1
|
He Q, Si K, Xu Z, Wang X, Jin C, Yang Y, Wei J, Meng L, Zhai P, Zhang P, Tang P, Gong Y. Direct synthesis of controllable ultrathin heteroatoms-intercalated 2D layered materials. Nat Commun 2024; 15:6320. [PMID: 39060322 PMCID: PMC11282301 DOI: 10.1038/s41467-024-50694-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 07/19/2024] [Indexed: 07/28/2024] Open
Abstract
Two-dimensional (2D) layered materials have been studied in depth during the past two decades due to their unique structure and properties. Transition metal (TM) intercalation of layered materials have been proven as an effective way to introduce new physical properties, such as tunable 2D magnetism, but the direct growth of atomically thin heteroatoms-intercalated layered materials remains untapped. Herein, we directly synthesize various ultrathin heteroatoms-intercalated 2D layered materials (UHI-2DMs) through flux-assisted growth (FAG) approach. Eight UHI-2DMs (V1/3NbS2, Cr1/3NbS2, Mn1/3NbS2, Fe1/3NbS2, Co1/3NbS2, Co1/3NbSe2, Fe1/3TaS2, Fe1/4TaS2) were successfully synthesized. Their thickness can be reduced to the thinnest limit (bilayer 2D material with monolayer intercalated TM), and magnetic ordering can be induced in the synthesized structures. Interestingly, due to the possible anisotropy-stabilized long-range ferromagnetism in Fe1/3TaS2 with weak interlayer coupling, the layer-independent magnetic ordering temperature of Fe1/3TaS2 was revealed by magneto-transport properties. This work establishes a general method for direct synthesis of heteroatom-intercalated ultrathin 2D materials with tunable chemical and physical properties.
Collapse
Affiliation(s)
- Qianqian He
- School of Materials Science and Engineering, Beihang University, Beijing, PR China
- The Analysis & Testing Center, Beihang University, Beijing, PR China
| | - Kunpeng Si
- School of Materials Science and Engineering, Beihang University, Beijing, PR China
- Center for Micro-Nano Innovation of Beihang University, Beijing, PR China
| | - Zian Xu
- School of Materials Science and Engineering, Beihang University, Beijing, PR China
| | - Xingguo Wang
- School of Materials Science and Engineering, Beihang University, Beijing, PR China
| | - Chunqiao Jin
- School of Materials Science and Engineering, Beihang University, Beijing, PR China
- Tianmushan Laboratory Xixi Octagon City, Hangzhou, PR China
| | - Yahan Yang
- School of Materials Science and Engineering, Beihang University, Beijing, PR China
- Center for Micro-Nano Innovation of Beihang University, Beijing, PR China
| | - Juntian Wei
- School of Materials Science and Engineering, Beihang University, Beijing, PR China
- Center for Micro-Nano Innovation of Beihang University, Beijing, PR China
| | - Lingjia Meng
- Faculty of Science, Beijing University of Technology, Beijing, PR China
| | - Pengbo Zhai
- School of Materials Science and Engineering, Beihang University, Beijing, PR China
- Tianmushan Laboratory Xixi Octagon City, Hangzhou, PR China
| | - Peng Zhang
- School of Materials Science and Engineering, Beihang University, Beijing, PR China
| | - Peizhe Tang
- School of Materials Science and Engineering, Beihang University, Beijing, PR China.
- Max Planck Institute for the Structure and Dynamics of Matter, Hamburg, Germany.
| | - Yongji Gong
- School of Materials Science and Engineering, Beihang University, Beijing, PR China.
- Center for Micro-Nano Innovation of Beihang University, Beijing, PR China.
- Tianmushan Laboratory Xixi Octagon City, Hangzhou, PR China.
| |
Collapse
|
2
|
Singh AK, Thakurta B, Giri A, Pal M. Wafer-scale synthesis of two-dimensional ultrathin films. Chem Commun (Camb) 2024; 60:265-279. [PMID: 38087984 DOI: 10.1039/d3cc04610a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
Two-dimensional (2D) materials, consisting of atomically thin layered crystals, have attracted tremendous interest due to their outstanding intrinsic properties and diverse applications in electronics, optoelectronics, and catalysis. The large-scale growth of high-quality ultrathin 2D films and their utilization in the facile fabrication of devices, easily adoptable in industrial applications, have been extensively sought after during the last decade; however, it remains a challenge to achieve these goals. Herein, we introduce three key concepts: (i) the microwave assisted quick (∼1 min) synthesis of wafer-scale (6-inch) anisotropic conducting ultrathin (∼1 nm) amorphous carbon and 2D semiconducting metal chalcogenide atomically thin films, (ii) a polymer-assisted deposition process for the synthesis of wafer-scale (6-inch) 2D metal chalcogenide and pyrolyzed carbon thin films, and (iii) the surface diffusion and epitaxial self-planarization induced synthesis of wafer-scale (2-inch) single crystal 2D binary and large-grain 2D ferromagnetic ternary metal chalcogenide thin films. The proposed synthesis concepts can pave a new way for the manufacture of wafer-scale high quality 2D ultrathin films and their utilization in the facile fabrication of devices.
Collapse
Affiliation(s)
- Amresh Kumar Singh
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, UP 221005, India.
| | - Baishali Thakurta
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, UP 221005, India.
| | - Anupam Giri
- Department of Chemistry, Faculty of Science, University of Allahabad, Prayagraj, UP 211002, India.
| | - Monalisa Pal
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, UP 221005, India.
| |
Collapse
|
3
|
Fan CC, Liu CD, Liang BD, Jin ML, Ju TY, Chai CY, Han XB, Zhang W. A Two-Dimensional Hybrid Lead Bromide Ferroelectric Semiconductor with an Out-of-Plane Polarization. Inorg Chem 2023; 62:12634-12638. [PMID: 37534962 DOI: 10.1021/acs.inorgchem.3c02057] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2023]
Abstract
A two-dimensional (2D) organic-inorganic hybrid perovskite (OIHP) material with out-of-plane ferroelectricity is the key to the miniaturization of vertical-sandwich-type ferroelectric optoelectronic devices. However, 2D OIHP ferroelectrics with out-of-plane polarization are still scarce, and effective design strategies are lacking. Herein, we report a novel 2D Dion-Jacobson perovskite ferroelectric semiconductor synthesized by a rigid-to-flexible cationic tailoring strategy, achieving an out-of-plane polarization of 1.7 μC/cm2 and high photoresponse. Integrating out-of-plane ferroelectricity with excellent photoelectric properties affords a promising platform to investigate ferroelectricity-related effects in vertical optoelectronic devices.
Collapse
Affiliation(s)
- Chang-Chun Fan
- Jiangsu Key Laboratory for Science and Applications of Molecular Ferroelectrics and School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Cheng-Dong Liu
- Jiangsu Key Laboratory for Science and Applications of Molecular Ferroelectrics and School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Bei-Dou Liang
- Jiangsu Key Laboratory for Science and Applications of Molecular Ferroelectrics and School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Ming-Liang Jin
- Jiangsu Key Laboratory for Science and Applications of Molecular Ferroelectrics and School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Tong-Yu Ju
- Jiangsu Key Laboratory for Science and Applications of Molecular Ferroelectrics and School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Chao-Yang Chai
- Jiangsu Key Laboratory for Science and Applications of Molecular Ferroelectrics and School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Xiang-Bin Han
- Jiangsu Key Laboratory for Science and Applications of Molecular Ferroelectrics and School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Wen Zhang
- Jiangsu Key Laboratory for Science and Applications of Molecular Ferroelectrics and School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| |
Collapse
|
4
|
Ren H, Zhong J, Xiang G. The Progress on Magnetic Material Thin Films Prepared Using Polymer-Assisted Deposition. Molecules 2023; 28:5004. [PMID: 37446666 DOI: 10.3390/molecules28135004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 06/24/2023] [Indexed: 07/15/2023] Open
Abstract
Polymer-assisted deposition (PAD) has been widely used in the preparation of high-quality oxides and sulfides for basic research and applications. Specifically, diverse PAD-prepared magnetic material thin films such as ZnO, Ga2O3, SrRuO3, LaCoO3, LaMnO3, Y3Fe5O12, MoS2, MoSe2, and ReS2 thin films have been grown, in which thickness-dependent, strain-modulated, doping-mediated, and/or morphology-dependent room-temperature ferromagnetism (RTFM) have been explored. Inspired by the discovery of intrinsic low-temperature FM in two-dimensional (2D) systems prepared using mechanical exfoliation, the search for more convenient methods to prepare 2D ferromagnetic materials with high-temperature FM has seen explosive growth, but with little success. Fortunately, the very recent synthesis of 2D NiO by PAD has shed light on this challenge. Based on these abovementioned developments, the difficulties of PAD when preparing a-few-nanometer single-crystalline materials and the opportunities in PAD for novel materials such as chiral magnetic soliton material Cr1/3NbS2 are discussed.
Collapse
Affiliation(s)
- Hongtao Ren
- School of Materials Science and Engineering, Liaocheng University, Liaocheng 252000, China
| | - Jing Zhong
- College of Physics, Sichuan University, Chengdu 610064, China
| | - Gang Xiang
- College of Physics, Sichuan University, Chengdu 610064, China
| |
Collapse
|
5
|
Giri A, Park G, Jeong U. Layer-Structured Anisotropic Metal Chalcogenides: Recent Advances in Synthesis, Modulation, and Applications. Chem Rev 2023; 123:3329-3442. [PMID: 36719999 PMCID: PMC10103142 DOI: 10.1021/acs.chemrev.2c00455] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Indexed: 02/01/2023]
Abstract
The unique electronic and catalytic properties emerging from low symmetry anisotropic (1D and 2D) metal chalcogenides (MCs) have generated tremendous interest for use in next generation electronics, optoelectronics, electrochemical energy storage devices, and chemical sensing devices. Despite many proof-of-concept demonstrations so far, the full potential of anisotropic chalcogenides has yet to be investigated. This article provides a comprehensive overview of the recent progress made in the synthesis, mechanistic understanding, property modulation strategies, and applications of the anisotropic chalcogenides. It begins with an introduction to the basic crystal structures, and then the unique physical and chemical properties of 1D and 2D MCs. Controlled synthetic routes for anisotropic MC crystals are summarized with example advances in the solution-phase synthesis, vapor-phase synthesis, and exfoliation. Several important approaches to modulate dimensions, phases, compositions, defects, and heterostructures of anisotropic MCs are discussed. Recent significant advances in applications are highlighted for electronics, optoelectronic devices, catalysts, batteries, supercapacitors, sensing platforms, and thermoelectric devices. The article ends with prospects for future opportunities and challenges to be addressed in the academic research and practical engineering of anisotropic MCs.
Collapse
Affiliation(s)
- Anupam Giri
- Department
of Chemistry, Faculty of Science, University
of Allahabad, Prayagraj, UP-211002, India
| | - Gyeongbae Park
- Department
of Materials Science and Engineering, Pohang
University of Science and Technology, Cheongam-Ro 77, Nam-Gu, Pohang, Gyeongbuk790-784, Korea
- Functional
Materials and Components R&D Group, Korea Institute of Industrial Technology, Gwahakdanji-ro 137-41, Sacheon-myeon, Gangneung, Gangwon-do25440, Republic of Korea
| | - Unyong Jeong
- Department
of Materials Science and Engineering, Pohang
University of Science and Technology, Cheongam-Ro 77, Nam-Gu, Pohang, Gyeongbuk790-784, Korea
| |
Collapse
|
6
|
Kim G, Kim D, Choi Y, Ghorai A, Park G, Jeong U. New Approaches to Produce Large-Area Single Crystal Thin Films. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2203373. [PMID: 35737971 DOI: 10.1002/adma.202203373] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 06/15/2022] [Indexed: 06/15/2023]
Abstract
Wafer-scale growth of single crystal thin films of metals, semiconductors, and insulators is crucial for manufacturing high-performance electronic and optical devices, but still challenging from both scientific and industrial perspectives. Recently, unconventional advanced synthetic approaches have been attempted and have made remarkable progress in diversifying the species of producible single crystal thin films. This review introduces several new synthetic approaches to produce large-area single crystal thin films of various materials according to the concepts and principles.
Collapse
Affiliation(s)
- Geonwoo Kim
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, 37673, Republic of Korea
| | - Dongbeom Kim
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, 37673, Republic of Korea
| | - Yoonsun Choi
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, 37673, Republic of Korea
| | - Arup Ghorai
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, 37673, Republic of Korea
| | - Gyeongbae Park
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, 37673, Republic of Korea
| | - Unyong Jeong
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, 37673, Republic of Korea
| |
Collapse
|
7
|
Huan Y, Luo T, Han X, Ge J, Cui F, Zhu L, Hu J, Zheng F, Zhao X, Wang L, Wang J, Zhang Y. Composition-Controllable Syntheses and Property Modulations from 2D Ferromagnetic Fe 5 Se 8 to Metallic Fe 3 Se 4 Nanosheets. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2207276. [PMID: 36263871 DOI: 10.1002/adma.202207276] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 09/27/2022] [Indexed: 06/16/2023]
Abstract
Exploring new-type 2D magnetic materials with high magnetic transition temperature and robust air stability has attracted wide attention for developing innovative spintronic devices. Recently, intercalation of native metal atoms into the van der Waals gaps of 2D layered transition metal dichalcogenides (TMDs) has been developed to form 2D non-layered magnetic TMDs, while only succeeded in limited systems (e.g., Cr2 S3 , Cr5 Te8 ). Herein, composition-controllable syntheses of 2D non-layered iron selenide nanosheets (25% Fe-intercalated triclinic Fe5 Se8 and 50% Fe-intercalated monoclinic Fe3 Se4 ) are firstly reported, via a robust chemical vapor deposition strategy. Specifically, the 2D Fe5 Se8 exhibits intrinsic room-temperature ferromagnetic property, which is explained by the change of electron spin states from layered 1T'-FeSe2 to non-layered Fe-intercalated Fe5 Se8 based on density functional theory calculations. In contrast, the ultrathin Fe3 Se4 presents novel metallic features comparable with that of metallic TMDs. This work hereby sheds light on the composition-controllable synthesis and fundamental property exploration of 2D self-intercalation induced novel TMDs compounds, by propelling their application explorations in nanoelectronics and spintronics-related fields.
Collapse
Affiliation(s)
- Yahuan Huan
- School of Materials Science and Engineering, Peking University, Beijing, 100871, P. R. China
| | - Tiantian Luo
- Siyuan Laboratory, Guangzhou Key Laboratory of Vacuum Coating Technologies and New Energy Materials, Department of Physics, Jinan University, Guangzhou, 510632, P. R. China
| | - Xiaocang Han
- School of Materials Science and Engineering, Peking University, Beijing, 100871, P. R. China
| | - Jun Ge
- International Center for Quantum Materials, School of Physics, Peking University, Beijing, 100871, P. R. China
| | - Fangfang Cui
- School of Materials Science and Engineering, Peking University, Beijing, 100871, P. R. China
| | - Lijie Zhu
- School of Materials Science and Engineering, Peking University, Beijing, 100871, P. R. China
| | - Jingyi Hu
- School of Materials Science and Engineering, Peking University, Beijing, 100871, P. R. China
| | - Feipeng Zheng
- Siyuan Laboratory, Guangzhou Key Laboratory of Vacuum Coating Technologies and New Energy Materials, Department of Physics, Jinan University, Guangzhou, 510632, P. R. China
| | - Xiaoxu Zhao
- School of Materials Science and Engineering, Peking University, Beijing, 100871, P. R. China
| | - Lili Wang
- State Key Laboratory of Low-Dimensional Quantum Physics, Department of Physics, Tsinghua University, Beijing, 100084, P. R. China
| | - Jian Wang
- International Center for Quantum Materials, School of Physics, Peking University, Beijing, 100871, P. R. China
- Collaborative Innovation Center of Quantum Matter, Beijing, 100871, P. R. China
- CAS Center for Excellence in Topological Quantum Computation, University of Chinese Academy of Sciences, Beijing, 100190, P. R. China
- Beijing Academy of Quantum Information Sciences, Beijing, 100193, P. R. China
| | - Yanfeng Zhang
- School of Materials Science and Engineering, Peking University, Beijing, 100871, P. R. China
| |
Collapse
|
8
|
Wu Y, Li J, Liu Y. Two-dimensional chalcogenide-based ferromagnetic semiconductors. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2022; 35:083002. [PMID: 36540916 DOI: 10.1088/1361-648x/acaa7e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 12/09/2022] [Indexed: 06/17/2023]
Abstract
Two-dimensional (2D) magnetic materials draw an enormous amount of attention due to their novel physical properties and potential spintronics device applications. Room-temperature ferromagnetic (FM) semiconductors have long been pursued in 2D magnetic materials, which show a long range magnetic order down to atomic-layer thickness. The intrinsic ferromagnetism has been predicted in a series of 2D materials and verified in experiments and the magnetism can be modulated by multiple physical fields, exhibiting promising application prospects. In this review, we overview several types of 2D chalcogenide-based FM semiconductors discovered in recent years. We summary and compare their basic physical properties, including the crystal structures, electronic structures, and mechanical stability. The 2D magnetism can be described by several physical models. We also focus on the recent progresses about theoretical prediction of FM semiconductors and experimental observation of external-field regulation. Most of investigations have shown that 2D chalcogenide-based FM semiconductors have relatively high Curie temperature (Tc) and structural stability. These materials are promising to realize the room-temperature ferromagnetism in atomic-layer thickness, which is significant to design spintronics devices.
Collapse
Affiliation(s)
- Yanling Wu
- State Key Laboratory of Metastable Materials Science and Technology & Key Laboratory for Microstructural Material Physics of Hebei Province, School of Science, Yanshan University, Qinhuangdao 066004, People's Republic of China
| | - Jun Li
- State Key Laboratory of Metastable Materials Science and Technology & Key Laboratory for Microstructural Material Physics of Hebei Province, School of Science, Yanshan University, Qinhuangdao 066004, People's Republic of China
| | - Yong Liu
- State Key Laboratory of Metastable Materials Science and Technology & Key Laboratory for Microstructural Material Physics of Hebei Province, School of Science, Yanshan University, Qinhuangdao 066004, People's Republic of China
| |
Collapse
|
9
|
Xue F, Zhang C, Ma Y, Wen Y, He X, Yu B, Zhang X. Integrated Memory Devices Based on 2D Materials. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2201880. [PMID: 35557021 DOI: 10.1002/adma.202201880] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 05/07/2022] [Indexed: 06/15/2023]
Abstract
With the advent of the Internet of Things and big data, massive data must be rapidly processed and stored within a short timeframe. This imposes stringent requirements on memory hardware implementation in terms of operation speed, energy consumption, and integration density. To fulfill these demands, 2D materials, which are excellent electronic building blocks, provide numerous possibilities for developing advanced memory device arrays with high performance, smart computing architectures, and desirable downscaling. Over the past few years, 2D-material-based memory-device arrays with different working mechanisms, including defects, filaments, charges, ferroelectricity, and spins, have been increasingly developed. These arrays can be used to implement brain-inspired computing or sensing with extraordinary performance, architectures, and functionalities. Here, recent research into integrated, state-of-the-art memory devices made from 2D materials, as well as their implications for brain-inspired computing are surveyed. The existing challenges at the array level are discussed, and the scope for future research is presented.
Collapse
Affiliation(s)
- Fei Xue
- Physical Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Saudi Arabia
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 310020, P. R. China
- School of Micro-Nano Electronics, Zhejiang University, Hangzhou, 311200, P. R. China
| | - Chenhui Zhang
- Physical Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Saudi Arabia
| | - Yinchang Ma
- Physical Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Saudi Arabia
| | - Yan Wen
- Physical Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Saudi Arabia
| | - Xin He
- Physical Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Saudi Arabia
| | - Bin Yu
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 310020, P. R. China
- School of Micro-Nano Electronics, Zhejiang University, Hangzhou, 311200, P. R. China
| | - Xixiang Zhang
- Physical Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Saudi Arabia
| |
Collapse
|