1
|
Ziaee M, Yourdkhani M. Bubble-Free Frontal Polymerization of Acrylates via Redox-Initiated Free Radical Polymerization. Polymers (Basel) 2024; 16:2830. [PMID: 39408540 PMCID: PMC11479069 DOI: 10.3390/polym16192830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 10/01/2024] [Accepted: 10/02/2024] [Indexed: 10/20/2024] Open
Abstract
Thermal frontal polymerization (FP) of acrylate monomers mixed with conventional peroxide initiators leads to significant bubble formation at the polymerizing front, limiting their practical applications. Redox initiators present a promising alternative to peroxide initiators, as they prevent the formation of gaseous byproducts during initiator decomposition and lower the front temperature, thereby enabling bubble-free FP. In this study, we investigate the FP of acrylate monomers of varying functionalities, including methyl methacrylate (MMA), 1,6-hexanediol diacrylate (HDDA), and trimethylolpropane triacrylate (TMPTA), using N,N-dimethylaniline/benzoyl peroxide (DMA/BPO) redox couple at room temperature and compare their front behavior, pot life, and bubble formation with those of same resin systems mixed with a conventional peroxide initiator, Luperox 231. The use of redox couples in FP of acrylates shows promise for rapid, energy-efficient manufacturing of polyacrylates and can enable new applications such as 3D printing and composite manufacturing.
Collapse
Affiliation(s)
- Morteza Ziaee
- Department of Mechanical Engineering, Colorado State University, Fort Collins, CO 80523, USA
| | - Mostafa Yourdkhani
- Department of Mechanical Engineering, Colorado State University, Fort Collins, CO 80523, USA
- School of Manufacturing Systems & Networks, Ira A. Fulton Schools of Engineering, Arizona State University, Mesa, AZ 85212, USA
| |
Collapse
|
2
|
Xu Z, Chua L, Singhal A, Krishnan P, Lessard JJ, Suslick BA, Chen V, Sottos NR, Gomez-Bombarelli R, Moore JS. Reactive Processing of Furan-Based Monomers via Frontal Ring-Opening Metathesis Polymerization for High Performance Materials. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2405736. [PMID: 39036822 DOI: 10.1002/adma.202405736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 07/12/2024] [Indexed: 07/23/2024]
Abstract
Frontal ring-opening metathesis polymerization (FROMP) presents an energy-efficient approach to produce high-performance polymers, typically utilizing norbornene derivatives from Diels-Alder reactions. This study broadens the monomer repertoire for FROMP, incorporating the cycloaddition product of biosourced furan compounds and benzyne, namely 1,4-dihydro-1,4-epoxynaphthalene (HEN) derivatives. A computational screening of Diels-Alder products is conducted, selecting products with resistance to retro-Diels-Alder but also sufficient ring strain to facilitate FROMP. The experiments reveal that varying substituents both modulate the FROMP kinetics and enable the creation of thermoplastic materials characterized by different thermomechanical properties. Moreover, HEN-based crosslinkers are designed to enhance the resulting thermomechanical properties at high temperatures (>200 °C). The versatility of such materials is demonstrated through direct ink writing (DIW) to rapidly produce 3D structures without the need for printed supports. This research significantly extends the range of monomers suitable for FROMP, furthering efficient production of high-performance polymeric materials.
Collapse
Affiliation(s)
- Zhenchuang Xu
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana - Champaign, Urbana, IL, 61801, USA
- Department of Chemistry, University of Illinois at Urbana - Champaign, Urbana, Illinois, 61801, USA
| | - Lauren Chua
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Avni Singhal
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Pranav Krishnan
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana - Champaign, Urbana, IL, 61801, USA
- Department of Materials Science and Engineering, University of Illinois at Urbana - Champaign, Urbana, IL, 61801, USA
| | - Jacob J Lessard
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana - Champaign, Urbana, IL, 61801, USA
- Department of Chemistry, University of Illinois at Urbana - Champaign, Urbana, Illinois, 61801, USA
| | - Benjamin A Suslick
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana - Champaign, Urbana, IL, 61801, USA
- Department of Chemistry, University of Illinois at Urbana - Champaign, Urbana, Illinois, 61801, USA
| | - Valerie Chen
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana - Champaign, Urbana, IL, 61801, USA
- Department of Chemistry, University of Illinois at Urbana - Champaign, Urbana, Illinois, 61801, USA
| | - Nancy R Sottos
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana - Champaign, Urbana, IL, 61801, USA
- Department of Materials Science and Engineering, University of Illinois at Urbana - Champaign, Urbana, IL, 61801, USA
| | - Rafael Gomez-Bombarelli
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Jeffrey S Moore
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana - Champaign, Urbana, IL, 61801, USA
- Department of Chemistry, University of Illinois at Urbana - Champaign, Urbana, Illinois, 61801, USA
| |
Collapse
|
3
|
Yang X, Huang X, Qiu X, Guo Q, Zhang X. Supramolecular metallic foams with ultrahigh specific strength and sustainable recyclability. Nat Commun 2024; 15:4553. [PMID: 38811594 PMCID: PMC11137098 DOI: 10.1038/s41467-024-49091-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 05/21/2024] [Indexed: 05/31/2024] Open
Abstract
Porous materials with ultrahigh specific strength are highly desirable for aerospace, automotive and construction applications. However, because of the harsh processing of metal foams and intrinsic low strength of polymer foams, both are difficult to meet the demand for scalable development of structural foams. Herein, we present a supramolecular metallic foam (SMF) enabled by core-shell nanostructured liquid metals connected with high-density metal-ligand coordination and hydrogen bonding interactions, which maintain fluid to avoid stress concentration during foam processing at subzero temperatures. The resulted SMFs exhibit ultrahigh specific strength of 489.68 kN m kg-1 (about 5 times and 56 times higher than aluminum foams and polyurethane foams) and specific modulus of 281.23 kN m kg-1 to withstand the repeated loading of a car, overturning the previous understanding of the difficulty to achieve ultrahigh mechanical properties in traditional polymeric or organic foams. More importantly, end-of-life SMFs can be reprocessed into value-added products (e.g., fibers and films) by facile water reprocessing due to the high-density interfacial supramolecular bonding. We envisage this work will not only pave the way for porous structural materials design but also show the sustainable solution to plastic environmental risks.
Collapse
Affiliation(s)
- Xin Yang
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute, Sichuan University, Chengdu, 610065, China
| | - Xin Huang
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute, Sichuan University, Chengdu, 610065, China
| | - Xiaoyan Qiu
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute, Sichuan University, Chengdu, 610065, China
| | - Quanquan Guo
- Max Planck Institute of Microstructure Physics, Halle (Saale), 06120, Germany
| | - Xinxing Zhang
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute, Sichuan University, Chengdu, 610065, China.
| |
Collapse
|
4
|
Shams AT, Papon EA, Shinde PS, Bara J, Haque A. Degree of Cure, Microstructures, and Properties of Carbon/Epoxy Composites Processed via Frontal Polymerization. Polymers (Basel) 2024; 16:1493. [PMID: 38891440 PMCID: PMC11174699 DOI: 10.3390/polym16111493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 05/15/2024] [Accepted: 05/21/2024] [Indexed: 06/21/2024] Open
Abstract
The frontal polymerization (FP) of carbon/epoxy (C/Ep) composites is investigated, considering FP as a viable route for the additive manufacturing (AM) of thermoset composites. Neat epoxy (Ep) resin-, short carbon fiber (SCF)-, and continuous carbon fiber (CCF)-reinforced composites are considered in this study. The evolution of the exothermic reaction temperature, polymerization frontal velocity, degree of cure, microstructures, effects of fiber concentration, fracture surface, and thermal and mechanical properties are investigated. The results show that exothermic reaction temperatures range between 110 °C and 153 °C, while the initial excitation temperatures range from 150 °C to 270 °C. It is observed that a higher fiber content increases cure time and decreases average frontal velocity, particularly in low SCF concentrations. This occurs because resin content, which predominantly drives the exothermic reaction, decreases with increased fiber content. The FP velocities of neat Ep resin- and SCF-reinforced composites are seen to be 0.58 and 0.50 mm/s, respectively. The maximum FP velocity (0.64 mm/s) is observed in CCF/Ep composites. The degree of cure (αc) is observed to be in the range of 70% to 85% in FP-processed composites. Such a range of αc is significantly low in comparison to traditional composites processed through a long cure cycle. The glass transition temperature (Tg) of neat epoxy resin is seen to be approximately 154 °C, and it reduces slightly to a lower value (149 °C) for SCF-reinforced composites. The microstructures show significantly high void contents (12%) and large internal cracks. These internal cracks are initiated due to high thermal residual stress developed during curing for non-uniform temperature distribution. The tensile properties of FP-cured samples are seen to be inferior in comparison to autoclave-processed neat epoxy. This occurs mostly due to the presence of large void contents, internal cracks, and a poor degree of cure. Finally, a highly efficient and controlled FP method is desirable to achieve a defect-free microstructure with improved mechanical and thermal properties.
Collapse
Affiliation(s)
- Aurpon Tahsin Shams
- Department of Aerospace Engineering and Mechanics, The University of Alabama, Tuscaloosa, AL 35487, USA; (A.T.S.); (E.A.P.)
| | - Easir Arafat Papon
- Department of Aerospace Engineering and Mechanics, The University of Alabama, Tuscaloosa, AL 35487, USA; (A.T.S.); (E.A.P.)
| | - Pravin S. Shinde
- Department of Chemical and Biological Engineering, The University of Alabama, Tuscaloosa, AL 35487, USA; (P.S.S.); (J.B.)
| | - Jason Bara
- Department of Chemical and Biological Engineering, The University of Alabama, Tuscaloosa, AL 35487, USA; (P.S.S.); (J.B.)
| | - Anwarul Haque
- Department of Aerospace Engineering and Mechanics, The University of Alabama, Tuscaloosa, AL 35487, USA; (A.T.S.); (E.A.P.)
| |
Collapse
|
5
|
Cook A, Dearborn MA, Anderberg TM, Vaidya K, Jureller JE, Esser-Kahn AP, Squires AH. Polymer Patterning by Laser-Induced Multipoint Initiation of Frontal Polymerization. ACS APPLIED MATERIALS & INTERFACES 2024; 16:17973-17980. [PMID: 38418392 PMCID: PMC11009908 DOI: 10.1021/acsami.4c00216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 02/12/2024] [Accepted: 02/16/2024] [Indexed: 03/01/2024]
Abstract
Frontal polymerization (FP) is an approach for thermosetting plastics at a lower energy cost than an autoclave. The potential to generate simultaneous propagation of multiple polymerization fronts has been discussed as an exciting possibility. However, FP initiated at more than two points simultaneously has not been demonstrated. Multipoint initiation could enable both large-scale material fabrication and unique pattern generation. Here, the authors present laser-patterned photothermal heating as a method for simultaneous initiation of FP at multiple locations in a 2-D sample. Carbon black particles are mixed into liquid resin (dicyclopentadiene) to enhance absorption of light from a Ti:sapphire laser (800 nm) focused on a sample. The laser is time-shared by rapid steering among initiation points, generating polymerization using up to seven simultaneous points of initiation. This process results in the formation of both symmetric and asymmetric seam patterns resulting from the collision of fronts. The authors also present and validate a theoretical framework for predicting the seam patterns formed by front collisions. This framework allows the design of novel patterns via an inverse solution for determining the initiation points required to form a desired pattern. Future applications of this approach could enable rapid, energy-efficient manufacturing of novel composite-like patterned materials.
Collapse
Affiliation(s)
- Andrés
L. Cook
- Department
of Physics, University of Chicago, Chicago, Illinois 60637, United States
| | - Mason A. Dearborn
- Pritzker
School of Molecular Engineering, University
of Chicago, Chicago, Illinois 60637, United States
| | - Trevor M. Anderberg
- Department
of Physics, University of Chicago, Chicago, Illinois 60637, United States
| | - Kavya Vaidya
- Pritzker
School of Molecular Engineering, University
of Chicago, Chicago, Illinois 60637, United States
| | - Justin E. Jureller
- James
Franck Institute, University of Chicago, Chicago, Illinois 60637, United States
| | - Aaron P. Esser-Kahn
- Pritzker
School of Molecular Engineering, University
of Chicago, Chicago, Illinois 60637, United States
- Institute
for Biophysical Dynamics, University of
Chicago, Chicago, Illinois 60637, United States
| | - Allison H. Squires
- Pritzker
School of Molecular Engineering, University
of Chicago, Chicago, Illinois 60637, United States
- Institute
for Biophysical Dynamics, University of
Chicago, Chicago, Illinois 60637, United States
| |
Collapse
|
6
|
Lee YB, Suslick BA, de Jong D, Wilson GO, Moore JS, Sottos NR, Braun PV. A Self-Healing System for Polydicyclopentadiene Thermosets. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023:e2309662. [PMID: 38087908 DOI: 10.1002/adma.202309662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 11/19/2023] [Indexed: 12/22/2023]
Abstract
Self-healing offers promise for addressing structural failures, increasing lifespan, and improving durability in polymeric materials. Implementing self-healing in thermoset polymers faces significant manufacturing challenges, especially due to the elevated temperature requirements of thermoset processing. To introduce self-healing into structural thermosets, the self-healing system must be thermally stable and compatible with the thermoset chemistry. This article demonstrates a self-healing microcapsule-based system stable to frontal polymerization (FP), a rapid and energy-efficient manufacturing process with a self-propagating exothermic reaction (≈200 °C). A thermally latent Grubbs-type complex bearing two N-heterocyclic carbene ligands addresses limitations in conventional G2-based self-healing approaches. Under FP's elevated temperatures, the catalyst remains dormant until activated by a Cu(I) co-reagent, ensuring efficient polymerization of the dicyclopentadiene (DCPD) upon damage to the polyDCPD matrix. The two-part microcapsule system consists of one capsule containing the thermally latent Grubbs-type catalyst dissolved in the solvent, and another capsule containing a Cu(I) coagent blended with liquid DCPD monomer. Using the same chemistry for both matrix fabrication and healing results in strong interfaces as demonstrated by lap-shear tests. In an optimized system, the self-healing system restores the mechanical properties of the tough polyDCPD thermoset. Self-healing efficiencies greater than 90% via tapered double cantilever beam tests are observed.
Collapse
Affiliation(s)
- Young Bum Lee
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
- Material Research Laboratory, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
- Department of Materials Science and Engineering, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - Benjamin A Suslick
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
- Department of Chemistry, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - Derek de Jong
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
- Department of Materials Science and Engineering, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | | | - Jeffrey S Moore
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
- Material Research Laboratory, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
- Department of Materials Science and Engineering, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
- Department of Chemistry, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - Nancy R Sottos
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
- Material Research Laboratory, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
- Department of Materials Science and Engineering, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - Paul V Braun
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
- Material Research Laboratory, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
- Department of Materials Science and Engineering, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
- Department of Chemistry, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| |
Collapse
|
7
|
Lepcio P, Daguerre-Bradford J, Cristadoro AM, Schuette M, Lesser AJ. Frontally polymerized foams: thermodynamic and kinetical aspects of front hindrance by particles. MATERIALS HORIZONS 2023. [PMID: 37191139 DOI: 10.1039/d2mh01553f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Frontal polymerization (FP) is a solvent-free, energy-efficient process where a self-propagating polymerization reaction with a characteristic sharp temperature gradient at the front head propagates through the resin to provide the curing conditions. It relies on the enthalpic balance, which spreads the reaction to unreacted resin in the neighborhood. Therefore, the FP is sensitive to the presence of non-reactive volumes, such as boundaries, fillers, or other additives, that retain heat from the front but produce no enthalpy in return. On the other hand, the front's high temperature could be used to initiate other processes, such as foaming, incorporating them into a simple single-step fabrication procedure. This study used silica particles of two different sizes (14 nm and 200-300 nm) in an epoxy-based FP foam as a representative filler to probe the constraints imposed by non-reactive additives. The presence of particles visibly hindered the front propagation, increased the foam density and even corrupted the frontal regime in some cases. We show that preheating or chemical composition changes are viable approaches to address the fillers' adverse effects. Furthermore, we present evidence that the reduced reaction enthalpy caused by silica nanoparticles, was balanced by the lower heat capacity of our model system. At the same time, the front hindrance was attributed to changes in reaction kinetics and the heat distribution around the front. These results set up essential narratives for the design and practical applications of frontally polymerized foams with non-reactive fillers.
Collapse
Affiliation(s)
- Petr Lepcio
- Central European Institute of Technology, Brno University of Technology, Purkyňova 656/123, 612 00 Brno, Czech Republic
| | | | | | - Markus Schuette
- BASF Polyurethanes, Elastogranstr 60, Lemfoerde, 49448, Germany
| | - Alan J Lesser
- University of Massachusetts Amherst, 120 Governors Drive, Amherst, MA 01003, USA.
| |
Collapse
|
8
|
Qin Y, Li H, Shen HX, Wang CF, Chen S. Rapid Preparation of Superabsorbent Self-Healing Hydrogels by Frontal Polymerization. Gels 2023; 9:gels9050380. [PMID: 37232973 DOI: 10.3390/gels9050380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 04/27/2023] [Accepted: 05/02/2023] [Indexed: 05/27/2023] Open
Abstract
Hydrogels have received increasing interest owing to their excellent physicochemical properties and wide applications. In this paper, we report the rapid fabrication of new hydrogels possessing a super water swelling capacity and self-healing ability using a fast, energy-efficient, and convenient method of frontal polymerization (FP). Self-sustained copolymerization of acrylamide (AM), 3-[Dimethyl-[2-(2-methylprop-2-enoyloxy)ethyl]azaniumyl]propane-1-sulfonate (SBMA), and acrylic acid (AA) within 10 min via FP yielded highly transparent and stretchable poly(AM-co-SBMA-co-AA) hydrogels. Thermogravimetric analysis and Fourier transform infrared spectroscopy confirmed the successful fabrication of poly(AM-co-SBMA-co-AA) hydrogels with a single copolymer composition without branched polymers. The effect of monomer ratio on FP features as well as porous morphology, swelling behavior, and self-healing performance of the hydrogels were systematically investigated, showing that the properties of the hydrogels could be tuned by adjusting the chemical composition. The resulting hydrogels were superabsorbent and sensitive to pH, exhibiting a high swelling ratio of up to 11,802% in water and 13,588% in an alkaline environment. The rheological data revealed a stable gel network. These hydrogels also had a favorable self-healing ability with a healing efficiency of up to 95%. This work contributes a simple and efficient method for the rapid preparation of superabsorbent and self-healing hydrogels.
Collapse
Affiliation(s)
- Ying Qin
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, 5 Xin Mofan Road, Nanjing 210009, China
| | - Hao Li
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, 5 Xin Mofan Road, Nanjing 210009, China
| | - Hai-Xia Shen
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, 5 Xin Mofan Road, Nanjing 210009, China
| | - Cai-Feng Wang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, 5 Xin Mofan Road, Nanjing 210009, China
| | - Su Chen
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, 5 Xin Mofan Road, Nanjing 210009, China
| |
Collapse
|
9
|
Suslick BA, Hemmer J, Groce BR, Stawiasz KJ, Geubelle PH, Malucelli G, Mariani A, Moore JS, Pojman JA, Sottos NR. Frontal Polymerizations: From Chemical Perspectives to Macroscopic Properties and Applications. Chem Rev 2023; 123:3237-3298. [PMID: 36827528 PMCID: PMC10037337 DOI: 10.1021/acs.chemrev.2c00686] [Citation(s) in RCA: 24] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/26/2023]
Abstract
The synthesis and processing of most thermoplastics and thermoset polymeric materials rely on energy-inefficient and environmentally burdensome manufacturing methods. Frontal polymerization is an attractive, scalable alternative due to its exploitation of polymerization heat that is generally wasted and unutilized. The only external energy needed for frontal polymerization is an initial thermal (or photo) stimulus that locally ignites the reaction. The subsequent reaction exothermicity provides local heating; the transport of this thermal energy to neighboring monomers in either a liquid or gel-like state results in a self-perpetuating reaction zone that provides fully cured thermosets and thermoplastics. Propagation of this polymerization front continues through the unreacted monomer media until either all reactants are consumed or sufficient heat loss stalls further reaction. Several different polymerization mechanisms support frontal processes, including free-radical, cat- or anionic, amine-cure epoxides, and ring-opening metathesis polymerization. The choice of monomer, initiator/catalyst, and additives dictates how fast the polymer front traverses the reactant medium, as well as the maximum temperature achievable. Numerous applications of frontally generated materials exist, ranging from porous substrate reinforcement to fabrication of patterned composites. In this review, we examine in detail the physical and chemical phenomena that govern frontal polymerization, as well as outline the existing applications.
Collapse
Affiliation(s)
- Benjamin A Suslick
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Julie Hemmer
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Brecklyn R Groce
- Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803 United States
| | - Katherine J Stawiasz
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Philippe H Geubelle
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Department of Aerospace Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Giulio Malucelli
- Department of Applied Science and Technology, Politecnico di Torino, 15121 Alessandria, Italy
| | - Alberto Mariani
- Department of Chemical, Physical, Mathematical and Natural Sciences, University of Sassari, 07100 Sassari, Italy
- National Interuniversity Consortium of Materials Science and Technology, 50121 Firenze, Italy
| | - Jeffrey S Moore
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - John A Pojman
- Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803 United States
| | - Nancy R Sottos
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
10
|
Alzate-Sanchez DM, Yu CH, Lessard JJ, Paul JE, Sottos NR, Moore JS. Rapid Controlled Synthesis of Large Polymers by Frontal Ring-Opening Metathesis Polymerization. Macromolecules 2023. [DOI: 10.1021/acs.macromol.2c01892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Affiliation(s)
- Diego M. Alzate-Sanchez
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
- Department of Chemistry, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Christina H Yu
- Department of Materials Science and Engineering, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Jacob J. Lessard
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
- Department of Chemistry, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Justine E. Paul
- Department of Materials Science and Engineering, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Nancy R. Sottos
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
- Department of Materials Science and Engineering, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Jeffrey S. Moore
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
- Department of Chemistry, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
11
|
Park J, Kwak SY. Frontal polymerization-triggered simultaneous ring-opening metathesis polymerization and cross metathesis affords anisotropic macroporous dicyclopentadiene cellulose nanocrystal foam. Commun Chem 2022; 5:119. [PMID: 36697913 PMCID: PMC9814902 DOI: 10.1038/s42004-022-00740-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 09/22/2022] [Indexed: 01/28/2023] Open
Abstract
Multifunctionality and effectiveness of macroporous solid foams in extreme environments have captivated the attention of both academia and industries. The most recent rapid, energy-efficient strategy to manufacture solid foams with directionality is the frontal polymerization (FP) of dicyclopentadiene (DCPD). However, there still remains the need for a time efficient one-pot approach to induce anisotropic macroporosity in DCPD foams. Here we show a rapid production of cellular solids by frontally polymerizing a mixture of DCPD monomer and allyl-functionalized cellulose nanocrystals (ACs). Our results demonstrate a clear correlation between increasing % allylation and AC wt%, and the formed pore architectures. Especially, we show enhanced front velocity (vf) and reduced reaction initiation time (tinit) by introducing an optimal amount of 2 wt% AC. Conclusively, the small- and wide-angle X-ray scattering (SAXS, WAXS) analyses reveal that the incorporation of 2 wt% AC affects the crystal structure of FP-mediated DCPD/AC foams and enhances their oxidation resistance.
Collapse
Affiliation(s)
- Jinsu Park
- grid.31501.360000 0004 0470 5905Department of Materials Science and Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826 South Korea
| | - Seung-Yeop Kwak
- grid.31501.360000 0004 0470 5905Department of Materials Science and Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826 South Korea ,grid.31501.360000 0004 0470 5905Research Institute of Advanced Materials (RIAM), Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826 South Korea ,grid.31501.360000 0004 0470 5905Institute of Engineering Research, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826 South Korea
| |
Collapse
|
12
|
Huangfu F, Li W, Yang Z, You J, Yang P. Bulk ring-opening metathesis copolymerization of dicyclopentadiene and 5-ethylidene-2-norbornene: mixing rules, polymerization behaviors and properties. JOURNAL OF POLYMER RESEARCH 2022. [DOI: 10.1007/s10965-022-03268-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
13
|
Suslick BA, Alzate-Sanchez DM, Moore JS. Scalable Frontal Oligomerization: Insights from Advanced Mass Analysis. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c01654] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Benjamin A. Suslick
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
- Department of Chemistry, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Diego M. Alzate-Sanchez
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
- Department of Chemistry, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Jeffrey S. Moore
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
- Department of Chemistry, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
14
|
Lessard JJ, Kaur P, Paul JE, Chang KM, Sottos NR, Moore JS. Switching Frontal Polymerization Mechanisms: FROMP and FRaP. ACS Macro Lett 2022; 11:1097-1101. [PMID: 35998375 DOI: 10.1021/acsmacrolett.2c00393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Two frontal polymerization (FP) mechanisms, frontal ring-opening metathesis polymerization (FROMP) of dicyclopentadiene and frontal radical polymerization (FRaP) of benzyl acrylate and hexanediol diacrylate, were combined for rapid manufacturing of welded thermoset materials. Leveraging the immiscibility of the two different FP resins, welded thermosets and gradient foams of varying composition were achieved by switching of FP mechanisms. The adhesion strength of the welded thermoset materials differed depending on the originating mechanism. Finally, welded thermoset foams of varying porosity and homogeneity were generated through initiation from the bottom of the two resins.
Collapse
Affiliation(s)
- Jacob J Lessard
- Beckman Institute for Advanced Science and Technology, Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Parmeet Kaur
- Beckman Institute for Advanced Science and Technology, Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Justine E Paul
- Beckman Institute for Advanced Science and Technology, Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Kelly M Chang
- Beckman Institute for Advanced Science and Technology, Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Nancy R Sottos
- Beckman Institute for Advanced Science and Technology, Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Jeffrey S Moore
- Beckman Institute for Advanced Science and Technology, Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|