1
|
Wang Y, Li Y, Fuhr O, Nieger M, Hassan Z, Bräse S. Synthesis of Mono-, Di-, Tri-, and Tetra-cationic Pyridinium and Vinylpyridinium Modified [2.2]Paracyclophanes: Modular Receptors for Supramolecular Systems. ChemistryOpen 2024; 13:e202400024. [PMID: 38471964 PMCID: PMC11319226 DOI: 10.1002/open.202400024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Indexed: 03/14/2024] Open
Abstract
In this report, a new series of mono-, di-, tri-, and tetra-cationic pyridinium and vinyl pyridinium-modified [2.2]paracyclophanes as useful molecular tectons for supramolecular systems are described. Regioselective functionalization at specific positions, followed by resolution step and successive transformations through Pd-catalyzed Suzuki-Miyaura and Mizoroki-Heck cross-coupling chemistry furnish a series of modular PCP scaffolds. In our proof-of-concept study, on N-methylation, the PCPs bearing (cationic) pyridyl functionalities were demonstrated as useful molecular receptors in host-guest supramolecular assays. The PCPs on grafting with light-responsive azobenzene (-N=N-) functional core as side-groups impart photosensitivity that can be remotely transformed on irradiation, offering photo-controlled smart molecular functions. Furthermore, the symmetrical PCPs bearing bi-, and tetra-pyridyl functionalities at the peripheries have enormous potential to serve as ditopic and tetratopic 3D molecular tectons for engineering non-covalent supramolecular assemblies with new structural and functional attributes.
Collapse
Affiliation(s)
- Yichuan Wang
- Institute of Organic Chemistry (IOC)Karlsruhe Institute of Technology (KIT)Fritz-Haber-Weg 676131KarlsruheGermany
| | - Yuting Li
- Institute of Organic Chemistry (IOC)Karlsruhe Institute of Technology (KIT)Fritz-Haber-Weg 676131KarlsruheGermany
| | - Olaf Fuhr
- Institute of Nanotechnology (INT) and Karlsruhe Nano Micro Facility (KNMFi)Karlsruhe Institute of Technology (KIT)Hermann-von-Helmholtz-Platz 176344Eggenstein-LeopoldshafenGermany
| | - Martin Nieger
- Department of ChemistryUniversity of HelsinkiP. O. Box 5500014University of HelsinkiFinland
| | - Zahid Hassan
- Institute of Organic Chemistry (IOC)Karlsruhe Institute of Technology (KIT)Fritz-Haber-Weg 676131KarlsruheGermany
| | - Stefan Bräse
- Institute of Organic Chemistry (IOC)Karlsruhe Institute of Technology (KIT)Fritz-Haber-Weg 676131KarlsruheGermany
- Institute of Biological and Chemical SystemsFunctional Molecular Systems (IBCS-FMS)Karlsruhe Institute of Technology (KIT)Hermann-von-Helmholtz-Platz 176344Eggenstein-LeopoldshafenGermany
| |
Collapse
|
2
|
Han JY, Noh B, Lee G, Lee C, Lee KJ, Yoon DK. Fabrication of Zigzag Parylene Nanofibers in Liquid Crystals with Electric Field-Induced Defect Structures. ACS APPLIED MATERIALS & INTERFACES 2024; 16:11125-11133. [PMID: 38373224 DOI: 10.1021/acsami.4c00611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2024]
Abstract
Liquid crystals (LCs) have been adopted to induce tunable physical properties that dynamically originated from their unique intrinsic properties responding to external stimuli, such as surface anchoring condition and applied electric field, which enables them to be the template for aligning functional guest materials. We fabricate the fiber array from the electrically modulated (in-plain) nematic LC template using the chemical vapor polymerization (CVP) method. Under an electric field, an induced defect structure with a winding number of -1/2 contains a periodic zigzag disclination line. It is known that LC defect structures can trap the guest materials, such as particles and chemicals. However, the resulting fibers grow along the LC directors, not trapped in the defects. To show the versatility of our platform, nanofibers are fabricated on patterned electrodes representing the alphabets 'CVP.' In addition, the semifluorinated moieties are added to fibers to provide a hydrophobic surface. The resultant orientation-controlled fibers will be used in controllable smart surfaces that can be used in sensors, electronics, photonics, and biomimetic surfaces.
Collapse
Affiliation(s)
- Jeong Yeon Han
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Byeongil Noh
- Department of Chemical Engineering and Applied Chemistry, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Gunoh Lee
- Department of Chemical Engineering and Applied Chemistry, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Changjae Lee
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Kyung Jin Lee
- Department of Chemical Engineering and Applied Chemistry, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Dong Ki Yoon
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
- KAIST Institute for Nanocentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| |
Collapse
|
3
|
Li Q, Lu X, Lv Z, Zhu B, Lu Q. Full-Color and Switchable Circularly Polarized Light from a Macroscopic Chiral Dendritic Film through a Solid-State Supramolecular Assembly. ACS NANO 2022; 16:18863-18872. [PMID: 36346796 DOI: 10.1021/acsnano.2c07768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Chiral materials displaying chirality across multiple length scales have attracted increasing interest due to their potential applications in diverse fields. Herein, we report an efficient approach for the construction of macroscopic crystal dendrites with hierarchical chirality based on an in situ solid assembly in a block copolymer film. Chiral fluorescent crystals are formed by enantiopure d-/l-dibenzoyl tartaric acid and pyrenecarboxylic acid in a poly(1,4-butadiene)-b-poly(ethylene oxide) film. The chiro-optical activity of the crystalline dendrites can be greatly amplified in the absorption and scattering regions and goes along with the dimension of dendrites. Notably, the chiral dendrites exhibited strong circularly polarized luminescence emission with a high dissymmetric factor (0.03). The enhancement of the quantum yield of the chiral film was up to 28%, which was 14 times higher that of the corresponding fluorescent molecules. The circularly polarized emission bands of the films can be fine-tuned by contriving the emissive bands of fluorescent molecules. More importantly, the chiral signals are able to be wiped when the fluorescent group photodimerizes under UV irradiation. This work provides an efficient way to develop functional materials through solid self-assembly.
Collapse
Affiliation(s)
- Qingxiang Li
- School of Chemistry and Chemical Engineering, Shanghai Key Lab of Electrical & Thermal Aging, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai200240, People's Republic of China
| | - Xuemin Lu
- School of Chemistry and Chemical Engineering, Shanghai Key Lab of Electrical & Thermal Aging, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai200240, People's Republic of China
| | - Zhiguo Lv
- School of Physics and Astronomy, Key Laboratory of Artificial Structures and Quantum Control, Shanghai Jiao Tong University, Shanghai200240, People's Republic of China
| | - Bangshang Zhu
- Institute of Analytic Center, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
| | - Qinghua Lu
- School of Chemistry and Chemical Engineering, Shanghai Key Lab of Electrical & Thermal Aging, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai200240, People's Republic of China
| |
Collapse
|
4
|
Hassan Z, Varadharajan D, Zippel C, Begum S, Lahann J, Bräse S. Design Strategies for Structurally Controlled Polymer Surfaces via Cyclophane-Based CVD Polymerization and Post-CVD Fabrication. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2201761. [PMID: 35555829 DOI: 10.1002/adma.202201761] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 04/15/2022] [Indexed: 06/15/2023]
Abstract
Molecular structuring of soft matter with precise arrangements over multiple hierarchical levels, especially on polymer surfaces, and enabling their post-synthetic modulation has tremendous potential for application in molecular engineering and interfacial science. Here, recent research and developments in design strategies for structurally controlled polymer surfaces via cyclophane-based chemical vapor deposition (CVD) polymerization with precise control over chemical functionalities and post-CVD fabrication via orthogonal surface functionalization that facilitates the formation of designable biointerfaces are summarized. Particular discussion about innovative approaches for the templated synthesis of shape-controlled CVD polymers, ranging from 1D to 3D architecture, including inside confined nanochannels, nanofibers/nanowires synthesis into an anisotropic media such as liquid crystals, and CVD polymer nanohelices via hierarchical chirality transfer across multiple length scales is provided. Aiming at multifunctional polymer surfaces via CVD copolymerization of multiple precursors, the structural and functional design of the fundamental [2.2]paracyclophane (PCP) precursor molecules, that is, functional CVD monomer chemistry is also described. Technologically advanced and innovative surface deposition techniques toward topological micro- and nanostructuring, including microcontact printing, photopatterning, photomask, and lithographic techniques such as dip-pen nanolithography, showcasing research from the authors' laboratories as well as other's relevant important findings in this evolving field are highlighted that have introduced new programmable CVD polymerization capabilities. Perspectives, current limitations, and future considerations are provided.
Collapse
Affiliation(s)
- Zahid Hassan
- Institute of Organic Chemistry (IOC), Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 6, 76131, Karlsruhe, Germany
| | - Divya Varadharajan
- Institute of Functional Interfaces (IFG), Karlsruhe Institute of Technology (KIT), Hermann-von Helmholtz-Platz 1, D-76344, Eggenstein-Leopoldshafen, Germany
| | - Christoph Zippel
- Institute of Organic Chemistry (IOC), Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 6, 76131, Karlsruhe, Germany
| | - Salma Begum
- Institute of Organic Chemistry (IOC), Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 6, 76131, Karlsruhe, Germany
- Institute of Functional Interfaces (IFG), Karlsruhe Institute of Technology (KIT), Hermann-von Helmholtz-Platz 1, D-76344, Eggenstein-Leopoldshafen, Germany
| | - Jörg Lahann
- Institute of Functional Interfaces (IFG), Karlsruhe Institute of Technology (KIT), Hermann-von Helmholtz-Platz 1, D-76344, Eggenstein-Leopoldshafen, Germany
- Biointerfaces Institute, Departments of Biomedical Engineering and Chemical Engineering, University of Michigan 2800 Plymouth Road, Ann Arbor, MI, 48109, USA
| | - Stefan Bräse
- Institute of Organic Chemistry (IOC), Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 6, 76131, Karlsruhe, Germany
- Institute of Biological and Chemical Systems (IBCS-FMS), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| |
Collapse
|