1
|
Chen S, Li J, Zheng L, Huang J, Wang M. Biomimicking trilayer scaffolds with controlled estradiol release for uterine tissue regeneration. EXPLORATION (BEIJING, CHINA) 2024; 4:20230141. [PMID: 39439492 PMCID: PMC11491300 DOI: 10.1002/exp.20230141] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 01/18/2024] [Indexed: 10/25/2024]
Abstract
Scaffold-based tissue engineering provides an efficient approach for repairing uterine tissue defects and restoring fertility. In the current study, a novel trilayer tissue engineering scaffold with high similarity to the uterine tissue in structure was designed and fabricated via 4D printing, electrospinning and 3D bioprinting for uterine regeneration. Highly stretchable poly(l-lactide-co-trimethylene carbonate) (PLLA-co-TMC, "PTMC" in short)/thermoplastic polyurethane (TPU) polymer blend scaffolds were firstly made via 4D printing. To improve the biocompatibility, porous poly(lactic acid-co-glycolic acid) (PLGA)/gelatin methacryloyl (GelMA) fibers incorporated with polydopamine (PDA) particles were produced on PTMC/TPU scaffolds via electrospinning. Importantly, estradiol (E2) was encapsulated in PDA particles. The bilayer scaffolds thus produced could provide controlled and sustained release of E2. Subsequently, bone marrow derived mesenchymal stem cells (BMSCs) were mixed with gelatin methacryloyl (GelMA)-based inks and the formulated bioinks were used to fabricate a cell-laden hydrogel layer on the bilayer scaffolds via 3D bioprinting, forming ultimately biomimicking trilayer scaffolds for uterine tissue regeneration. The trilayer tissue engineering scaffolds thus formed exhibited a shape morphing ability by transforming from the planar shape to tubular structures when immersed in the culture medium at 37°C. The trilayer tissue engineering scaffolds under development would provide new insights for uterine tissue regeneration.
Collapse
Affiliation(s)
- Shangsi Chen
- Department of Mechanical EngineeringThe University of Hong KongPokfulam RoadHong KongChina
| | - Junzhi Li
- Department of Mechanical EngineeringThe University of Hong KongPokfulam RoadHong KongChina
| | - Liwu Zheng
- Faculty of DentistryThe University of Hong KongSai Ying PunHong KongChina
| | - Jie Huang
- Department of Mechanical EngineeringUniversity College LondonLondonUK
| | - Min Wang
- Department of Mechanical EngineeringThe University of Hong KongPokfulam RoadHong KongChina
| |
Collapse
|
2
|
Tai Z, Liu J, Wang B, Chen S, Liu C, Chen X. The Effect of Aligned and Random Electrospun Fibers Derived from Porcine Decellularized ECM on Mesenchymal Stem Cell-Based Treatments for Spinal Cord Injury. Bioengineering (Basel) 2024; 11:772. [PMID: 39199730 PMCID: PMC11351159 DOI: 10.3390/bioengineering11080772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 07/16/2024] [Accepted: 07/19/2024] [Indexed: 09/01/2024] Open
Abstract
The impact of traumatic spinal cord injury (SCI) can be extremely devastating, as it often results in the disruption of neural tissues, impeding the regenerative capacity of the central nervous system. However, recent research has demonstrated that mesenchymal stem cells (MSCs) possess the capacity for multi-differentiation and have a proven track record of safety in clinical applications, thus rendering them effective in facilitating the repair of spinal cord injuries. It is urgent to develop an aligned scaffold that can effectively load MSCs for promoting cell aligned proliferation and differentiation. In this study, we prepared an aligned nanofiber scaffold using the porcine decellularized spinal cord matrix (DSC) to induce MSCs differentiation for spinal cord injury. The decellularization method removed 87% of the immune components while retaining crucial proteins in DSC. The electrospinning technique was employed to fabricate an aligned nanofiber scaffold possessing biocompatibility and a diameter of 720 nm. In in vitro and in vivo experiments, the aligned nanofiber scaffold induces the aligned growth of MSCs and promotes their differentiation into neurons, leading to tissue regeneration and nerve repair after spinal cord injury. The approach exhibits promising potential for the future development of nerve regeneration scaffolds for spinal cord injury treatment.
Collapse
Affiliation(s)
| | | | | | | | | | - Xi Chen
- Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Engineering Research Center for Biomaterials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China; (Z.T.); (C.L.)
| |
Collapse
|
3
|
Deng X, Yu C, Zhang X, Tang X, Guo Q, Fu M, Wang Y, Fang K, Wu T. A chitosan-coated PCL/nano-hydroxyapatite aerogel integrated with a nanofiber membrane for providing antibacterial activity and guiding bone regeneration. NANOSCALE 2024; 16:9861-9874. [PMID: 38712977 DOI: 10.1039/d4nr00563e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
A guided bone regeneration (GBR) membrane can act as a barrier to prevent the invasion and interference from foreign soft tissues, promoting infiltration and proliferation of osteoblasts in the bone defect area. Herein, a composite scaffold with dual functions of osteogenesis and antibacterial effects was prepared for GBR. A polycaprolactone (PCL)/nano-hydroxyapatite (n-HA) aerogel produced by electrospinning and freeze-drying techniques was fabricated as the loose layer of the scaffold, while a PCL nanofiber membrane was used as the dense layer. Chitosan (CS) solution served as a middle layer to provide mechanical support and antibacterial effects between the two layers. Morphological results showed that the loose layer had a porous structure with n-HA successfully dispersed in the aerogels, while the dense layer possessed a sufficiently dense structure. In vitro antibacterial experiments illustrated that the CS solution in the middle layer stabilized the scaffold structure and endowed the scaffold with good antibacterial properties. The cytocompatibility results indicated that both fibroblasts and osteoblasts exhibited superior cell activity on the dense and loose layers, respectively. In particular, the dense layer made of nanofibers could work as a barrier layer to inhibit the infiltration of fibroblasts into the loose layer. In vitro osteogenesis analysis suggested that the PCL/n-HA aerogel could enhance the bone induction ability of bone mesenchymal stem cells, which was confirmed by the increased expression of the alkaline phosphatase activity. The loose structure facilitated the infiltration and migration of bone mesenchymal stem cells for better osteogenesis. In summary, such a composite scaffold exhibited excellent osteogenic and antibacterial properties as well as the barrier effect, thus holding promising potential for use as GBR materials.
Collapse
Affiliation(s)
- Xinyuan Deng
- Shandong Key Laboratory of Medical and Health Textile Materials, College of Textile & Clothing, Collaborative Innovation Center for Eco-textiles of Shandong Province and the Ministry of Education, Qingdao 266071, China.
| | - Chenghao Yu
- The Affiliated Hospital of Qingdao University, Qingdao Medical College, Qingdao University, Qingdao 266071, China
| | - Xiaopei Zhang
- Shandong Key Laboratory of Medical and Health Textile Materials, College of Textile & Clothing, Collaborative Innovation Center for Eco-textiles of Shandong Province and the Ministry of Education, Qingdao 266071, China.
- The Affiliated Hospital of Qingdao University, Qingdao Medical College, Qingdao University, Qingdao 266071, China
| | - Xunmeng Tang
- Shandong Key Laboratory of Medical and Health Textile Materials, College of Textile & Clothing, Collaborative Innovation Center for Eco-textiles of Shandong Province and the Ministry of Education, Qingdao 266071, China.
| | - Qingxia Guo
- Institute of Neuroregeneration & Neurorehabilitation, Department of Pathophysiology, School of Basic Medicine, Qingdao University, Qingdao, 266071, China
| | - Manfei Fu
- The Affiliated Hospital of Qingdao University, Qingdao Medical College, Qingdao University, Qingdao 266071, China
| | - Yuanfei Wang
- Qingdao Stomatological Hospital Affiliated to Qingdao University, Qingdao, China.
| | - Kuanjun Fang
- Shandong Key Laboratory of Medical and Health Textile Materials, College of Textile & Clothing, Collaborative Innovation Center for Eco-textiles of Shandong Province and the Ministry of Education, Qingdao 266071, China.
- Laboratory for Manufacturing Low Carbon and Functionalized Textiles in the Universities of Shandong Province, Qingdao, State Key Laboratory for Biofibers and Eco-Textiles, Qingdao University, Qingdao 266071, China
| | - Tong Wu
- Shandong Key Laboratory of Medical and Health Textile Materials, College of Textile & Clothing, Collaborative Innovation Center for Eco-textiles of Shandong Province and the Ministry of Education, Qingdao 266071, China.
- The Affiliated Hospital of Qingdao University, Qingdao Medical College, Qingdao University, Qingdao 266071, China
- Institute of Neuroregeneration & Neurorehabilitation, Department of Pathophysiology, School of Basic Medicine, Qingdao University, Qingdao, 266071, China
| |
Collapse
|
4
|
Liu X, Ren Y, Fu S, Chen X, Hu M, Wang F, Wang L, Li C. Toward morphologically relevant extracellular matrix: nanofiber-hydrogel composites for tumor cell culture. J Mater Chem B 2024; 12:3984-3995. [PMID: 38563496 DOI: 10.1039/d3tb02575f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
The natural extracellular matrix (ECM) consists of a continuous integrated fibrin network and a negatively charged proteoglycan-based matrix. In this work, we report a novel three-dimensional nanofiber hydrogel composite that mimics the natural ECM structure, exhibiting both degradability and mechanical characteristics comparable to that of tumor tissue. The embedded nanofiber improves the hydrogel mechanical properties, and varying the fiber density can match the elastic modulus of different tumor tissues (1.51-10.77 kPa). The degradability of the scaffold gives sufficient space for tumor cells to secrete and remodel the ECM. The expression levels of cancer stem cell markers confirmed the development of aggressive and metastatic phenotypes of prostate cancer cells in the 3D scaffold. Similar results were obtained in terms of anticancer resistance of prostate cancer cells in 3D scaffolds showing stem cell-like properties, suggesting that the current bionic 3D scaffold tumor model has broad potential in the development of effective targeted agents.
Collapse
Affiliation(s)
- Xingxing Liu
- Key Laboratory of Textile Science and Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai 201620, China.
| | - Yueying Ren
- Key Laboratory of Textile Science and Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai 201620, China.
| | - Sijia Fu
- Key Laboratory of Textile Science and Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai 201620, China.
| | - Xinan Chen
- Department of Urology, Fudan Institute of Urology, Huashan Hospital, Fudan University, Shanghai 200040, China.
| | - Mengbo Hu
- Department of Urology, Fudan Institute of Urology, Huashan Hospital, Fudan University, Shanghai 200040, China.
| | - Fujun Wang
- Key Laboratory of Textile Science and Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai 201620, China.
| | - Lu Wang
- Key Laboratory of Textile Science and Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai 201620, China.
| | - Chaojing Li
- Key Laboratory of Textile Science and Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai 201620, China.
| |
Collapse
|
5
|
Jia B, Huang H, Dong Z, Ren X, Lu Y, Wang W, Zhou S, Zhao X, Guo B. Degradable biomedical elastomers: paving the future of tissue repair and regenerative medicine. Chem Soc Rev 2024; 53:4086-4153. [PMID: 38465517 DOI: 10.1039/d3cs00923h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
Degradable biomedical elastomers (DBE), characterized by controlled biodegradability, excellent biocompatibility, tailored elasticity, and favorable network design and processability, have become indispensable in tissue repair. This review critically examines the recent advances of biodegradable elastomers for tissue repair, focusing mainly on degradation mechanisms and evaluation, synthesis and crosslinking methods, microstructure design, processing techniques, and tissue repair applications. The review explores the material composition and cross-linking methods of elastomers used in tissue repair, addressing chemistry-related challenges and structural design considerations. In addition, this review focuses on the processing methods of two- and three-dimensional structures of elastomers, and systematically discusses the contribution of processing methods such as solvent casting, electrostatic spinning, and three-/four-dimensional printing of DBE. Furthermore, we describe recent advances in tissue repair using DBE, and include advances achieved in regenerating different tissues, including nerves, tendons, muscle, cardiac, and bone, highlighting their efficacy and versatility. The review concludes by discussing the current challenges in material selection, biodegradation, bioactivation, and manufacturing in tissue repair, and suggests future research directions. This concise yet comprehensive analysis aims to provide valuable insights and technical guidance for advances in DBE for tissue engineering.
Collapse
Affiliation(s)
- Ben Jia
- School of Civil Aviation, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Heyuan Huang
- School of Aeronautics, Northwestern Polytechnical University, Xi'an, 710072, China.
| | - Zhicheng Dong
- School of Civil Aviation, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Xiaoyang Ren
- School of Aeronautics, Northwestern Polytechnical University, Xi'an, 710072, China.
| | - Yanyan Lu
- School of Aeronautics, Northwestern Polytechnical University, Xi'an, 710072, China.
| | - Wenzhi Wang
- School of Aeronautics, Northwestern Polytechnical University, Xi'an, 710072, China.
| | - Shaowen Zhou
- Department of Periodontology, College of Stomatology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Xin Zhao
- State Key Laboratory for Mechanical Behavior of Materials, and Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China.
| | - Baolin Guo
- State Key Laboratory for Mechanical Behavior of Materials, and Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China.
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an 710049, China
| |
Collapse
|
6
|
Weigel T, Christ B, Dembski S, Ewald A, Groneberg D, Hansmann J, Luxenhofer R, Metzger M, Walles H, Willy C, Groeber‐Becker F, Probst J. Biomimetic Connection of Transcutaneous Implants with Skin. Adv Healthc Mater 2023; 12:e2301131. [PMID: 37660290 PMCID: PMC11469180 DOI: 10.1002/adhm.202301131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 08/23/2023] [Indexed: 09/04/2023]
Abstract
Bacterial infection is a crucial complication in implant restoration, in particular in permanent skin-penetrating implants. Therein, the resulting gap between transcutaneous implant and skin represents a permanent infection risk, limiting the field of application and the duration of application. To overcome this limitation, a tight physiological connection is required to achieve a biological and mechanical welding for a long-term stable closure including self-healing probabilities. This study describes a new approach, wherein the implant is connected covalently to a highly porous electrospun fleece featuring physiological dermal integration potential. The integrative potential of the scaffold is shown in vitro and confirmed in vivo, further demonstrating tissue integration by neovascularization, extracellular matrix formation, and prevention of encapsulation. To achieve a covalent connection between fleece and implant surface, self-initiated photografting and photopolymerization of hydroxyethylmethacrylate is combined with a new crosslinker (methacrylic acid coordinated titanium-oxo clusters) on proton-abstractable implant surfaces. For implant modification, the attached fleece is directed perpendicular from the implant surface into the surrounding dermal tissue. First in vitro skin implantations demonstrate the implants' dermal integration capability as well as wound closure potential on top of the fleece by epithelialization, establishing a bacteria-proof and self-healing connection of skin and transcutaneous implant.
Collapse
Affiliation(s)
- Tobias Weigel
- Translational Center for Regenerative Therapies (TLC‐RT)Fraunhofer Institute for Silicate Research (ISC)97082WürzburgGermany
| | - Bastian Christ
- Translational Center for Regenerative Therapies (TLC‐RT)Fraunhofer Institute for Silicate Research (ISC)97082WürzburgGermany
| | - Sofia Dembski
- Translational Center for Regenerative Therapies (TLC‐RT)Fraunhofer Institute for Silicate Research (ISC)97082WürzburgGermany
- University Hospital WürzburgDepartment for Tissue Engineering and Regenerative Medicine97070WürzburgGermany
| | - Andrea Ewald
- University Hospital WürzburgDepartment of Functional Materials in Medicine and DentistryPleicherwall 297070WürzburgGermany
| | - Dieter Groneberg
- Translational Center for Regenerative Therapies (TLC‐RT)Fraunhofer Institute for Silicate Research (ISC)97082WürzburgGermany
| | - Jan Hansmann
- Faculty of Electrical EngineeringUniversity of Applied Sciences Würzburg‐Schweinfurt97421SchweinfurtGermany
| | - Robert Luxenhofer
- Soft Matter ChemistryDepartment of Chemistry and Helsinki Institute of Sustainability ScienceFaculty of ScienceUniversity of HelsinkiP.O. Box 55Helsinki00014Finland
| | - Marco Metzger
- Translational Center for Regenerative Therapies (TLC‐RT)Fraunhofer Institute for Silicate Research (ISC)97082WürzburgGermany
- University Hospital WürzburgDepartment for Tissue Engineering and Regenerative Medicine97070WürzburgGermany
| | - Heike Walles
- Core Facility Tissue EngineeringOtto‐von‐Guericke‐University Magdeburg39106MagdeburgGermany
| | - Christian Willy
- Trauma & Orthopedic SurgerySeptic & Reconstructive SurgeryResearch and Treatment Center Septic Defect WoundsFederal Armed Forces of GermanyBundeswehr (Military) Academic Hospital BerlinScharnhorststr. 1310115BerlinGermany
| | - Florian Groeber‐Becker
- Translational Center for Regenerative Therapies (TLC‐RT)Fraunhofer Institute for Silicate Research (ISC)97082WürzburgGermany
- University Hospital WürzburgDepartment for Tissue Engineering and Regenerative Medicine97070WürzburgGermany
| | - Jörn Probst
- Translational Center for Regenerative Therapies (TLC‐RT)Fraunhofer Institute for Silicate Research (ISC)97082WürzburgGermany
| |
Collapse
|
7
|
Joshi A, Nuntapramote T, Brüggemann D. Self-Assembled Fibrinogen Scaffolds Support Cocultivation of Human Dermal Fibroblasts and HaCaT Keratinocytes. ACS OMEGA 2023; 8:8650-8663. [PMID: 36910955 PMCID: PMC9996769 DOI: 10.1021/acsomega.2c07896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Accepted: 01/31/2023] [Indexed: 06/18/2023]
Abstract
Self-assembled fibrinogen scaffolds are highly attractive biomaterials to mimic native blood clots. To explore their potential for wound healing, we studied the interaction of cocultures of human dermal fibroblasts (HDFs) and HaCaT keratinocytes with nanofibrous, planar, and physisorbed fibrinogen. Cell viability analysis indicated that the growth of HDFs and HaCaTs was supported by all fibrinogen topographies until 14 days, either in mono- or coculture. Using scanning electron microscopy and cytoskeletal staining, we observed that the native morphology of both cell types was preserved on all topographies. Expression of the marker proteins vimentin and cytokeratin-14 showed that the native phenotype of fibroblasts and undifferentiated keratinocytes, respectively, was maintained. HDFs displayed their characteristic wound healing phenotype, characterized by expression of fibronectin. Finally, to mimic the multilayered microenvironment of skin, we established successive cocultures of both cells, for which we found consistently high metabolic activities. SEM analysis revealed that HaCaTs arranged into a confluent top layer after 14 days, while fluorescent labeling confirmed the presence of both cells in the layered structure after 6 days. In conclusion, all fibrinogen topographies successfully supported the cocultivation of fibroblasts and keratinocytes, with fibrinogen nanofibers being particularly attractive for skin regeneration due to their biomimetic porous architecture and the technical possibility to be detached from an underlying substrate.
Collapse
Affiliation(s)
- Arundhati Joshi
- Institute
for Biophysics, University of Bremen, Otto-Hahn-Allee 1, 28359 Bremen, Germany
| | - Titinun Nuntapramote
- Institute
for Biophysics, University of Bremen, Otto-Hahn-Allee 1, 28359 Bremen, Germany
| | - Dorothea Brüggemann
- Institute
for Biophysics, University of Bremen, Otto-Hahn-Allee 1, 28359 Bremen, Germany
- MAPEX
Center for Materials and Processes, University
of Bremen, 28359 Bremen, Germany
| |
Collapse
|
8
|
Tolabi H, Davari N, Khajehmohammadi M, Malektaj H, Nazemi K, Vahedi S, Ghalandari B, Reis RL, Ghorbani F, Oliveira JM. Progress of Microfluidic Hydrogel-Based Scaffolds and Organ-on-Chips for the Cartilage Tissue Engineering. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023:e2208852. [PMID: 36633376 DOI: 10.1002/adma.202208852] [Citation(s) in RCA: 30] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 12/09/2022] [Indexed: 05/09/2023]
Abstract
Cartilage degeneration is among the fundamental reasons behind disability and pain across the globe. Numerous approaches have been employed to treat cartilage diseases. Nevertheless, none have shown acceptable outcomes in the long run. In this regard, the convergence of tissue engineering and microfabrication principles can allow developing more advanced microfluidic technologies, thus offering attractive alternatives to current treatments and traditional constructs used in tissue engineering applications. Herein, the current developments involving microfluidic hydrogel-based scaffolds, promising structures for cartilage regeneration, ranging from hydrogels with microfluidic channels to hydrogels prepared by the microfluidic devices, that enable therapeutic delivery of cells, drugs, and growth factors, as well as cartilage-related organ-on-chips are reviewed. Thereafter, cartilage anatomy and types of damages, and present treatment options are briefly overviewed. Various hydrogels are introduced, and the advantages of microfluidic hydrogel-based scaffolds over traditional hydrogels are thoroughly discussed. Furthermore, available technologies for fabricating microfluidic hydrogel-based scaffolds and microfluidic chips are presented. The preclinical and clinical applications of microfluidic hydrogel-based scaffolds in cartilage regeneration and the development of cartilage-related microfluidic chips over time are further explained. The current developments, recent key challenges, and attractive prospects that should be considered so as to develop microfluidic systems in cartilage repair are highlighted.
Collapse
Affiliation(s)
- Hamidreza Tolabi
- New Technologies Research Center (NTRC), Amirkabir University of Technology, Tehran, 15875-4413, Iran
- Department of Biomedical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Tehran, 15875-4413, Iran
| | - Niyousha Davari
- Department of Life Science Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran, 143951561, Iran
| | - Mehran Khajehmohammadi
- Department of Mechanical Engineering, Faculty of Engineering, Yazd University, Yazd, 89195-741, Iran
- Medical Nanotechnology and Tissue Engineering Research Center, Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences, Yazd, 8916877391, Iran
| | - Haniyeh Malektaj
- Department of Materials and Production, Aalborg University, Fibigerstraede 16, Aalborg, 9220, Denmark
| | - Katayoun Nazemi
- Drug Delivery, Disposition and Dynamics Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, 3052, Australia
| | - Samaneh Vahedi
- Department of Material Science and Engineering, Faculty of Engineering, Imam Khomeini International University, Qazvin, 34149-16818, Iran
| | - Behafarid Ghalandari
- State Key Laboratory of Oncogenes and Related Genes, Institute for Personalized Medicine, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Rui L Reis
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, Barco, Guimarães, 4805-017, Portugal
- ICVS/3B's-PT Government Associate Laboratory, Braga, Guimarães, 4805-017, Portugal
| | - Farnaz Ghorbani
- Institute of Biomaterials, University of Erlangen-Nuremberg, Cauerstrasse 6, 91058, Erlangen, Germany
| | - Joaquim Miguel Oliveira
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, Barco, Guimarães, 4805-017, Portugal
- ICVS/3B's-PT Government Associate Laboratory, Braga, Guimarães, 4805-017, Portugal
| |
Collapse
|
9
|
Schaller-Ammann R, Kreß S, Feiel J, Schwagerle G, Priedl J, Birngruber T, Kasper C, Egger D. Advanced Online Monitoring of In Vitro Human 3D Full-Thickness Skin Equivalents. Pharmaceutics 2022; 14:pharmaceutics14071436. [PMID: 35890329 PMCID: PMC9315769 DOI: 10.3390/pharmaceutics14071436] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 06/27/2022] [Accepted: 06/30/2022] [Indexed: 12/17/2022] Open
Abstract
Skin equivalents and skin explants are widely used for dermal penetration studies in the pharmacological development of drugs. Environmental parameters, such as the incubation and culture conditions affect cellular responses and thus the relevance of the experimental outcome. However, available systems such as the Franz diffusion chamber, only measure in the receiving culture medium, rather than assessing the actual conditions for cells in the tissue. We developed a sampling design that combines open flow microperfusion (OFM) sampling technology for continuous concentration measurements directly in the tissue with microfluidic biosensors for online monitoring of culture parameters. We tested our design with real-time measurements of oxygen, glucose, lactate, and pH in full-thickness skin equivalent and skin explants. Furthermore, we compared dermal penetration for acyclovir, lidocaine, and diclofenac in skin equivalents and skin explants. We observed differences in oxygen, glucose, and drug concentrations in skin equivalents compared to the respective culture medium and to skin explants.
Collapse
Affiliation(s)
- Roland Schaller-Ammann
- Health—Institute for Biomedicine and Health Sciences, Joanneum Research Forschungsgesellschaft mbH, Neue Stiftingtalstrasse 2, 8010 Graz, Austria; (R.S.-A.); (J.F.); (G.S.); (J.P.)
| | - Sebastian Kreß
- Institute of Cell and Tissue Culture Technologies, Department of Biotechnology, University of Natural, Resources and Life Sciences, Vienna, Muthgasse 18, 1190 Vienna, Austria; (S.K.); (C.K.)
| | - Jürgen Feiel
- Health—Institute for Biomedicine and Health Sciences, Joanneum Research Forschungsgesellschaft mbH, Neue Stiftingtalstrasse 2, 8010 Graz, Austria; (R.S.-A.); (J.F.); (G.S.); (J.P.)
| | - Gerd Schwagerle
- Health—Institute for Biomedicine and Health Sciences, Joanneum Research Forschungsgesellschaft mbH, Neue Stiftingtalstrasse 2, 8010 Graz, Austria; (R.S.-A.); (J.F.); (G.S.); (J.P.)
| | - Joachim Priedl
- Health—Institute for Biomedicine and Health Sciences, Joanneum Research Forschungsgesellschaft mbH, Neue Stiftingtalstrasse 2, 8010 Graz, Austria; (R.S.-A.); (J.F.); (G.S.); (J.P.)
| | - Thomas Birngruber
- Health—Institute for Biomedicine and Health Sciences, Joanneum Research Forschungsgesellschaft mbH, Neue Stiftingtalstrasse 2, 8010 Graz, Austria; (R.S.-A.); (J.F.); (G.S.); (J.P.)
- Correspondence: (T.B.); (D.E.)
| | - Cornelia Kasper
- Institute of Cell and Tissue Culture Technologies, Department of Biotechnology, University of Natural, Resources and Life Sciences, Vienna, Muthgasse 18, 1190 Vienna, Austria; (S.K.); (C.K.)
| | - Dominik Egger
- Institute of Cell and Tissue Culture Technologies, Department of Biotechnology, University of Natural, Resources and Life Sciences, Vienna, Muthgasse 18, 1190 Vienna, Austria; (S.K.); (C.K.)
- Correspondence: (T.B.); (D.E.)
| |
Collapse
|