1
|
Zhang C, Ye C, Yao J, Wu LZ. Spin-related excited-state phenomena in photochemistry. Natl Sci Rev 2024; 11:nwae244. [PMID: 39211835 PMCID: PMC11360185 DOI: 10.1093/nsr/nwae244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 06/13/2024] [Accepted: 07/04/2024] [Indexed: 09/04/2024] Open
Abstract
The spin of electrons plays a vital role in chemical reactions and processes, and the excited state generated by the absorption of photons shows abundant spin-related phenomena. However, the importance of electron spin in photochemistry studies has been rarely mentioned or summarized. In this review, we briefly introduce the concept of spin photochemistry based on the spin multiplicity of the excited state, which leads to the observation of various spin-related photophysical properties and photochemical reactivities. Then, we focus on the recent advances in terms of light-induced magnetic properties, excited-state magneto-optical effects and spin-dependent photochemical reactions. The review aims to provide a comprehensive overview to utilize the spin multiplicity of the excited state in manipulating the above photophysical and photochemical processes. Finally, we discuss the existing challenges in the emerging field of spin photochemistry and future opportunities such as smart magnetic materials, optical information technology and spin-enhanced photocatalysis.
Collapse
Affiliation(s)
- Chuang Zhang
- Key Laboratory of Photochemistry, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Chen Ye
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Jiannian Yao
- Key Laboratory of Photochemistry, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Li-Zhu Wu
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| |
Collapse
|
2
|
Huang Z, Miyashita T, Tang ML. Photon Upconversion at Organic-Inorganic Interfaces. Annu Rev Phys Chem 2024; 75:329-346. [PMID: 38382565 DOI: 10.1146/annurev-physchem-090722-011335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
Photon upconversion is a process that combines low-energy photons to form useful high-energy photons. There are potential applications in photovoltaics, photocatalysis, biological imaging, etc. Semiconductor quantum dots (QDs) are promising for the absorption of these low-energy photons due to the high extinction coefficient of QDs, especially in the near infrared (NIR). This allows the intriguing use of diffuse light sources such as solar irradiation. In this review, we describe the development of this organic-QD upconversion platform based on triplet-triplet annihilation, focusing on the dark exciton in QDs with triplet character. Then we introduce the underlying energy transfer steps, starting from QD triplet photosensitization, triplet exciton transport, triplet-triplet annihilation, and ending with the upconverted emission. Design principles to improve the total upconversion efficiency are presented. We end with limitations in current reports and proposed future directions. This review provides a guide for designing efficient organic-QD upconversion platforms for future applications, including overcoming the Shockley-Queisser limit for more efficient solar energy conversion, NIR-based phototherapy, and diagnostics in vivo.
Collapse
Affiliation(s)
- Zhiyuan Huang
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, People's Republic of China;
| | - Tsumugi Miyashita
- Department of Biomedical Engineering, University of Utah, Salt Lake City, Utah, USA;
| | - Ming Lee Tang
- Department of Chemistry, University of Utah, Salt Lake City, Utah, USA;
| |
Collapse
|
3
|
Wang H, Yin B, Bai J, Wei X, Huang W, Chang Q, Jia H, Chen R, Zhai Y, Wu Y, Zhang C. Giant magneto-photoluminescence at ultralow field in organic microcrystal arrays for on-chip optical magnetometer. Nat Commun 2024; 15:3995. [PMID: 38734699 PMCID: PMC11088683 DOI: 10.1038/s41467-024-48464-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 04/29/2024] [Indexed: 05/13/2024] Open
Abstract
Optical detection of magnetic field is appealing for integrated photonics; however, the light-matter interaction is usually weak at low field. Here we observe that the photoluminescence (PL) decreases by > 40% at 10 mT in rubrene microcrystals (RMCs) prepared by a capillary-bridge assembly method. The giant magneto-PL (MPL) relies on the singlet-triplet conversion involving triplet-triplet pairs, through the processes of singlet fission (SF) and triplet fusion (TF) during radiative decay. Importantly, the size of RMCs is critical for maximizing MPL as it influences on the photophysical processes of spin state conversion. The SF/TF process is quantified by measuring the prompt/delayed PL with time-resolved spectroscopies, which shows that the geminate SF/TF associated with triplet-triplet pairs are responsible for the giant MPL. Furthermore, the RMC-based magnetometer is constructed on an optical chip, which takes advantages of remarkable low-field sensitivity over a broad range of frequencies, representing a prototype of emerging opto-spintronic molecular devices.
Collapse
Affiliation(s)
- Hong Wang
- Key Laboratory of Photochemistry, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Baipeng Yin
- Key Laboratory of Photochemistry, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China
| | - Junli Bai
- University of Chinese Academy of Sciences, Beijing, China
- Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, China
| | - Xiao Wei
- Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, China
- Ji Hua Laboratory Foshan, Guangdong, China
| | - Wenjin Huang
- Key Laboratory of Low-Dimensional Quantum Structures and Quantum Control of Ministry of Education, Department of Physics, Hunan Normal University, Changsha, China
| | - Qingda Chang
- Key Laboratory of Photochemistry, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Hao Jia
- Key Laboratory of Photochemistry, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Rui Chen
- Key Laboratory of Photochemistry, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yaxin Zhai
- Key Laboratory of Low-Dimensional Quantum Structures and Quantum Control of Ministry of Education, Department of Physics, Hunan Normal University, Changsha, China
| | - Yuchen Wu
- University of Chinese Academy of Sciences, Beijing, China.
- Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, China.
| | - Chuang Zhang
- Key Laboratory of Photochemistry, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
4
|
Wang JX, Yin J, Gutiérrez-Arzaluz L, Thomas S, Shao W, Alshareef HN, Eddaoudi M, Bakr OM, Mohammed OF. Singlet Fission-Based High-Resolution X-Ray Imaging Scintillation Screens. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023:e2300406. [PMID: 37083237 DOI: 10.1002/advs.202300406] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/02/2023] [Indexed: 05/03/2023]
Abstract
X-ray imaging technology is critical to numerous different walks of daily life, ranging from medical radiography and security screening all the way to high-energy physics. Although several organic chromophores are fabricated and tested as X-ray imaging scintillators, they generally show poor scintillation performance due to their weak X-ray absorption cross-section and inefficient exciton utilization efficiency. Here, a singlet fission-based high-performance organic X-ray imaging scintillator with near unity exciton utilization efficiency is presented. Interestingly, it is found that the X-ray sensitivity and imaging resolution of the singlet fission-based scintillator are dramatically improved by an efficient energy transfer from a thermally activated delayed fluorescence (TADF) sensitizer, in which both singlet and triplet excitons can be efficiently harnessed. The fabricated singlet fission-based scintillator exhibits a high X-ray imaging resolution of 27.5 line pairs per millimeter (lp mm-1 ), which exceeds that of most commercial scintillators, demonstrating its high potential use in medical radiography and security inspection.
Collapse
Affiliation(s)
- Jian-Xin Wang
- Advanced Membranes and Porous Materials Center, Division of Physical Science and Engineering, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Jun Yin
- Advanced Membranes and Porous Materials Center, Division of Physical Science and Engineering, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Kingdom of Saudi Arabia
- KAUST Catalysis Center, Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Kingdom of Saudi Arabia
- Department of Applied Physics, The Hong Kong Polytechnic University, Hong Kong, 999077, P. R. China
| | - Luis Gutiérrez-Arzaluz
- Advanced Membranes and Porous Materials Center, Division of Physical Science and Engineering, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Kingdom of Saudi Arabia
- KAUST Catalysis Center, Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Simil Thomas
- Advanced Membranes and Porous Materials Center, Division of Physical Science and Engineering, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Kingdom of Saudi Arabia
- Materials Science and Engineering, Physical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Wenyi Shao
- Advanced Membranes and Porous Materials Center, Division of Physical Science and Engineering, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Husam N Alshareef
- Materials Science and Engineering, Physical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Mohamed Eddaoudi
- Advanced Membranes and Porous Materials Center, Division of Physical Science and Engineering, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Osman M Bakr
- KAUST Catalysis Center, Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Omar F Mohammed
- Advanced Membranes and Porous Materials Center, Division of Physical Science and Engineering, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Kingdom of Saudi Arabia
| |
Collapse
|
5
|
Goudarzi H, Koutsokeras L, Balawi AH, Sun C, Manolis GK, Gasparini N, Peisen Y, Antoniou G, Athanasopoulos S, Tselios CC, Falaras P, Varotsis C, Laquai F, Cabanillas-González J, Keivanidis PE. Microstructure-driven annihilation effects and dispersive excited state dynamics in solid-state films of a model sensitizer for photon energy up-conversion applications. Chem Sci 2023; 14:2009-2023. [PMID: 36845913 PMCID: PMC9945257 DOI: 10.1039/d2sc06426j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 01/25/2023] [Indexed: 01/26/2023] Open
Abstract
Bimolecular processes involving exciton spin-state interactions gain attention for their deployment as wavelength-shifting tools. Particularly triplet-triplet annihilation induced photon energy up-conversion (TTA-UC) holds promise to enhance the performance of solar cell and photodetection technologies. Despite the progress noted, a correlation between the solid-state microstructure of photoactuating TTA-UC organic composites and their photophysical properties is missing. This lack of knowledge impedes the effective integration of functional TTA-UC interlayers as ancillary components in operating devices. We here investigate a solution-processed model green-to-blue TTA-UC binary composite. Solid-state films of a 9,10 diphenyl anthracene (DPA) blue-emitting activator blended with a (2,3,7,8,12,13,17,18-octaethyl-porphyrinato) PtII (PtOEP) green-absorbing sensitizer are prepared with a range of compositions and examined by a set of complementary characterization techniques. Grazing incidence X-ray diffractometry (GIXRD) measurements identify three PtOEP composition regions wherein the DPA:PtOEP composite microstructure varies due to changes in the packing motifs of the DPA and PtOEP phases. In Region 1 (≤2 wt%) DPA is semicrystalline and PtOEP is amorphous, in Region 2 (between 2 and 10 wt%) both DPA and PtOEP phases are amorphous, and in Region 3 (≥10 wt%) DPA remains amorphous and PtOEP is semicrystalline. GIXRD further reveals the metastable DPA-β polymorph species as the dominant DPA phase in Region 1. Composition dependent UV-vis and FT-IR measurements identify physical PtOEP dimers, irrespective of the structural order in the PtOEP phase. Time-gated photoluminescence (PL) spectroscopy and scanning electron microscopy imaging confirm the presence of PtOEP aggregates, even after dispersing DPA:PtOEP in amorphous poly(styrene). When arrested in Regions 1 and 2, DPA:PtOEP exhibits delayed PtOEP fluorescence at 580 nm that follows a power-law decay on the ns time scale. The origin of PtOEP delayed fluorescence is unraveled by temperature- and fluence-dependent PL experiments. Triplet PtOEP excitations undergo dispersive diffusion and enable TTA reactions that activate the first singlet-excited (S1) PtOEP state. The effect is reproduced when PtOEP is mixed with a poly(fluorene-2-octyl) (PFO) derivative. Transient absorption measurements on PFO:PtOEP films find that selective PtOEP photoexcitation activates the S1 of PFO within ∼100 fs through an up-converted 3(d, d*) PtII-centered state.
Collapse
Affiliation(s)
- Hossein Goudarzi
- Centre for Nano Science and Technology @PoliMi, Fondazione Istituto Italiano di Tecnologia 20133 Milano Italy
| | - Loukas Koutsokeras
- Device Technology and Chemical Physics Laboratory, Department of Mechanical Engineering and Materials Science and Engineering, Cyprus University of Technology 3041 Limassol Cyprus
| | - Ahmed H Balawi
- King Abdullah University of Science and Technology (KAUST), KAUST Solar Center (KSC), Physical Sciences and Engineering Division (PSE) 23955-6900 Thuwal Kingdom of Saudi Arabia
| | - Chen Sun
- IMDEA Nanoscience, Ciudad Universitaria de Cantoblanco Calle Faraday 9 ES 28049 Madrid Spain
| | - Giorgos K Manolis
- Institute of Nanoscience and Nanotechnology, NCSR "Demokritos" 15341 Agia Paraskevi Athens Greece
| | - Nicola Gasparini
- King Abdullah University of Science and Technology (KAUST), KAUST Solar Center (KSC), Physical Sciences and Engineering Division (PSE) 23955-6900 Thuwal Kingdom of Saudi Arabia
- Department of Chemistry, Centre for Processable Electronics, Imperial College London W120BZ UK
| | - Yuan Peisen
- Device Technology and Chemical Physics Laboratory, Department of Mechanical Engineering and Materials Science and Engineering, Cyprus University of Technology 3041 Limassol Cyprus
| | - Giannis Antoniou
- Device Technology and Chemical Physics Laboratory, Department of Mechanical Engineering and Materials Science and Engineering, Cyprus University of Technology 3041 Limassol Cyprus
| | | | - Charalampos C Tselios
- Environmental Biocatalysis and Biotechnology Laboratory, Department of Chemical Engineering, Cyprus University of Technology 3603 Limassol Cyprus
| | - Polycarpos Falaras
- Institute of Nanoscience and Nanotechnology, NCSR "Demokritos" 15341 Agia Paraskevi Athens Greece
| | - Constantinos Varotsis
- Environmental Biocatalysis and Biotechnology Laboratory, Department of Chemical Engineering, Cyprus University of Technology 3603 Limassol Cyprus
| | - Frédéric Laquai
- King Abdullah University of Science and Technology (KAUST), KAUST Solar Center (KSC), Physical Sciences and Engineering Division (PSE) 23955-6900 Thuwal Kingdom of Saudi Arabia
| | | | - Panagiotis E Keivanidis
- Device Technology and Chemical Physics Laboratory, Department of Mechanical Engineering and Materials Science and Engineering, Cyprus University of Technology 3041 Limassol Cyprus
| |
Collapse
|
6
|
Zhao X, Li W, Xia Q, Lu P, Tao H, Xia M, Zhang X, Zhao X, Xu Y. High Verdet Constant Glass for Magnetic Field Sensors. ACS APPLIED MATERIALS & INTERFACES 2022; 14:57028-57036. [PMID: 36519737 DOI: 10.1021/acsami.2c18119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Due to the high transparency, high Verdet constant, as well as easy processing properties, rare-earth ion-doped glasses have demonstrated great potential in magneto-optical (MO) applications. However, the variation in the valence state of rare-earth ions (Tb3+ to Tb4+) resulted in the decreased effective concentration of the paramagnetic ions and thus degraded MO performance. Here, a strategy was proposed to inhibit the oxidation of Tb3+ into Tb4+ as well as improve the thermal stability by tuning the optical basicity of glass networks. Moreover, the depolymerization of the glass network was modulated to accommodate more Tb ions. Thus, a record high effective concentration (14.19 × 1021/cm3) of Tb ions in glass was achieved, generating a high Verdet constant of 113 rad/(T·m) at 650 nm. Lastly, the first application of MO glass for magnetic field sensors was demonstrated, achieving a sensitivity of 0.139 rad/T. We hope our work provides guidance for the fabrication of MO glass with high performance and thermal stability and could push MO glass one step further for magnetic sensing applications.
Collapse
Affiliation(s)
- Xudong Zhao
- State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan 430070, China
| | - Weiwei Li
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430074, China
| | - Qi Xia
- School of Intelligent Manufacturing and Electronic Engineering, Wenzhou University of Technology, Wenzhou 325035, China
| | - Ping Lu
- State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan 430070, China
| | - Haizheng Tao
- State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan 430070, China
| | - Mengling Xia
- State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan 430070, China
| | - Xianghua Zhang
- State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan 430070, China
- Institut Des Sciences Chimiques de Rennes UMR 6226, CNRS, Université de Rennes 1, Rennes 35042, France
| | - Xiujian Zhao
- State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan 430070, China
| | - Yinsheng Xu
- State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan 430070, China
| |
Collapse
|
7
|
Roy G, Gupta R, Ranjan Sahoo S, Saha S, Asthana D, Chandra Mondal P. Ferrocene as an iconic redox marker: From solution chemistry to molecular electronic devices. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|