X, Yang J. Zn(002)-preferred and pH-buffering triethanolamine as electrolyte additive for dendrite-free Zn anodes. Chem Commun (Camb) 2024; 60:750-753. [PMID: 38116817 DOI: 10.1039/d3cc05307e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
Zn anodes of aqueous batteries face severe challenges from side reactions and dendrite growth. Here, triethanolamine (TEOA) is developed as an electrolyte additive to address these challenges. It enhances the exposure of Zn(002) and diminishes the change in pH. Therefore, the electrolyte containing TEOA shows improved electrochemical performance.
Collapse
Affiliation(s)
- Wenjing Ge
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China.
| | - Huili Peng
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China.
- School of Chemistry and Chemical Engineering, Linyi University, Linyi 276000, P. R. China
| | - Jingjing Dong
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China.
| | - Gulian Wang
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China.
| | - Lifeng Cui
- Shandong Hualu-Hengsheng Chemical Co. Ltd, Dezhou 253024, P. R. China
| | - Wei Sun
- Shandong Hualu-Hengsheng Chemical Co. Ltd, Dezhou 253024, P. R. China
| | - Xiaojian Ma
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China.
| | - Jian Yang
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China.
| |
Collapse
|
29
|
Cai X, Wang X, Bie Z, Jiao Z, Li Y, Yan W, Fan HJ, Song W. A Layer-by-Layer Self-Assembled Bio-Macromolecule Film for Stable Zinc Anode. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2306734. [PMID: 37843433 DOI: 10.1002/adma.202306734] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 09/24/2023] [Indexed: 10/17/2023]
Abstract
Side reactions on zinc metal (Zn) anodes are formidable issues that cause limited battery life of aqueous zinc-ion batteries (AZIBs). Here, a facile and controllable layer-by-layer (LbL) self-assembly technique is deployed to construct an ion-conductive and mechanically robust electrolyte/anode interface for stabilizing the Zn anode. The LbL film consists of two natural and biodegradable bio-macromolecules, chitosan (CS) and sodium alginate (SA). It is shown that such an LbL film tailors the solvation sheath of Zn ions and facilitates the oriented deposition of Zn. Symmetric cells with the four double layers of CS/SA ((CS/SA)4 -Zn) exhibit stable cycles for over 6500 h. The (CS/SA)4 -Zn||H2 V3 O8 coin cell maintains a specific capacity of 125.5 mAh g-1 after 14 000 cycles. The pouch cell with an electrode area of 5 × 7 cm2 also presents a capacity retention of 83% for over 500 cycles at 0.1 A g-1 . No obvious dendrites are observed after long cycles in both symmetric and full cells. Given the cost-effective material and fabrication, and environmental friendliness of the LbL films, this Zn protection strategy may boost the industrial application of AZIBs.
Collapse
Affiliation(s)
- Xinxin Cai
- Beijing Key Laboratory for Optical Materials and Photonic Devices, Department of Chemistry, Capital Normal University, Beijing, 100048, P. R. China
| | - Xiaoxu Wang
- DP Technology, AI for Science Institute, Beijing, 100080, P. R. China
| | - Zhe Bie
- Beijing Key Laboratory for Optical Materials and Photonic Devices, Department of Chemistry, Capital Normal University, Beijing, 100048, P. R. China
| | - Zhaoyang Jiao
- Beijing Key Laboratory for Optical Materials and Photonic Devices, Department of Chemistry, Capital Normal University, Beijing, 100048, P. R. China
| | - Yiran Li
- Beijing Key Laboratory for Optical Materials and Photonic Devices, Department of Chemistry, Capital Normal University, Beijing, 100048, P. R. China
| | - Wei Yan
- Beijing Key Laboratory for Optical Materials and Photonic Devices, Department of Chemistry, Capital Normal University, Beijing, 100048, P. R. China
| | - Hong Jin Fan
- School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore, 637371, Singapore
| | - Weixing Song
- Beijing Key Laboratory for Optical Materials and Photonic Devices, Department of Chemistry, Capital Normal University, Beijing, 100048, P. R. China
| |
Collapse
|
30
|
Qiao S, Zhou J, Zhao D, Sun G, Zhang W, Zhu Q. Constructing amphipathic molecular layer to assists de-solvation process for dendrite-free Zn anode. J Colloid Interface Sci 2024; 653:1085-1093. [PMID: 37783008 DOI: 10.1016/j.jcis.2023.09.151] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 09/13/2023] [Accepted: 09/24/2023] [Indexed: 10/04/2023]
Abstract
Due to the excellent safety feature, substantial theoretical capacity and abundant zinc reserves in the earth's crust, Aqueous Zn-ion batteries (AZIBs) are promising as the next generation energy storage system. However, the problem of dendrite growth and the related side reactions in Zn surface limit their further development and application. Herein, an amphipathic molecular layer (Polyacrylic Acid, named as PAA) is constructed on Zn surface to hinder the side reactions and zinc dendrites by intervening the de-solvation process. It is found that the rich hydroxyl group in polyacrylic acid is very hydrophilic. On the contrary, hydrocarbon group on the other side is nearly hydrophobic. The amphiphilic PAA molecular layer on Zn surface results in lower de-solvation energy barrier, thus inhibits the decomposition of water and related side reactions. Additionally, the accumulate abundant negative charge at the interface of polyacrylic acid and Zn surface can attract homogeneous deposition of Zn atoms. Using only 0.01 M PAA as additive in 2.0 M ZnSO4 electrolyte. Zn||Zn symmetric cells expresses a superior cycling stability of 4643 h (5 mA cm-2, 1 mAh cm-2). This study provides new insights into the long-life AZIBs modulated by amphipathic molecular layer.
Collapse
Affiliation(s)
- Shizhe Qiao
- National & Local Joint Engineering Laboratory of New Energy Photoelectric Devices, College of Physics Science and Technology, Hebei University, Baoding 071002, China
| | - Jianqing Zhou
- College of Materials Science and Engineering, Hubei Normal University, Huangshi 435002, China
| | - Danyang Zhao
- College of Sciences, Hebei Agriculture University, Baoding 071001, China
| | - Guobing Sun
- National & Local Joint Engineering Laboratory of New Energy Photoelectric Devices, College of Physics Science and Technology, Hebei University, Baoding 071002, China
| | - Wenming Zhang
- National & Local Joint Engineering Laboratory of New Energy Photoelectric Devices, College of Physics Science and Technology, Hebei University, Baoding 071002, China.
| | - Qiancheng Zhu
- National & Local Joint Engineering Laboratory of New Energy Photoelectric Devices, College of Physics Science and Technology, Hebei University, Baoding 071002, China.
| |
Collapse
|
31
|
Yang W, Wu G, Zhu R, Choe YK, Sun J, Yang Y, Yang H, Yoo E. Synergistic Cation Solvation Reorganization and Fluorinated Interphase for High Reversibility and Utilization of Zinc Metal Anode. ACS NANO 2023; 17:25335-25347. [PMID: 38054998 DOI: 10.1021/acsnano.3c08749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
Abstract
Batteries based on zinc (Zn) chemistry offer a great opportunity for large-scale applications owing to their safety, cost-effectiveness, and environmental friendliness. However, the poor Zn reversibility and inhomogeneous electrodeposition have greatly impeded their practical implementation, stemming from water-related passivation/corrosion. Here, we present a multifunctional electrolyte comprising gamma-butyrolactone (GBL) and Zn(BF4)2·xH2O to resolve these intrinsic challenges. The systematic results confirm that water reactivity toward a Zn anode is minimized by forcing GBL solvents into the Zn2+ solvation shell and constructing a fluorinated interphase on the Zn anode surface via anion decomposition. Furthermore, NMR was selected as an auxiliary testing protocol to elevate and understand the role of electrolyte composition in building the interphase. The combined factors in synergy guarantee high Zn reversibility (average Coulombic efficiency is 99.74%), high areal capacity (55 mAh/cm2), and high Zn utilization (∼91%). Ultimately, these merits enable the Zn battery utilizing a VO2 cathode to operate smoothly over 5000 cycles with a low-capacity decay rate of ∼0.0083% per cycle and a 0.23 Ah VO2/Zn pouch cell to operate over 400 cycles with a capacity retention of 77.3%.
Collapse
Affiliation(s)
- Wuhai Yang
- Research Institute for Energy Conservation, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1, Umezono, Tsukuba 305-8568, Japan
- Graduate School of System and Information Engineering, University of Tsukuba, 1-1-1, Tennoudai, Tsukuba 305-8573, Japan
| | - Gang Wu
- Research Institute for Energy Conservation, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1, Umezono, Tsukuba 305-8568, Japan
- Graduate School of System and Information Engineering, University of Tsukuba, 1-1-1, Tennoudai, Tsukuba 305-8573, Japan
| | - Ruijie Zhu
- Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo, Hokkaido 060-8628, Japan
| | - Yoong-Kee Choe
- Computational Design of Advanced Functional Materials (CD-FMat), National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1, Umezono, Tsukuba 305-8568, Japan
| | - Jianming Sun
- Research Institute for Energy Conservation, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1, Umezono, Tsukuba 305-8568, Japan
- Graduate School of System and Information Engineering, University of Tsukuba, 1-1-1, Tennoudai, Tsukuba 305-8573, Japan
| | - Yang Yang
- Research Institute for Energy Conservation, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1, Umezono, Tsukuba 305-8568, Japan
- Graduate School of System and Information Engineering, University of Tsukuba, 1-1-1, Tennoudai, Tsukuba 305-8573, Japan
| | - Huijun Yang
- Graduate School of System and Information Engineering, University of Tsukuba, 1-1-1, Tennoudai, Tsukuba 305-8573, Japan
| | - Eunjoo Yoo
- Research Institute for Energy Conservation, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1, Umezono, Tsukuba 305-8568, Japan
- Graduate School of System and Information Engineering, University of Tsukuba, 1-1-1, Tennoudai, Tsukuba 305-8573, Japan
| |
Collapse
|
32
|
Xu H, Zhang R, Luo D, Wang J, Dou H, Zhang X, Sun G. Synergistic Ion Sieve and Solvation Regulation by Recyclable Clay-Based Electrolyte Membrane for Stable Zn-Iodine Battery. ACS NANO 2023; 17:25291-25300. [PMID: 38085605 DOI: 10.1021/acsnano.3c08681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2023]
Abstract
The high dissolution of polyiodides and unstable interface at the anode/electrolyte severely restrict the practical applications of rechargeable aqueous Zn-iodine batteries. Herein, we develop a zinc ion-based montmorillonite (ZMT) electrolyte membrane for synergizing ion sieve and solvation regulation to achieve highly stable Zn-iodine batteries. The rich M-O band and special cation-selective transport channel in ZMT locally tailor the solvation sheath around Zn2+ and therefore achieve high transference number (t+ = 0.72), benefiting for uniform and reversible deposition/stripping of Zn. Meanwhile, the mechanisms for three-step polyiodide generation and shuttle-induced Zn corrosion are highlighted by in situ characterization techniques. It is confirmed that the strong chemical adsorption between O atoms in ZMT and polyiodides species is the key to effectively inhibit the shuffle effect and side reactions. Consequently, the ZMT-based Zn-iodine battery delivers a high capacity of 0.45 mAh cm-2 at 1 mA cm-2 with a much improved Coulombic efficiency of 99.5% and outstanding capacity retention of 95% after 13 500 cycles at 10 mA cm-2. Moreover, owing to its high durability and chemical inertness and structural stability, ZMT-based electrolyte membranes can be recycled and applied in double-sided pouch cells, delivering a high areal capacity of 2.4 mAh cm-2 at 1 mA cm-2.
Collapse
Affiliation(s)
- Hai Xu
- Jiangsu Key Laboratory of Electrochemical Energy Storage Technologies, College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
| | - Ruanye Zhang
- Jiangsu Key Laboratory of Electrochemical Energy Storage Technologies, College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
| | - Derong Luo
- Jiangsu Key Laboratory of Electrochemical Energy Storage Technologies, College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
| | - Jiuqing Wang
- Jiangsu Key Laboratory of Electrochemical Energy Storage Technologies, College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
| | - Hui Dou
- Jiangsu Key Laboratory of Electrochemical Energy Storage Technologies, College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
| | - Xiaogang Zhang
- Jiangsu Key Laboratory of Electrochemical Energy Storage Technologies, College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
| | - Gengzhi Sun
- Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing 211816, P. R. China
| |
Collapse
|
33
|
Huang X, Li Q, Zhang X, Cao H, Zhao J, Liu Y, Zheng Q, Huo Y, Xie F, Xu B, Lin D. Critical triple roles of sodium iodide in tailoring the solventized structure, anode-electrolyte interface and crystal plane growth to achieve highly reversible zinc anodes for aqueous zinc-ion batteries. J Colloid Interface Sci 2023; 650:875-882. [PMID: 37450976 DOI: 10.1016/j.jcis.2023.07.037] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 07/03/2023] [Accepted: 07/07/2023] [Indexed: 07/18/2023]
Abstract
Aqueous rechargeable Zn-ion batteries (ARZIBs) are promising for energy storage. However, the Zn dendrite and corrosive reactions on the surface of Zn anode limit the practical uses of ARZIBs. Herein, we present a valid electrolyte additive of NaI, in which I- can modulate the morphology of Zn crystal growth by adsorbing on specific crystal surfaces (002), and guide Zn deposition by inducing a negative charge on the Zn anode. Simultaneously, it enhances the reduction stability of water molecules by participating in the solvation structure of Zn(H2O)62+ by forming ZnI(H2O)5+. At 10 mA cm-2, the assembled Zn symmetrical batteries can run stably over 1,100 h, and the depth of discharge (DOD) can reach 51.3 %. At 1 A g-1, the VO2||Zn full-cell in 2 M ZnCl2 electrolyte with 0.4 M NaI (2 M ZnCl2-0.4 M NaI) maintains of the capacity retention of 75.7 % over 300 cycles. This work offers an insight into inorganic anions as electrolyte additives for achieving stable zinc anodes of ARZIBs.
Collapse
Affiliation(s)
- Xiaomin Huang
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610066, China
| | - Qingping Li
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610066, China
| | - XiaoQin Zhang
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610066, China
| | - Heng Cao
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610066, China
| | - Jingxin Zhao
- Nanotechnology Center, School of Fashion and Textiles, The Hong Kong Polytechnic University, Hung Hom, Kowloon 999077, Hong Kong, China.
| | - Yu Liu
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610066, China
| | - Qiaoji Zheng
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610066, China.
| | - Yu Huo
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610066, China
| | - Fengyu Xie
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610066, China
| | - Bingang Xu
- Nanotechnology Center, School of Fashion and Textiles, The Hong Kong Polytechnic University, Hung Hom, Kowloon 999077, Hong Kong, China.
| | - Dunmin Lin
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610066, China.
| |
Collapse
|
34
|
Liu F, Xu S, Gong W, Zhao K, Wang Z, Luo J, Li C, Sun Y, Xue P, Wang C, Wei L, Li Q, Zhang Q. Fluorescent Fiber-Shaped Aqueous Zinc-Ion Batteries for Bifunctional Multicolor-Emission/Energy-Storage Textiles. ACS NANO 2023; 17:18494-18506. [PMID: 37698337 DOI: 10.1021/acsnano.3c06245] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/13/2023]
Abstract
Wearable smart textiles are natural carriers to enable imperceptible and highly permeable sensing and response to environmental conditions via the system integration of multiple functional fibers. However, the existing massive interfaces between different functional fibers significantly increase the complexity and reduce the wearability of the textile system. Thus, it is significant yet challenging to achieve all-in-one multifunctional fibers for realizing miniaturized and lightweight smart textiles with high reliability. Herein, as bifunctional electrolyte additives, fluorescent carbon dots with abundant zincophilic functional groups are introduced into electrolytes to develop fluorescent fiber-shaped aqueous zinc-ion batteries (FFAZIBs). Originating from effective dendrite suppression of Zn anodes and multiple active sites of freestanding Prussian blue cathodes, high energy density (0.17 Wh·cm-3) and long-term cyclability (78.9% capacity retention after 1500 cycles) are achieved for FFAZIBs. More importantly, the one-dimensional structure ensures the same luminance in all directions of FFAZIBs, enabling the form of multicolor display-in-battery textiles.
Collapse
Affiliation(s)
- Fan Liu
- School of Electronic Science & Engineering, Southeast University, Nanjing 210096, China
- Key Laboratory of Multifunctional Nanomaterials and Smart Systems, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
- School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore
| | - Shuhong Xu
- School of Electronic Science & Engineering, Southeast University, Nanjing 210096, China
| | - Wenbin Gong
- School of Physics and Energy, Xuzhou University of Technology, Xuzhou 221018, China
| | - Kaitian Zhao
- School of Electronic Science & Engineering, Southeast University, Nanjing 210096, China
| | - Zhimin Wang
- Key Laboratory of Multifunctional Nanomaterials and Smart Systems, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Jie Luo
- Key Laboratory of Multifunctional Nanomaterials and Smart Systems, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Chunsheng Li
- School of Chemistry and Life Sciences, Suzhou University of Science and Technology, Suzhou City, Jiangsu Province 215009, China
| | - Yan Sun
- School of Chemistry and Life Sciences, Suzhou University of Science and Technology, Suzhou City, Jiangsu Province 215009, China
| | - Pan Xue
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225002 Jiangsu, China
| | - Chunlei Wang
- School of Electronic Science & Engineering, Southeast University, Nanjing 210096, China
| | - Lei Wei
- School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore
| | - Qingwen Li
- Key Laboratory of Multifunctional Nanomaterials and Smart Systems, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Qichong Zhang
- Key Laboratory of Multifunctional Nanomaterials and Smart Systems, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| |
Collapse
|
35
|
Liu Y, Chen H, Li T, Ren Y, Wang H, Song Z, Li J, Zhao Q, Li J, Li L. Balancing the Crystallinity and Film Formation of Metal-Organic Framework Membranes through In Situ Modulation for Efficient Gas Separation. Angew Chem Int Ed Engl 2023; 62:e202309095. [PMID: 37488075 DOI: 10.1002/anie.202309095] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 07/22/2023] [Accepted: 07/24/2023] [Indexed: 07/26/2023]
Abstract
Polycrystalline metal-organic framework (MOF) layers hold great promise as molecular sieve membranes for efficient gas separation. Nevertheless, the high crystallinity tends to cause inter-crystalline defects/cracks in the nearby crystals, which makes crystalline porous materials face a great challenge in the fabrication of defect-free membranes. Herein, for the first time, we demonstrate the balance between crystallinity and film formation of MOF membrane through a facile in situ modulation strategy. Monocarboxylic acid was introduced as a modulator to regulate the crystallinity via competitive complexation and thus concomitantly control the film-forming state during membrane growth. Through adjusting the ratio of modulator acid/linker acid, an appropriate balance between this structural "trade-off" was achieved. The resulting MOF membrane with moderate crystallinity and coherent morphology exhibits molecular sieving for H2 /CO2 separation with selectivity up to 82.5.
Collapse
Affiliation(s)
- Yutao Liu
- Shanxi Key Laboratory of Gas Energy Efficient and Clean Utilization, College of Chemical Engineering and Technology, Taiyuan University of Technology, Taiyuan, 030024, Shanxi, China
| | - Hui Chen
- Shanxi Key Laboratory of Gas Energy Efficient and Clean Utilization, College of Chemical Engineering and Technology, Taiyuan University of Technology, Taiyuan, 030024, Shanxi, China
| | - Tong Li
- Shanxi Key Laboratory of Gas Energy Efficient and Clean Utilization, College of Chemical Engineering and Technology, Taiyuan University of Technology, Taiyuan, 030024, Shanxi, China
| | - Yongheng Ren
- Shanxi Key Laboratory of Gas Energy Efficient and Clean Utilization, College of Chemical Engineering and Technology, Taiyuan University of Technology, Taiyuan, 030024, Shanxi, China
| | - Hui Wang
- Shanxi Key Laboratory of Gas Energy Efficient and Clean Utilization, College of Chemical Engineering and Technology, Taiyuan University of Technology, Taiyuan, 030024, Shanxi, China
| | - Zhengxuan Song
- Shanxi Key Laboratory of Gas Energy Efficient and Clean Utilization, College of Chemical Engineering and Technology, Taiyuan University of Technology, Taiyuan, 030024, Shanxi, China
| | - Jianhui Li
- Shanxi Key Laboratory of Gas Energy Efficient and Clean Utilization, College of Chemical Engineering and Technology, Taiyuan University of Technology, Taiyuan, 030024, Shanxi, China
| | - Qiang Zhao
- Shanxi Key Laboratory of Gas Energy Efficient and Clean Utilization, College of Chemical Engineering and Technology, Taiyuan University of Technology, Taiyuan, 030024, Shanxi, China
| | - Jinping Li
- Shanxi Key Laboratory of Gas Energy Efficient and Clean Utilization, College of Chemical Engineering and Technology, Taiyuan University of Technology, Taiyuan, 030024, Shanxi, China
| | - Libo Li
- Shanxi Key Laboratory of Gas Energy Efficient and Clean Utilization, College of Chemical Engineering and Technology, Taiyuan University of Technology, Taiyuan, 030024, Shanxi, China
| |
Collapse
|
36
|
Xu D, Ren X, Xu Y, Wang Y, Zhang S, Chen B, Chang Z, Pan A, Zhou H. Highly Stable Aqueous Zinc Metal Batteries Enabled by an Ultrathin Crack-Free Hydrophobic Layer with Rigid Sub-Nanochannels. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2303773. [PMID: 37515370 PMCID: PMC10520658 DOI: 10.1002/advs.202303773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 07/02/2023] [Indexed: 07/30/2023]
Abstract
Aqueous zinc-metal batteries (AZMBs) have received tremendous attentions due to their high safety, low cost, environmental friendliness, and simple process. However, zinc-metal still suffer from uncontrollable dendrite growth and surface parasitic reactions that reduce the Coulombic efficiency (CE) and lifetime of AZMBs. These problems which are closely related to the active water are not well-solved. Here, an ultrathin crack-free metal-organic framework (ZIF-7x -8) with rigid sub-nanopore (0.3 nm) is constructed on Zn-metal to promote the de-solvation of zinc-ions before approaching Zn-metal surface, reduce the contacting opportunity between water and Zn, and consequently eliminate water-induced corrosion and side-reactions. Due to the presence of rigid and ordered sub-nanochannels, Zn-ions deposits on Zn-metal follow a highly ordered manner, resulting in a dendrite-free Zn-metal with negligible by-products, which significantly improve the reversibility and lifespan of Zn-metals. As a result, Zn-metal protected by ultrathin crack-free ZIF-7x -8 layer exhibits excellent cycling stability (over 2200 h) and extremely-high 99.96% CE during 6000 cycles. The aqueous PANI-V2 O5 //ZIF-7x -8@Zn full-cell preserves 86% high-capacity retention even after ultra-long 2000 cycles. The practical pouch-cell can also be cycled for more than 120 cycles. It is believed that the simple strategy demonstrated in this work can accelerate the practical utilizations of AZMBs.
Collapse
Affiliation(s)
- Dongming Xu
- School of Materials Science and EngineeringKey Laboratory of Electronic Packaging and Advanced Functional Materials of Hunan ProvinceCentral South UniversityChangshaHunan410083P. R. China
| | - Xueting Ren
- School of Materials Science and EngineeringKey Laboratory of Electronic Packaging and Advanced Functional Materials of Hunan ProvinceCentral South UniversityChangshaHunan410083P. R. China
| | - Yan Xu
- School of Materials Science and EngineeringKey Laboratory of Electronic Packaging and Advanced Functional Materials of Hunan ProvinceCentral South UniversityChangshaHunan410083P. R. China
| | - Yijiang Wang
- School of Materials Science and EngineeringKey Laboratory of Electronic Packaging and Advanced Functional Materials of Hunan ProvinceCentral South UniversityChangshaHunan410083P. R. China
| | - Shibin Zhang
- School of Materials Science and EngineeringKey Laboratory of Electronic Packaging and Advanced Functional Materials of Hunan ProvinceCentral South UniversityChangshaHunan410083P. R. China
| | - Benqiang Chen
- School of Materials Science and EngineeringKey Laboratory of Electronic Packaging and Advanced Functional Materials of Hunan ProvinceCentral South UniversityChangshaHunan410083P. R. China
| | - Zhi Chang
- School of Materials Science and EngineeringKey Laboratory of Electronic Packaging and Advanced Functional Materials of Hunan ProvinceCentral South UniversityChangshaHunan410083P. R. China
| | - Anqiang Pan
- School of Materials Science and EngineeringKey Laboratory of Electronic Packaging and Advanced Functional Materials of Hunan ProvinceCentral South UniversityChangshaHunan410083P. R. China
| | - Haoshen Zhou
- Center of Energy Storage Materials and TechnologyCollege of Engineering and Applied SciencesJiangsu Key Laboratory of Artificial Functional MaterialsNational Laboratory of Solid State Micro‐structuresand Collaborative Innovation Center of Advanced Micro‐structuresNanjing UniversityNanjing210093P. R. China
| |
Collapse
|
37
|
Luo Z, Xia Y, Chen S, Wu X, Zeng R, Zhang X, Pan H, Yan M, Shi T, Tao K, Xu BB, Jiang Y. Synergistic "Anchor-Capture" Enabled by Amino and Carboxyl for Constructing Robust Interface of Zn Anode. NANO-MICRO LETTERS 2023; 15:205. [PMID: 37639110 PMCID: PMC10462588 DOI: 10.1007/s40820-023-01171-w] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 07/09/2023] [Indexed: 08/29/2023]
Abstract
While the rechargeable aqueous zinc-ion batteries (AZIBs) have been recognized as one of the most viable batteries for scale-up application, the instability on Zn anode-electrolyte interface bottleneck the further development dramatically. Herein, we utilize the amino acid glycine (Gly) as an electrolyte additive to stabilize the Zn anode-electrolyte interface. The unique interfacial chemistry is facilitated by the synergistic "anchor-capture" effect of polar groups in Gly molecule, manifested by simultaneously coupling the amino to anchor on the surface of Zn anode and the carboxyl to capture Zn2+ in the local region. As such, this robust anode-electrolyte interface inhibits the disordered migration of Zn2+, and effectively suppresses both side reactions and dendrite growth. The reversibility of Zn anode achieves a significant improvement with an average Coulombic efficiency of 99.22% at 1 mA cm-2 and 0.5 mAh cm-2 over 500 cycles. Even at a high Zn utilization rate (depth of discharge, DODZn) of 68%, a steady cycle life up to 200 h is obtained for ultrathin Zn foils (20 μm). The superior rate capability and long-term cycle stability of Zn-MnO2 full cells further prove the effectiveness of Gly in stabilizing Zn anode. This work sheds light on additive designing from the specific roles of polar groups for AZIBs.
Collapse
Affiliation(s)
- Zhen Luo
- School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, People's Republic of China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 311215, People's Republic of China
| | - Yufan Xia
- School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, People's Republic of China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 311215, People's Republic of China
| | - Shuang Chen
- School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, People's Republic of China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 311215, People's Republic of China
| | - Xingxing Wu
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 311215, People's Republic of China
| | - Ran Zeng
- State Key Laboratory of Fluid Power and Mechatronic Systems, Key Laboratory of Advanced Manufacturing Technology of Zhejiang Province, School of Mechanical Engineering, Zhejiang University, Hangzhou, 310027, People's Republic of China
| | - Xuan Zhang
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 311215, People's Republic of China
| | - Hongge Pan
- School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, People's Republic of China
- Institute of Science and Technology for New Energy, Xi'an Technological University, Xi'an, 710021, People's Republic of China
| | - Mi Yan
- School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, People's Republic of China
- State Key Laboratory of Baiyunobo Rare Earth Resource Researches and Comprehensive Utilization, Baotou Research Institute of Rare Earths, Baotou, 014030, People's Republic of China
| | - Tingting Shi
- Guangdong Provincial Engineering Technology Research Center of Vacuum Coating Technologies and New Energy Materials, Department of Physics, Jinan University, Guangzhou, 510632, Guangdong, People's Republic of China.
| | - Kai Tao
- State Key Laboratory of Fluid Power and Mechatronic Systems, Key Laboratory of Advanced Manufacturing Technology of Zhejiang Province, School of Mechanical Engineering, Zhejiang University, Hangzhou, 310027, People's Republic of China
- Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, Hangzhou, 311200, People's Republic of China
| | - Ben Bin Xu
- Mechanical and Construction Engineering, Faculty of Engineering and Environment, Northumbria University, Newcastle upon Tyne, NE1 8ST, UK.
| | - Yinzhu Jiang
- School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, People's Republic of China.
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 311215, People's Republic of China.
- State Key Laboratory of Baiyunobo Rare Earth Resource Researches and Comprehensive Utilization, Baotou Research Institute of Rare Earths, Baotou, 014030, People's Republic of China.
| |
Collapse
|
38
|
Li H, Zhao R, Zhou W, Wang L, Li W, Zhao D, Chao D. Trade-off between Zincophilicity and Zincophobicity: Toward Stable Zn-Based Aqueous Batteries. JACS AU 2023; 3:2107-2116. [PMID: 37654583 PMCID: PMC10466346 DOI: 10.1021/jacsau.3c00292] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 07/11/2023] [Accepted: 07/14/2023] [Indexed: 09/02/2023]
Abstract
Zn-based aqueous batteries (ZABs) hold great promise for large-scale energy storage applications due to the merits of intrinsic safety and low cost. Nevertheless, the thorny issues of metallic Zn anodes, including dendrite growth and parasitic side reactions, have severely limited the application of ZABs. Despite the encouraging improvements for stabilizing Zn anodes through surface modification, electrolyte optimization, and structural design, fundamentally addressing the inherent thermodynamics and kinetics obstacles of Zn anodes remains crucial in realizing reliable ZABs with ultrahigh efficiency, capacity, and cyclability. The target of this perspective is to elucidate the prominent status of Zn metal anode electrochemistry first from the perspective of zincophilicity and zincophobicity. Recent progress in ZABs is critically appraised for addressing the key issues, with special emphasis on the trade-off between zincophilic and zincophobic electrochemistry. Challenges and prospects for further exploration of a reliable Zn anode are presented, which are expected to boost in-depth research and practical applications of advanced ZABs.
Collapse
Affiliation(s)
- Hongpeng Li
- Laboratory
of Advanced Materials, Shanghai Key Laboratory of Molecular Catalysis
and Innovative Materials, and School of Chemistry and Materials, Fudan University, Shanghai 200433, China
- College
of Mechanical Engineering, Yangzhou University, Yangzhou 225127, China
| | - Ruizheng Zhao
- Laboratory
of Advanced Materials, Shanghai Key Laboratory of Molecular Catalysis
and Innovative Materials, and School of Chemistry and Materials, Fudan University, Shanghai 200433, China
- Interdisciplinary
Research Center for Sustainable Energy Science and Engineering (IRC4SE), School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Wanhai Zhou
- Laboratory
of Advanced Materials, Shanghai Key Laboratory of Molecular Catalysis
and Innovative Materials, and School of Chemistry and Materials, Fudan University, Shanghai 200433, China
| | - Lipeng Wang
- Laboratory
of Advanced Materials, Shanghai Key Laboratory of Molecular Catalysis
and Innovative Materials, and School of Chemistry and Materials, Fudan University, Shanghai 200433, China
| | - Wei Li
- Laboratory
of Advanced Materials, Shanghai Key Laboratory of Molecular Catalysis
and Innovative Materials, and School of Chemistry and Materials, Fudan University, Shanghai 200433, China
| | - Dongyuan Zhao
- Laboratory
of Advanced Materials, Shanghai Key Laboratory of Molecular Catalysis
and Innovative Materials, and School of Chemistry and Materials, Fudan University, Shanghai 200433, China
| | - Dongliang Chao
- Laboratory
of Advanced Materials, Shanghai Key Laboratory of Molecular Catalysis
and Innovative Materials, and School of Chemistry and Materials, Fudan University, Shanghai 200433, China
| |
Collapse
|
39
|
Zhang Y, Yang S, Deng J, Chen N, Xie S, Zhou J, Wang Z. Rational Design of Zincophilic Ag/Permselective PEDOT:PSS Heterogeneous Interfaces for High-Rate Zinc Electrodeposition. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023:e2303665. [PMID: 37607319 DOI: 10.1002/smll.202303665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 07/08/2023] [Indexed: 08/24/2023]
Abstract
Designing artificial interface is a promising strategy to protect Zn metal anode but achieving long Zn plating/stripping lifespans and efficient nucleation/deposition kinetics, particularly at high current densities, remains a challenge. In this study, a permselective zincophilic heterogeneous interface consisting of metallic Ag layer and poly(3,4-ethylenedioxythiophene):polystyrene sulfonate (PEDOT:PSS) is designed via a simple chemical displacement and drop casting process. The artificial interface plays a multifunctional role in inhibiting dendrite growth/side reactions by reducing the nucleation barrier through a large number of Zn nucleation sites offered by the bottom Ag layer, homogenizing electrical field/Zn2+ flux and shielding SO4 2- migration via the compact, conducting, and Zn2+ -permselective PEDOT:PSS supporting layer. Moreover, the heterogeneous interface demonstrates enhanced structural integrity owing to the binder effect of PEDOT:PSS. As a result, the modified Zn anode demonstrates a cyclic lifespan of 200 h and a reduced voltage hysteresis of ≈150 mV at 20 mA cm-2 /5 mAh cm-2 , far surpassing its counterparts. Moreover, the protected Zn anode allows the LiMn2 O4 -based full cells with remarkable rate and cycling performance. These findings provide new insight into the design of an efficient artificial interface for highly reversible and high-rate Zn electrodeposition.
Collapse
Affiliation(s)
- Ying Zhang
- College of Materials Science and Engineering, Hunan University, Changsha, 410082, China
| | - Shanchen Yang
- College of Materials Science and Engineering, Hunan University, Changsha, 410082, China
| | - Jie Deng
- College of Materials Science and Engineering, Hunan University, Changsha, 410082, China
| | - Ningxin Chen
- College of Materials Science and Engineering, Hunan University, Changsha, 410082, China
| | - Sida Xie
- College of Materials Science and Engineering, Hunan University, Changsha, 410082, China
| | - Jiajun Zhou
- School of Optical and Electronic Information, Key Lab of Functional Materials for Electronic Information (B) of Ministry of Education, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Zhaohui Wang
- College of Materials Science and Engineering, Hunan University, Changsha, 410082, China
| |
Collapse
|
40
|
Yang X, Zhang Z, Wu M, Guo ZP, Zheng ZJ. Reshaping Zinc Plating/Stripping Behavior by Interfacial Water Bonding for High-Utilization-Rate Zinc Batteries. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023:e2303550. [PMID: 37528474 DOI: 10.1002/adma.202303550] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 06/20/2023] [Indexed: 08/03/2023]
Abstract
Aqueous zinc batteries have emerged as promising energy storage devices; however, severe parasitic reactions lead to the exacerbated production of Zn dendrites that decrease the utilization rate of Zn anodes. Decreasing the electrolyte content and regulating the water activity are efficient means to address these issues. Herein, this work shows that limiting the aqueous electrolyte and bonding water to bacterial cellulose (BC) can suppress side reactions and regulate stable Zn plating/stripping. This approach makes it possible to use less electrolyte and limited Zn foil. A symmetric Zn cell assembles with the hydrogel electrolyte with limited electrolyte (electrolyte-to-capacity ratio E/C = 1.0 g (Ah)-1 ) cycled stably at a current density of 6.5 mA cm-2 and achieved a capacity of 6.5 mA h cm-2 and depth of discharge of 85%. Full cells with the BC hydrogel electrolyte delivers a discharge capacity of 212 mA h cm-2 and shows a capacity retention of 83% after 1000 cycles at 5 A g-1 . This work offers new fundamental insights into the effect of restricting water to reshape the Zn plating/stripping process and provides a route for designing novel hydrogel electrolytes to better stabilize and efficiently utilize the Zn anodes.
Collapse
Affiliation(s)
- Xin Yang
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, Hubei University, Wuhan, 430062, China
| | - Ziyi Zhang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Meiling Wu
- Institute of Molecular Plus, Tianjin University, Tianjin, 300072, China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin, 300192, China
| | - Zai-Ping Guo
- School of Chemical Engineering & Advanced Materials, The University of Adelaide, Adelaide, SA 5005, Australia
| | - Zi-Jian Zheng
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, Hubei University, Wuhan, 430062, China
| |
Collapse
|
41
|
Hu Z, Zhang F, Zhou A, Hu X, Yan Q, Liu Y, Arshad F, Li Z, Chen R, Wu F, Li L. Highly Reversible Zn Metal Anodes Enabled by Increased Nucleation Overpotential. NANO-MICRO LETTERS 2023; 15:171. [PMID: 37410259 PMCID: PMC10326211 DOI: 10.1007/s40820-023-01136-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 05/28/2023] [Indexed: 07/07/2023]
Abstract
Dendrite formation severely compromises further development of zinc ion batteries. Increasing the nucleation overpotential plays a crucial role in achieving uniform deposition of metal ions. However, this strategy has not yet attracted enough attention from researchers to our knowledge. Here, we propose that thermodynamic nucleation overpotential of Zn deposition can be boosted through complexing agent and select sodium L-tartrate (Na-L) as example. Theoretical and experimental characterization reveals L-tartrate anion can partially replace H2O in the solvation sheath of Zn2+, increasing de-solvation energy. Concurrently, the Na+ could absorb on the surface of Zn anode preferentially to inhibit the deposition of Zn2+ aggregation. In consequence, the overpotential of Zn deposition could increase from 32.2 to 45.1 mV with the help of Na-L. The Zn-Zn cell could achieve a Zn utilization rate of 80% at areal capacity of 20 mAh cm-2. Zn-LiMn2O4 full cell with Na-L additive delivers improved stability than that with blank electrolyte. This study also provides insight into the regulation of nucleation overpotential to achieve homogeneous Zn deposition.
Collapse
Affiliation(s)
- Zhengqiang Hu
- Beijing Key Laboratory of Environmental Science and Engineering, School of Materials Science & Engineering, Beijing Institute of Technology, Beijing, 100081, People's Republic of China
| | - Fengling Zhang
- Beijing Key Laboratory of Environmental Science and Engineering, School of Materials Science & Engineering, Beijing Institute of Technology, Beijing, 100081, People's Republic of China
| | - Anbin Zhou
- Beijing Key Laboratory of Environmental Science and Engineering, School of Materials Science & Engineering, Beijing Institute of Technology, Beijing, 100081, People's Republic of China
| | - Xin Hu
- Beijing Key Laboratory of Environmental Science and Engineering, School of Materials Science & Engineering, Beijing Institute of Technology, Beijing, 100081, People's Republic of China
| | - Qiaoyi Yan
- Beijing Key Laboratory of Environmental Science and Engineering, School of Materials Science & Engineering, Beijing Institute of Technology, Beijing, 100081, People's Republic of China
| | - Yuhao Liu
- Beijing Key Laboratory of Environmental Science and Engineering, School of Materials Science & Engineering, Beijing Institute of Technology, Beijing, 100081, People's Republic of China
| | - Faiza Arshad
- Beijing Key Laboratory of Environmental Science and Engineering, School of Materials Science & Engineering, Beijing Institute of Technology, Beijing, 100081, People's Republic of China
| | - Zhujie Li
- Advanced Technology Research Institute, Beijing Institute of Technology, Jinan, 250300, People's Republic of China
| | - Renjie Chen
- Beijing Key Laboratory of Environmental Science and Engineering, School of Materials Science & Engineering, Beijing Institute of Technology, Beijing, 100081, People's Republic of China.
- Collaborative Innovation Center of Electric Vehicles in Beijing, Beijing, 100081, People's Republic of China.
- Advanced Technology Research Institute, Beijing Institute of Technology, Jinan, 250300, People's Republic of China.
| | - Feng Wu
- Beijing Key Laboratory of Environmental Science and Engineering, School of Materials Science & Engineering, Beijing Institute of Technology, Beijing, 100081, People's Republic of China
- Collaborative Innovation Center of Electric Vehicles in Beijing, Beijing, 100081, People's Republic of China
- Advanced Technology Research Institute, Beijing Institute of Technology, Jinan, 250300, People's Republic of China
| | - Li Li
- Beijing Key Laboratory of Environmental Science and Engineering, School of Materials Science & Engineering, Beijing Institute of Technology, Beijing, 100081, People's Republic of China.
- Collaborative Innovation Center of Electric Vehicles in Beijing, Beijing, 100081, People's Republic of China.
- Advanced Technology Research Institute, Beijing Institute of Technology, Jinan, 250300, People's Republic of China.
| |
Collapse
|
42
|
Liu Z, Lu Z, Guo S, Yang QH, Zhou H. Toward High Performance Anodes for Sodium-Ion Batteries: From Hard Carbons to Anode-Free Systems. ACS CENTRAL SCIENCE 2023; 9:1076-1087. [PMID: 37396865 PMCID: PMC10311662 DOI: 10.1021/acscentsci.3c00301] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Indexed: 07/04/2023]
Abstract
Sodium-ion batteries (SIBs) have been deemed to be a promising energy storage technology in terms of cost-effectiveness and sustainability. However, the electrodes often operate at potentials beyond their thermodynamic equilibrium, thus requiring the formation of interphases for kinetic stabilization. The interfaces of the anode such as typical hard carbons and sodium metals are particularly unstable because of its much lower chemical potential than the electrolyte. This creates more severe challenges for both anode and cathode interfaces when building anode-free cells to achieve higher energy densities. Manipulating the desolvation process through the nanoconfining strategy has been emphasized as an effective strategy to stabilize the interface and has attracted widespread attention. This Outlook provides a comprehensive understanding about the nanopore-based solvation structure regulation strategy and its role in building practical SIBs and anode-free batteries. Finally, guidelines for the design of better electrolytes and suggestions for constructing stable interphases are proposed from the perspective of desolvation or predesolvation.
Collapse
Affiliation(s)
- Zhaoguo Liu
- College
of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial
Functional Materials, National Laboratory of Solid State Microstructures,
Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, Jiangsu 210093, China
- Shenzhen
Research Institute of Nanjing University, Shenzhen, Guangdong 518000, China
| | - Ziyang Lu
- Graduate
School of System and Information Engineering University of Tsukuba, 1-1-1, Tennoudai, Tsukuba, Ibaraki 305-8573, Japan
- Energy
Technology Research Institute, National
Institute of Advanced Industrial Science and Technology (AIST), Central2, 1-1-1 Umezono, Tsukuba, Ibaraki 305-8568, Japan
| | - Shaohua Guo
- College
of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial
Functional Materials, National Laboratory of Solid State Microstructures,
Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, Jiangsu 210093, China
- Shenzhen
Research Institute of Nanjing University, Shenzhen, Guangdong 518000, China
| | - Quan-Hong Yang
- Nanoyang
Group, Tianjin Key Laboratory of Advanced Carbon and Electrochemical
Energy Storage, and Collaborative Innovation Center of Chemical Science
and Engineering (Tianjin), Tianjin University, Tianjin 300072, China
| | - Haoshen Zhou
- College
of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial
Functional Materials, National Laboratory of Solid State Microstructures,
Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, Jiangsu 210093, China
| |
Collapse
|
43
|
He R, Yu F, Wu K, Liu HX, Li Z, Liu HK, Dou SX, Wu C. A Dual Organic Solvent Zn-Ion Electrolyte Enables Highly Stable Zn Metal Batteries. NANO LETTERS 2023. [PMID: 37367972 DOI: 10.1021/acs.nanolett.3c01406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/28/2023]
Abstract
Aqueous zinc (Zn) batteries have been regarded as an alternative to lithium-ion batteries due to their high abundance, low cost, and higher intrinsic safety. However, the low Zn plating/stripping reversibility, Zn dendrite growth, and continuous water consumption have hindered the practical application of aqueous Zn anodes. Herein, a hydrous organic Zn-ion electrolyte based on a dual organic solvent, namely hydrated Zn(BF4)2 zinc salt dissolved in dimethyl carbonate (DMC) and vinyl carbonate (EC) solvents [denoted as Zn(BF4)2/DMC/EC], can address these problems, which not only inhibits the side reactions but also promotes uniform Zn plating/stripping through the formation of a stable solid state interface layer and Zn2+-EC/2DMC pairs. This electrolyte enables the Zn electrode to stably undergo >700 cycles at a rate of 1 mA cm-2 with a Coulombic efficiency of 99.71%. Moreover, the full cell paired with V2O5 also demonstrates excellent cycling stability without capacity decay at 1 A g-1 after 1600 cycles.
Collapse
Affiliation(s)
- Ruiqi He
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Fangfang Yu
- Institute for Superconducting & Electronic Materials, Australian Institute of Innovative Materials, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Kuan Wu
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
- Institute of Energy Materials Science (IEMS), University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai 200093, China
| | - Hao-Xuan Liu
- Institute for Superconducting & Electronic Materials, Australian Institute of Innovative Materials, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Zhen Li
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Hua Kun Liu
- Institute of Energy Materials Science (IEMS), University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai 200093, China
- Institute for Superconducting & Electronic Materials, Australian Institute of Innovative Materials, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Shi-Xue Dou
- Institute of Energy Materials Science (IEMS), University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai 200093, China
- Institute for Superconducting & Electronic Materials, Australian Institute of Innovative Materials, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Chao Wu
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
- Institute of Energy Materials Science (IEMS), University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai 200093, China
| |
Collapse
|
44
|
Xu YT, Gong MJ, Zheng Y, Xu H, Li A, Sasaki SI, Tamiaki H, Zeng XX, Wu XW, Wang XF. Remodeling Zinc Deposition via Multisite Zincophilic Chlorophyll for Powerful Aprotic Zinc Batteries. NANO LETTERS 2023. [PMID: 37314735 DOI: 10.1021/acs.nanolett.3c01481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The organic electrolyte can resolve the hurdle of hydrogen evolution in aqueous electrolytes but suffers from sluggish electrochemical reaction kinetics due to a compromised mass transfer process. Herein, we introduce a chlorophyll, zinc methyl 3-devinyl-3-hydroxymethyl-pyropheophorbide-a (Chl), as a multifunctional electrolyte additive for aprotic zinc batteries to address the related dynamic problems in organic electrolyte systems. The Chl exhibits multisite zincophilicity, which significantly reduces the nucleation potential, increases the nucleation sites, and induces uniform nucleation of Zn metal with a nucleation overpotential close to zero. Furthermore, the lower LUMO of Chl contributes to a Zn-N-bond-containing SEI layer and inhibits the decomposition of the electrolyte. Therefore, the electrolyte enables repeated zinc stripping/plating up to 2000 h (2 Ah cm-2 cumulative capacity) with an overpotential of only 32 mV and a high Coulomb efficiency of 99.4%. This work is expected to enlighten the practical application of organic electrolyte systems.
Collapse
Affiliation(s)
- Yu-Ting Xu
- Key Laboratory of Physics and Technology for Advanced Batteries (Ministry of Education), College of Physics, Jilin University, Changchun 130012, P. R. China
| | - Ming-Jun Gong
- Hunan Agricultural University, School of Chemistry and Materials Science, Changsha, Hunan 410128, P. R. China
| | - Yisong Zheng
- Key Laboratory of Physics and Technology for Advanced Batteries (Ministry of Education), College of Physics, Jilin University, Changchun 130012, P. R. China
| | - Hai Xu
- College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Aijun Li
- Key Laboratory of Physics and Technology for Advanced Batteries (Ministry of Education), College of Physics, Jilin University, Changchun 130012, P. R. China
| | - Shin-Ichi Sasaki
- Graduate School of Life Sciences, Ritsumeikan University, Kusatsu, Shiga 525-8577, Japan
- Department of Medical Bioscience, Faculty of Bioscience, Nagahama Institute of Bio-Science and Technology, Nagahama, Shiga 526-0829, Japan
| | - Hitoshi Tamiaki
- Graduate School of Life Sciences, Ritsumeikan University, Kusatsu, Shiga 525-8577, Japan
| | - Xian-Xiang Zeng
- Hunan Agricultural University, School of Chemistry and Materials Science, Changsha, Hunan 410128, P. R. China
| | - Xiong-Wei Wu
- Hunan Agricultural University, School of Chemistry and Materials Science, Changsha, Hunan 410128, P. R. China
| | - Xiao-Feng Wang
- Key Laboratory of Physics and Technology for Advanced Batteries (Ministry of Education), College of Physics, Jilin University, Changchun 130012, P. R. China
| |
Collapse
|
45
|
Chen S, Ji D, Chen Q, Ma J, Hou S, Zhang J. Coordination modulation of hydrated zinc ions to enhance redox reversibility of zinc batteries. Nat Commun 2023; 14:3526. [PMID: 37316539 DOI: 10.1038/s41467-023-39237-3] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 06/02/2023] [Indexed: 06/16/2023] Open
Abstract
The dendrite growth of zinc and the side reactions including hydrogen evolution often degrade performances of zinc-based batteries. These issues are closely related to the desolvation process of hydrated zinc ions. Here we show that the efficient regulation on the solvation structure and chemical properties of hydrated zinc ions can be achieved by adjusting the coordination micro-environment with zinc phenolsulfonate and tetrabutylammonium 4-toluenesulfonate as a family of electrolytes. The theoretical understanding and in-situ spectroscopy analysis revealed that the favorable coordination of conjugated anions involved in hydrogn bond network minimizes the activate water molecules of hydrated zinc ion, thus improving the zinc/electrolyte interface stability to suppress the dendrite growth and side reactions. With the reversibly cycling of zinc electrode over 2000 h with a low overpotential of 17.7 mV, the full battery with polyaniline cathode demonstrated the impressive cycling stability for 10000 cycles. This work provides inspiring fundamental principles to design advanced electrolytes under the dual contributions of solvation modulation and interface regulation for high-performing zinc-based batteries and others.
Collapse
Affiliation(s)
- Song Chen
- Key Laboratory for Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, China
| | - Deluo Ji
- Key Laboratory for Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, China
| | - Qianwu Chen
- Key Laboratory for Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, China
| | - Jizhen Ma
- Key Laboratory for Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, China
| | - Shaoqi Hou
- School of Mathematical and Physical Sciences, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - Jintao Zhang
- Key Laboratory for Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, China.
| |
Collapse
|
46
|
Li J, Zhou S, Meng X, Chen Y, Fu C, Azizi A, Zhao X, Xie W, Chang Z, Pan A. Unique ion rectifier intermediate enabled by ultrathin vermiculite sheets for high-performance Zn metal anodes. Sci Bull (Beijing) 2023:S2095-9273(23)00322-5. [PMID: 37258378 DOI: 10.1016/j.scib.2023.05.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/24/2023] [Accepted: 05/02/2023] [Indexed: 06/02/2023]
Abstract
Metallic Zn represents as a primary choice in fabricating various aqueous Zn-ion batteries (ZIBs), while challenging issues include dendrite growth and parasitic reactions at the anode/electrolyte interface, considerably hamper its practical implementation in large-scale energy storage. Herein, we originally develop a low-cost multifunctional ion rectifier (IRT) as an artificial intermediate to reform Zn anode, which can practically eliminate the above issues. The hydrophobic shell (polyvinylidene difluoride) can suppress Zn interfacial corrosion with an inhibition efficiency of 94.8% by repelling water molecules from the bulk electrolyte. Additionally, negatively-charged ion channels inside the zincophilic core (ultrathin vermiculite sheets) induce de-solvating redistribution effect on Zn2+ ions flux, enabling a high ions transference number (0.79) for dendrite-free Zn deposition. This leads to exceptional Zn/Zn2+ reversibility in metallic Zn with IRT stabilization. The remarkable Coulombic efficiency (99.8%, 2000 cycles) for asymmetrical batteries, and a long-lasting lifespan (1600 h) with ultrahigh cumulative capacity of 2400 mAh cm-2 for symmetrical batteries, are successfully achieved. More encouragingly, the Zn//NH4V4O10 pouch cell retains 94.3% of its original capacity after 150 cycles at 1 A g-1. We believe that this low-cost and high-efficiency tactic could pave a promising path for anode surface modification.
Collapse
Affiliation(s)
- Jianwen Li
- School of Materials Science and Engineering, Key Laboratory of Electronic Packaging and Advanced Functional Materials of Hunan Province, Central South University, Changsha 410083, China
| | - Shuang Zhou
- School of Materials Science and Engineering, Key Laboratory of Electronic Packaging and Advanced Functional Materials of Hunan Province, Central South University, Changsha 410083, China.
| | - Xinyu Meng
- School of Materials Science and Engineering, Key Laboratory of Electronic Packaging and Advanced Functional Materials of Hunan Province, Central South University, Changsha 410083, China
| | - Yining Chen
- School of Materials Science and Engineering, Key Laboratory of Electronic Packaging and Advanced Functional Materials of Hunan Province, Central South University, Changsha 410083, China
| | - Chunyan Fu
- School of Materials Science and Engineering, Key Laboratory of Electronic Packaging and Advanced Functional Materials of Hunan Province, Central South University, Changsha 410083, China
| | - Alireza Azizi
- School of Materials Science and Engineering, Key Laboratory of Electronic Packaging and Advanced Functional Materials of Hunan Province, Central South University, Changsha 410083, China
| | - Xiaoguang Zhao
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China
| | - Weimin Xie
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China
| | - Zhi Chang
- School of Materials Science and Engineering, Key Laboratory of Electronic Packaging and Advanced Functional Materials of Hunan Province, Central South University, Changsha 410083, China
| | - Anqiang Pan
- School of Materials Science and Engineering, Key Laboratory of Electronic Packaging and Advanced Functional Materials of Hunan Province, Central South University, Changsha 410083, China.
| |
Collapse
|
47
|
Feng W, Liang Z, Zhou W, Li X, Wang W, Chi Y, Liu W, Gengzang D, Zhang G, Chen Q, Wang P, Chen W, Zhang S. Dendrite-free zinc metal anodes enabled by electrolyte additive for high-performing aqueous zinc-ion batteries. Dalton Trans 2023. [PMID: 37194376 DOI: 10.1039/d3dt00898c] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Rechargeable aqueous zinc (Zn)-ion batteries are regarded as a suitable candidate for large-scale energy storage due to their high safety and the natural abundance of Zn. However, the Zn anode in the aqueous electrolyte faces the challenges of corrosion, passivation, hydrogen evolution reaction, and the growth of severe Zn dendrites. These problems severely affect the performance and service life of aqueous Zn ion batteries, making it difficult to achieve their large-scale commercial applications. In this work, the sodium bicarbonate (NaHCO3) additive was introduced into the zinc sulfate (ZnSO4) electrolyte to inhibit the growth of Zn dendrites by promoting uniform deposition of Zn ions on the (002) crystal surface. This treatment presented a significant increase in the intensity ratio of (002) to (100) from an initial value of 11.14 to 15.31 after 40 cycles of plating/stripping. The Zn//Zn symmetrical cell showed a longer cycle life (over 124 h at 1.0 mA cm-2) than the symmetrical cell without NaHCO3. Additionally, the high capacity retention rate was increased by 20% for Zn//MnO2 full cells. This finding is expected to be beneficial for a range of research studies that use inorganic additives to inhibit Zn dendrites and parasitic reactions in electrochemical and energy storage applications.
Collapse
Affiliation(s)
- Wenjing Feng
- Key Laboratory for Electronic Materials, College of Electrical Engineering, Northwest Minzu University, Lanzhou, 730030, P. R. China.
| | - Zengteng Liang
- Key Laboratory for Electronic Materials, College of Electrical Engineering, Northwest Minzu University, Lanzhou, 730030, P. R. China.
| | - Wei Zhou
- Key Laboratory for Electronic Materials, College of Electrical Engineering, Northwest Minzu University, Lanzhou, 730030, P. R. China.
| | - Xingpeng Li
- Key Laboratory for Electronic Materials, College of Electrical Engineering, Northwest Minzu University, Lanzhou, 730030, P. R. China.
| | - Wenbo Wang
- Key Laboratory for Electronic Materials, College of Electrical Engineering, Northwest Minzu University, Lanzhou, 730030, P. R. China.
| | - Yonglei Chi
- Key Laboratory for Electronic Materials, College of Electrical Engineering, Northwest Minzu University, Lanzhou, 730030, P. R. China.
| | - Weidong Liu
- Key Laboratory for Electronic Materials, College of Electrical Engineering, Northwest Minzu University, Lanzhou, 730030, P. R. China.
| | - Duojie Gengzang
- Key Laboratory for Electronic Materials, College of Electrical Engineering, Northwest Minzu University, Lanzhou, 730030, P. R. China.
| | - Guoheng Zhang
- Key Laboratory for Electronic Materials, College of Electrical Engineering, Northwest Minzu University, Lanzhou, 730030, P. R. China.
| | - Qiong Chen
- Key Laboratory for Electronic Materials, College of Electrical Engineering, Northwest Minzu University, Lanzhou, 730030, P. R. China.
| | - Peiyu Wang
- Key Laboratory for Electronic Materials, College of Electrical Engineering, Northwest Minzu University, Lanzhou, 730030, P. R. China.
| | - Wanjun Chen
- Key Laboratory for Electronic Materials, College of Electrical Engineering, Northwest Minzu University, Lanzhou, 730030, P. R. China.
| | - Shengguo Zhang
- College of Electrical Engineering, Northwest Minzu University, Lanzhou, 730030, P. R. China
| |
Collapse
|
48
|
Huo X, Xu L, Xie K, Zhang K, Li J, Wang D, Shu K. Cation‐Selective Interface for Kinetically Enhanced Dendrite‐Free Zn Anodes. ADVANCED ENERGY MATERIALS 2023; 13. [DOI: 10.1002/aenm.202203066] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Indexed: 01/06/2025]
Abstract
AbstractThe Zn anode in aqueous zinc‐ion batteries (AZIBs) is severely impeded by uncontrolled dendrite growth and promiscuous water‐induced side reactions, resulting in low Coulombic efficiency (CE) and poor lifetime. Herein, a versatile Zn‐based laponite (Zn–LT) interface is constructed for uniform and rapid Zn deposition for long‐life AZIBs. The combined experimental results and theoretical simulations reveal that the abundant negatively charged channels in the Zn–LT layer permit cation penetration but shield anions to uniformly modulate Zn deposition. Moreover, Zn–LT not only acts as a desolvation layer to promote Zn deposition kinetics, but also effectively inhibit harmful Zn anode corrosion. Therefore, the functional Zn–LT interface enables the anode to deliver an average CE as high as 99.8% at 1 mA cm−2 and a long lifespan of >830 h at 10 mA cm−2 and 5 mA h cm−2. Moreover, the assembled MnO2||Zn–LT@Zn full battery exhibits prominent rate performance (123 mA h g−1 at 2 A g−1) and long‐term cycling stability (80.4% capacity retention at 1 A g−1 after 700 cycles). Furthermore, the fabrication of this Zn‐LT@Zn anode can be extended to rolling method, reflecting the industrial manufacturing potential.
Collapse
Affiliation(s)
- Xiaomei Huo
- Key Laboratory of Solid Waste Treatment and Resource Recycle Ministry of Education Southwest University of Science and Technology Mianyang Sichuan 621010 China
| | - Longhua Xu
- Key Laboratory of Solid Waste Treatment and Resource Recycle Ministry of Education Southwest University of Science and Technology Mianyang Sichuan 621010 China
- State Key Laboratory for Environment‐friendly Energy Materials Southwest University of Science and Technology Mianyang Sichuan 621010 China
| | - Keyu Xie
- State Key Laboratory of Solidification Processing Center for Nano Energy Materials School of Materials Science and Engineering Northwestern Polytechnical University and Shaanxi Joint Lab of Graphene (NPU) Xi'an 710072 China
| | - Kun Zhang
- State Key Laboratory of Solidification Processing Center for Nano Energy Materials School of Materials Science and Engineering Northwestern Polytechnical University and Shaanxi Joint Lab of Graphene (NPU) Xi'an 710072 China
| | - Jing Li
- State Key Laboratory for Environment‐friendly Energy Materials Southwest University of Science and Technology Mianyang Sichuan 621010 China
| | - Donghui Wang
- Key Laboratory of Solid Waste Treatment and Resource Recycle Ministry of Education Southwest University of Science and Technology Mianyang Sichuan 621010 China
- State Key Laboratory for Environment‐friendly Energy Materials Southwest University of Science and Technology Mianyang Sichuan 621010 China
| | - Kaiqian Shu
- Key Laboratory of Solid Waste Treatment and Resource Recycle Ministry of Education Southwest University of Science and Technology Mianyang Sichuan 621010 China
| |
Collapse
|
49
|
Loh JR, Xue J, Lee WSV. Challenges and Strategies in the Development of Zinc-Ion Batteries. SMALL METHODS 2023:e2300101. [PMID: 37035953 DOI: 10.1002/smtd.202300101] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 03/10/2023] [Indexed: 06/19/2023]
Abstract
Although promising, the practical use of zinc-ion batteries (ZIBs) remains plagued with uncontrollable dendrite growth, parasitic side reactions, and the high intercalation energy of divalent Zn2+ ions. Hence, much work has been conducted to alleviate these issues to maximize the energy density and cyclic life of the cell. In this holistic review, the mechanisms and rationale for the stated challenges shall be summarized, followed by the corresponding strategies employed to mitigate them. Thereafter, a perspective on present research and the outlook of ZIBs would be put forth in hopes to enhance their electrochemical properties in a multipronged approach.
Collapse
Affiliation(s)
- Jiong Rui Loh
- Department of Materials Science and Engineering, National University of Singapore, Singapore, 117575, Singapore
| | - Junmin Xue
- Department of Materials Science and Engineering, National University of Singapore, Singapore, 117575, Singapore
| | - Wee Siang Vincent Lee
- Department of Materials Science and Engineering, National University of Singapore, Singapore, 117575, Singapore
| |
Collapse
|
50
|
Xu Z, Zhang Z, Li X, Dong Q, Qian Y, Hou Z. Fluoride-Based Stable Quasi-Solid-State Zinc Metal Battery with Superior Rate Capability. ACS APPLIED MATERIALS & INTERFACES 2023; 15:15574-15584. [PMID: 36926828 DOI: 10.1021/acsami.3c00747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Aqueous zinc metal batteries are limited in practical applications due to their short lifespans. Herein, a LaF3-coated Zn anode (LF@Zn) is investigated to induce the uniform Zn deposition and successfully build a separator-free quasi-solid-state zinc metal battery. The LF@Zn enables smooth and dendrite-free Zn deposition, owing to the homogeneous Zn2+ flux regulated by the LaF3-based quasi-solid-state electrolyte. It can also suppress the corrosion side reactions by modulating the [Zn(H2O)6]2+ solvation sheath. The polarization of plating and stripping is relatively modest due to the reduced diffuse energy of desolvated Zn2+ in the quasi-solid-state electrolyte. In a separator-free symmetric cell, the LF@Zn anode shows a significantly prolonged lifespan of over 1300 h at 2 mA cm-2 and a superior rate performance with only 156 mV at an ultrahigh current density of 50 mA cm-2. A LF@Zn//VO2 quasi-solid-state full cell exhibits outperforming rate capability and a long cyclic performance for up to 3000 cycles at 6.0 A g-1. A stable Zn anode is established in this work with a fluoride-based quasi-solid-state electrolyte, opening up a new avenue for protecting metal anodes.
Collapse
Affiliation(s)
- Zhibin Xu
- School of Chemistry and Material Science, University of Science and Technology of China, Hefei 230026, China
| | - Zirui Zhang
- School of Chemistry and Material Science, University of Science and Technology of China, Hefei 230026, China
| | - Xilong Li
- School of Chemistry and Material Science, University of Science and Technology of China, Hefei 230026, China
| | - Qi Dong
- School of Chemistry and Material Science, University of Science and Technology of China, Hefei 230026, China
| | - Yitai Qian
- School of Chemistry and Material Science, University of Science and Technology of China, Hefei 230026, China
| | - Zhiguo Hou
- School of Chemistry and Material Science, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|