1
|
Yang H, Ma Z, Wang Q. Shortwave-Infrared Silver Chalcogenide Quantum Dots for Optoelectronic Devices. ACS NANO 2024; 18:30123-30131. [PMID: 39441583 DOI: 10.1021/acsnano.4c11787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Silver chalcogenide (Ag2X, X = S, Se, Te) semiconductor quantum dots (QDs) have been extensively studied owing to their short-wave infrared (SWIR, 900-2500 nm) excitation and emission along with lower solubility product constant and environmentally benign nature. However, their unsatisfactory photoluminescence quantum yields (PLQYs) make it difficult to obtain optoelectronic devices with high performances. To tackle this challenge, researchers have made great efforts to develop valid strategies to improve the PLQYs of SWIR Ag2X QDs by suppressing their nonradiative recombination of excitons. In this Perspective, we summarize the significant approaches of heteroatom doping and surface passivation to enhance the PLQYs of SWIR Ag2X QDs, and we conclude their application in high-efficiency optoelectronic devices. Finally, we examine the future trends and promising opportunities of Ag2X QDs with regard to their optical properties and optoelectronics. We believe that this Perspective will serve as a valuable reference for future advancement in the synthesis and application of SWIR Ag2X QDs.
Collapse
Affiliation(s)
- Hongchao Yang
- CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine and i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Zhiwei Ma
- CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine and i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Qiangbin Wang
- CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine and i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
- College of Materials Sciences and Optoelectronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| |
Collapse
|
2
|
Hu H, Liao Y, Tan S, Li C, Tang J, Zheng K, Yang L. Decoupled electron-phonon transport in Ag 2Se thermoelectric materials through constructing TiO 2/MoS 2 co-decorated cell-membrane-mimic grain boundaries. NANOSCALE 2024. [PMID: 39449267 DOI: 10.1039/d4nr03962a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2024]
Abstract
Ag2Se has emerged as a promising n-type thermoelectric material; however, its application is limited mainly due to the strongly coupled charge carrier and phonon transport. Enhancing phonon scattering by constructing interfacial complexes often results in low carrier mobility due to its strong carrier scattering resulting from the high energy barrier at the multiphase interface. Inspired by the cell membrane with selective permeability, we construct bio-mimic grain boundaries with TiO2 and MoS2 co-decoration in Ag2Se to decouple electron scattering from strong phonon scattering. The nanostructured TiO2 with a high dielectric constant screens the interfacial Coulomb potential, ensuring efficient carrier transport and reducing the grain boundary barriers, while the few-layer MoS2 provides significant phonon scattering to further reduce the thermal conductivity. This method effectively enhances the zT value of Ag2Se by as much as 60% and also can significantly enhance the theoretical output performance of the thermoelectric device, which highlights the effectiveness of the bio-mimic grain boundary engineering strategy.
Collapse
Affiliation(s)
- Hanwen Hu
- Beijing Key Laboratory of Microstructure and Properties of Solids, Beijing University of Technology, Beijing 100124, China.
| | - Yiyan Liao
- School of Materials Science & Engineering, Sichuan University, Chengdu, 610064, China.
| | - Shanshan Tan
- School of Materials Science & Engineering, Sichuan University, Chengdu, 610064, China.
| | - Chen Li
- Beijing Key Laboratory of Microstructure and Properties of Solids, Beijing University of Technology, Beijing 100124, China.
| | - Jun Tang
- Key Laboratory of Radiation Physics and Technology, Ministry of Education, Institute of Nuclear Science and Technology, Sichuan University, Chengdu 610064, China
| | - Kun Zheng
- Beijing Key Laboratory of Microstructure and Properties of Solids, Beijing University of Technology, Beijing 100124, China.
| | - Lei Yang
- School of Materials Science & Engineering, Sichuan University, Chengdu, 610064, China.
| |
Collapse
|
3
|
Sun Y, Ma Y, Zhang JY, Wei TR, Shi X, Rodney D, Xu B. Van der Waals semiconductor InSe plastifies by martensitic transformation. SCIENCE ADVANCES 2024; 10:eado9593. [PMID: 39423267 PMCID: PMC11488537 DOI: 10.1126/sciadv.ado9593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 09/16/2024] [Indexed: 10/21/2024]
Abstract
Inorganic semiconductor materials are crucial for modern technologies, but their brittleness and limited processability hinder the development of flexible, wearable, and miniaturized electronics. The recent discovery of room-temperature plasticity in some inorganic semiconductors offers a promising solution, but the deformation mechanisms remain controversial. Here, we investigate the deformation of indium selenide, a two-dimensional van der Waals semiconductor with substantial plasticity. By developing a machine-learned deep potential, we perform atomistic simulations that capture the deformation features of hexagonal indium selenide upon out-of-plane compression. Unexpectedly, we find that indium selenide plastifies through a martensitic transformation; that is, the layered hexagonal structure is converted to a tetragonal lattice with specific orientation relationship. This observation is corroborated by high-resolution experimental observations and theory. It suggests a change of paradigm, where the design of new plastically deformable inorganic semiconductors can focus on compositions and structures that facilitate phase transformations, going beyond the conventional dislocation slip.
Collapse
Affiliation(s)
- Yandong Sun
- Graduate School of China Academy of Engineering Physics, Beijing 100193, China
| | - Yupeng Ma
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jin-Yu Zhang
- Univ. Lyon, CNRS, Université Claude Bernard Lyon 1, Institut Lumière Matière, UMR5306, Villeurbanne 69622, France
- AI for Science Institute, Beijing 100080, China
| | - Tian-Ran Wei
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xun Shi
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China
| | - David Rodney
- Univ. Lyon, CNRS, Université Claude Bernard Lyon 1, Institut Lumière Matière, UMR5306, Villeurbanne 69622, France
| | - Ben Xu
- Graduate School of China Academy of Engineering Physics, Beijing 100193, China
- AI for Science Institute, Beijing 100080, China
| |
Collapse
|
4
|
Jia S, Ma H, Gao S, Yang L, Sun Q. Thermoelectric Materials and Devices for Advanced Biomedical Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024:e2405019. [PMID: 39392147 DOI: 10.1002/smll.202405019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 09/11/2024] [Indexed: 10/12/2024]
Abstract
Thermoelectrics (TEs), enabling the direct conversion between heat and electrical energy, have demonstrated extensive application potential in biomedical fields. Herein, the mechanism of the TE effect, recent developments in TE materials, and the biocompatibility assessment of TE materials are provided. In addition to the fundamentals of TEs, a timely and comprehensive review of the recent progress of advanced TE materials and their applications is presented, including wearable power generation, personal thermal management, and biosensing. In addition, the new-emerged medical applications of TE materials in wound healing, disease treatment, antimicrobial therapy, and anti-cancer therapy are thoroughly reviewed. Finally, the main challenges and future possibilities are outlined for TEs in biomedical fields, as well as their material selection criteria for specific application scenarios. Together, these advancements can provide innovative insights into the development of TEs for broader applications in biomedical fields.
Collapse
Affiliation(s)
- Shiyu Jia
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Huangshui Ma
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Shaojingya Gao
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
- Sichuan Provincial Engineering Research Center of Oral Biomaterials, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Lei Yang
- College of Materials Science and Engineering, Sichuan University, Chengdu, Sichuan, 610017, China
| | - Qiang Sun
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
- Sichuan Provincial Engineering Research Center of Oral Biomaterials, Sichuan University, Chengdu, Sichuan, 610041, China
| |
Collapse
|
5
|
Chen YX, Shi XL, Zhang JZ, Nisar M, Zha ZZ, Zhong ZN, Li F, Liang GX, Luo JT, Li M, Cao T, Liu WD, Xu DY, Zheng ZH, Chen ZG. Deviceization of high-performance and flexible Ag 2Se films for electronic skin and servo rotation angle control. Nat Commun 2024; 15:8356. [PMID: 39333137 PMCID: PMC11436659 DOI: 10.1038/s41467-024-52680-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Accepted: 09/18/2024] [Indexed: 09/29/2024] Open
Abstract
Ag2Se shows significant potential for near-room-temperature thermoelectric applications, but its performance and device design are still evolving. In this work, we design a novel flexible Ag2Se thin-film-based thermoelectric device with optimized electrode materials and structure, achieving a high output power density of over 65 W m-2 and a normalized power density up to 3.68 μW cm-2 K-2 at a temperature difference of 42 K. By fine-tuning vapor selenization time, we strengthen the (013) orientation and carrier mobility of Ag2Se films, reducing excessive Ag interstitials and achieving a power factor of over 29 μW cm-1 K-2 at 393 K. A protective layer boosts flexibility of the thin film, retaining 90% performance after 1000 bends at 60°. Coupled with p-type Sb2Te3 thin films and rational simulations, the device shows rapid human motion response and precise servo motor control, highlighting the potential of high-performance Ag2Se thin films in advanced applications.
Collapse
Affiliation(s)
- Yue-Xing Chen
- Shenzhen Key Laboratory of Advanced Thin Films and Applications, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, State Key Laboratory of Radio Frequency Heterogeneous Integration, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, Guangdong, 518060, China
| | - Xiao-Lei Shi
- School of Chemistry and Physics, ARC Research Hub in Zero-emission Power Generation for Carbon Neutrality, and Centre for Materials Science, Queensland University of Technology, Brisbane, QLD, 4000, Australia
| | - Jun-Ze Zhang
- Shenzhen Key Laboratory of Advanced Thin Films and Applications, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, State Key Laboratory of Radio Frequency Heterogeneous Integration, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, Guangdong, 518060, China
| | - Mohammad Nisar
- Shenzhen Key Laboratory of Advanced Thin Films and Applications, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, State Key Laboratory of Radio Frequency Heterogeneous Integration, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, Guangdong, 518060, China
| | - Zhong-Zhao Zha
- Shenzhen Key Laboratory of Advanced Thin Films and Applications, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, State Key Laboratory of Radio Frequency Heterogeneous Integration, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, Guangdong, 518060, China
| | - Zi-Nan Zhong
- Shenzhen Key Laboratory of Advanced Thin Films and Applications, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, State Key Laboratory of Radio Frequency Heterogeneous Integration, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, Guangdong, 518060, China
| | - Fu Li
- Shenzhen Key Laboratory of Advanced Thin Films and Applications, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, State Key Laboratory of Radio Frequency Heterogeneous Integration, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, Guangdong, 518060, China
| | - Guang-Xing Liang
- Shenzhen Key Laboratory of Advanced Thin Films and Applications, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, State Key Laboratory of Radio Frequency Heterogeneous Integration, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, Guangdong, 518060, China
| | - Jing-Ting Luo
- Shenzhen Key Laboratory of Advanced Thin Films and Applications, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, State Key Laboratory of Radio Frequency Heterogeneous Integration, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, Guangdong, 518060, China
| | - Meng Li
- School of Chemistry and Physics, ARC Research Hub in Zero-emission Power Generation for Carbon Neutrality, and Centre for Materials Science, Queensland University of Technology, Brisbane, QLD, 4000, Australia
| | - Tianyi Cao
- School of Chemistry and Physics, ARC Research Hub in Zero-emission Power Generation for Carbon Neutrality, and Centre for Materials Science, Queensland University of Technology, Brisbane, QLD, 4000, Australia
| | - Wei-Di Liu
- School of Chemistry and Physics, ARC Research Hub in Zero-emission Power Generation for Carbon Neutrality, and Centre for Materials Science, Queensland University of Technology, Brisbane, QLD, 4000, Australia
| | - Dong-Yan Xu
- Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong, Sha Tin, China
| | - Zhuang-Hao Zheng
- Shenzhen Key Laboratory of Advanced Thin Films and Applications, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, State Key Laboratory of Radio Frequency Heterogeneous Integration, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, Guangdong, 518060, China.
| | - Zhi-Gang Chen
- School of Chemistry and Physics, ARC Research Hub in Zero-emission Power Generation for Carbon Neutrality, and Centre for Materials Science, Queensland University of Technology, Brisbane, QLD, 4000, Australia.
| |
Collapse
|
6
|
Wu H, Shi XL, Mao Y, Li M, Wu T, Wang DZ, Yin LC, Zhu M, Liu WD, Wang L, Wang Y, Duan J, Liu Q, Chen ZG. Sn-Doping-Induced Biphasic Structure Advances Ductile Ag 2S-Based Thermoelectrics. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024:e2408374. [PMID: 39324659 DOI: 10.1002/advs.202408374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 09/08/2024] [Indexed: 09/27/2024]
Abstract
Due to its inherent ductility, Ag2S shows promise as a flexible thermoelectric material for harnessing waste heat from diverse sources. However, its thermoelectric performance remains subpar, and existing enhancement strategies often compromise its ductility. In this study, a novel Sn-doping-induced biphasic structuring approach is introduced to synergistically control electron and phonon transport. Specifically, Sn-doping is incorporated into Ag2S0.7Se0.3 to form a biphasic composition comprising (Ag, Sn)2S0.7Se0.3 as the primary phase and Ag2S0.7Se0.3 as the secondary phase. This biphasic configuration achieves a competitive figure-of-merit ZT of 0.42 at 343 K while retaining exceptional ductility, exceeding 90%. The dominant (Ag, Sn)2S0.7Se0.3 phase bolsters the initially low carrier concentration, with interfacial boundaries between the phases effectively mitigating carrier scattering and promoting carrier mobility. Consequently, the optimized power factor reaches 5 µW cm-1 K-2 at 343 K. Additionally, the formation of the biphasic structure induces diverse micro/nano defects, suppressing lattice thermal conductivity to a commendable 0.18 W m-1 K-1, thereby achieving optimized thermoelectric performance. As a result, a four-leg in-plane flexible thermoelectric device is fabricated, exhibiting a maximum power density of ≈49 µW cm-2 under the temperature difference of 30 K, much higher than that of organic-based flexible thermoelectric devices.
Collapse
Affiliation(s)
- Hao Wu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Xiao-Lei Shi
- School of Chemistry and Physics, ARC Research Hub in Zero-emission Power Generation for Carbon Neutrality, and Centre for Materials Science, Queensland University of Technology, Brisbane, Queensland, 4000, Australia
| | - Yuanqing Mao
- School of Chemistry and Physics, ARC Research Hub in Zero-emission Power Generation for Carbon Neutrality, and Centre for Materials Science, Queensland University of Technology, Brisbane, Queensland, 4000, Australia
| | - Meng Li
- School of Chemistry and Physics, ARC Research Hub in Zero-emission Power Generation for Carbon Neutrality, and Centre for Materials Science, Queensland University of Technology, Brisbane, Queensland, 4000, Australia
| | - Ting Wu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - De-Zhuang Wang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Liang-Cao Yin
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Ming Zhu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Wei-Di Liu
- School of Chemistry and Physics, ARC Research Hub in Zero-emission Power Generation for Carbon Neutrality, and Centre for Materials Science, Queensland University of Technology, Brisbane, Queensland, 4000, Australia
| | - Lijun Wang
- School of Chemistry and Physics, ARC Research Hub in Zero-emission Power Generation for Carbon Neutrality, and Centre for Materials Science, Queensland University of Technology, Brisbane, Queensland, 4000, Australia
| | - Yifeng Wang
- College of Materials Science and Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Jingui Duan
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Qingfeng Liu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Zhi-Gang Chen
- School of Chemistry and Physics, ARC Research Hub in Zero-emission Power Generation for Carbon Neutrality, and Centre for Materials Science, Queensland University of Technology, Brisbane, Queensland, 4000, Australia
| |
Collapse
|
7
|
Shi XL, Wang L, Lyu W, Cao T, Chen W, Hu B, Chen ZG. Advancing flexible thermoelectrics for integrated electronics. Chem Soc Rev 2024; 53:9254-9305. [PMID: 39143899 DOI: 10.1039/d4cs00361f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/16/2024]
Abstract
With the increasing demand for energy and the climate challenges caused by the consumption of traditional fuels, there is an urgent need to accelerate the adoption of green and sustainable energy conversion and storage technologies. The integration of flexible thermoelectrics with other various energy conversion technologies plays a crucial role, enabling the conversion of multiple forms of energy such as temperature differentials, solar energy, mechanical force, and humidity into electricity. The development of these technologies lays the foundation for sustainable power solutions and promotes research progress in energy conversion. Given the complexity and rapid development of this field, this review provides a detailed overview of the progress of multifunctional integrated energy conversion and storage technologies based on thermoelectric conversion. The focus is on improving material performance, optimizing the design of integrated device structures, and achieving device flexibility to expand their application scenarios, particularly the integration and multi-functionalization of wearable energy conversion technologies. Additionally, we discuss the current development bottlenecks and future directions to facilitate the continuous advancement of this field.
Collapse
Affiliation(s)
- Xiao-Lei Shi
- School of Chemistry and Physics, ARC Research Hub in Zero-emission Power Generation for Carbon Neutrality, and Centre for Materials Science, Queensland University of Technology, Brisbane, Queensland 4000, Australia.
| | - Lijun Wang
- School of Chemistry and Physics, ARC Research Hub in Zero-emission Power Generation for Carbon Neutrality, and Centre for Materials Science, Queensland University of Technology, Brisbane, Queensland 4000, Australia.
| | - Wanyu Lyu
- School of Chemistry and Physics, ARC Research Hub in Zero-emission Power Generation for Carbon Neutrality, and Centre for Materials Science, Queensland University of Technology, Brisbane, Queensland 4000, Australia.
| | - Tianyi Cao
- School of Chemistry and Physics, ARC Research Hub in Zero-emission Power Generation for Carbon Neutrality, and Centre for Materials Science, Queensland University of Technology, Brisbane, Queensland 4000, Australia.
| | - Wenyi Chen
- School of Chemistry and Physics, ARC Research Hub in Zero-emission Power Generation for Carbon Neutrality, and Centre for Materials Science, Queensland University of Technology, Brisbane, Queensland 4000, Australia.
| | - Boxuan Hu
- School of Chemistry and Physics, ARC Research Hub in Zero-emission Power Generation for Carbon Neutrality, and Centre for Materials Science, Queensland University of Technology, Brisbane, Queensland 4000, Australia.
| | - Zhi-Gang Chen
- School of Chemistry and Physics, ARC Research Hub in Zero-emission Power Generation for Carbon Neutrality, and Centre for Materials Science, Queensland University of Technology, Brisbane, Queensland 4000, Australia.
| |
Collapse
|
8
|
Abouzeid R, Shayan M, Koo MS, Wu Q. Lignin containing cellulose nanofiber/Ag 2Se nanocomposite films: a promising material for thermoelectric film generators. RSC Adv 2024; 14:24756-24764. [PMID: 39114439 PMCID: PMC11305405 DOI: 10.1039/d4ra01750a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 06/27/2024] [Indexed: 08/10/2024] Open
Abstract
This work deals with the fabrication of lignin containing cellulose nanofiber (LCNF)/Ag2Se films for thermoelectric applications. Ag2Se nanoparticles were synthesized within the LCNF network through in situ methods, employing Na2SeO3 and AgNO3 along with microwave energy treatment. LCNF/Ag2Se films fabricated with two LCNF : Ag2Se weight percent ratios (i.e., 50 : 50 and 30 : 70) were used to construct a flexible thermoelectric module. The obtained Ag2Se nanoparticles displayed a uniform size distribution in the LCNF network with smaller dimensions from the microwave energy treated group. The microstructure of LCNF/Ag2Se films was improved by hot-pressing, leading to enhanced film density thermoelectric properties. At a differential temperature of 50 K, films with 50% and 70% of Ag2Se exhibited output voltages of 18 and 21 mV; and Seebeck coefficients of -60 and -70 μV K-1 at 350 K, respectively. When microwave energy was applied, the films at 50% and 70% Ag2Se showed highest output voltages of 19 and 33 mV, respectively, and Seebeck coefficients of -63.3 and -110 μV K-1 at 350 K. The low-cost fabrication process associated with this module opens a pathway for applications such as energy harvesting.
Collapse
Affiliation(s)
- Ragab Abouzeid
- School of Renewable Natural Resources, Louisiana State University, AgCenter Baton Rouge Louisiana 70803 USA
- Cellulose and Paper Department, National Research Centre 33 Bohouth St., Dokki Giza 12622 Egypt
| | - Mohammad Shayan
- School of Renewable Natural Resources, Louisiana State University, AgCenter Baton Rouge Louisiana 70803 USA
| | - Meen Sung Koo
- School of Renewable Natural Resources, Louisiana State University, AgCenter Baton Rouge Louisiana 70803 USA
| | - Qinglin Wu
- School of Renewable Natural Resources, Louisiana State University, AgCenter Baton Rouge Louisiana 70803 USA
| |
Collapse
|
9
|
Liu M, Zhang X, Zhang S, Pei Y. Ag 2Se as a tougher alternative to n-type Bi 2Te 3 thermoelectrics. Nat Commun 2024; 15:6580. [PMID: 39097572 PMCID: PMC11297924 DOI: 10.1038/s41467-024-50898-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 07/24/2024] [Indexed: 08/05/2024] Open
Abstract
For half a century, only Bi2Te3-based thermoelectrics have been commercialized for near room temperature applications including both power generation and refrigeration. Because of the strong layered structure, Bi2Te3 in particular for n-type conduction has to be texturized to utilize its high in-plane thermoelectric performance, leaving a substantial challenge in toughness. This work presents the fabrication and performance evaluation of thermoelectric modules based on n-type Ag2Se paring with commercial p-Bi2Te3. Ag2Se mechanically allows an order of magnitude larger fracture strain and thermoelectrically secures the module efficiency quite competitive to that of commercial one for both refrigeration and power generation within ± 50 K of room temperature, enabling a demonstration of a significantly tougher alternative to n-type Bi2Te3 for practical applications.
Collapse
Affiliation(s)
- Min Liu
- Interdisciplinary Materials Research Center, School of Materials Science and Engineering, Tongji Univ., 4800 Caoan Rd., Shanghai, 201804, China
| | - Xinyue Zhang
- Interdisciplinary Materials Research Center, School of Materials Science and Engineering, Tongji Univ., 4800 Caoan Rd., Shanghai, 201804, China
| | - Shuxian Zhang
- Interdisciplinary Materials Research Center, School of Materials Science and Engineering, Tongji Univ., 4800 Caoan Rd., Shanghai, 201804, China
| | - Yanzhong Pei
- Interdisciplinary Materials Research Center, School of Materials Science and Engineering, Tongji Univ., 4800 Caoan Rd., Shanghai, 201804, China.
| |
Collapse
|
10
|
Shen K, Yang Q, Qiu P, Zhou Z, Yang S, Wei TR, Shi X. Ductile P-Type AgCu(Se,S,Te) Thermoelectric Materials. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2407424. [PMID: 38967315 DOI: 10.1002/adma.202407424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 06/28/2024] [Indexed: 07/06/2024]
Abstract
Ductile inorganic thermoelectric (TE) materials open a new approach to develop high-performance flexible TE devices. N-type Ag2(S,Se,Te) and p-type AgCu(Se,S,Te) pseudoternary solid solutions are two typical categories of ductile inorganic TE materials reported so far. Comparing with the Ag2(S,Se,Te) pseudoternary solid solutions, the phase composition, crystal structure, and physical properties of AgCu(Se,S,Te) pseudoternary solid solutions are more complex, but their relationships are still ambiguous now. In this work, via systematically investigating the phase composition, crystal structure, mechanical, and TE properties of about 60 AgCu(Se,S,Te) pseudoternary solid solutions, the comprehensive composition-structure-property phase diagrams of the AgCuSe-AgCuS-AgCuTe pseudoternary system is constructed. By mapping the complex phases, the "ductile-brittle" and "n-p" transition boundaries are determined and the composition ranges with high TE performance and inherent ductility are illustrated. On this basis, high performance p-type ductile TE materials are obtained, with a maximum zT of 0.81 at 340 K. Finally, flexible in-plane TE devices are prepared by using the AgCu(Se,S,Te)-based ductile TE materials, showing high output performance that is superior to those of organic and inorganic-organic hybrid flexible devices.
Collapse
Affiliation(s)
- Kelin Shen
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qingyu Yang
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Pengfei Qiu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
- School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China
| | - Zhengyang Zhou
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shiqi Yang
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, China
| | - Tian-Ran Wei
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xun Shi
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
11
|
Yuan Y, Ding C, Yin R, Lu S, Xu J, Ren W, Li K, Zhao W. A Strategy for Fabricating Ultra-Flexible Thermoelectric Films Using Ag 2Se-Based Ink. MATERIALS (BASEL, SWITZERLAND) 2024; 17:3784. [PMID: 39124453 PMCID: PMC11312965 DOI: 10.3390/ma17153784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 07/28/2024] [Accepted: 07/30/2024] [Indexed: 08/12/2024]
Abstract
Flexible thermoelectric materials have drawn significant attention from researchers due to their potential applications in wearable electronics and the Internet of Things. Despite many reports on these materials, it remains a significant challenge to develop cost-effective methods for large-scale, patterned fabrication of materials that exhibit both excellent thermoelectric performance and remarkable flexibility. In this study, we have developed an Ag2Se-based ink with excellent printability that can be used to fabricate flexible thermoelectric films by screen printing and low-temperature sintering. The printed films exhibit a Seebeck coefficient of -161 μV/K and a power factor of 3250.9 μW/m·K2 at 400 K. Moreover, the films demonstrate remarkable flexibility, showing minimal changes in resistance after being bent 5000 times at a radius of 5 mm. Overall, this research offers a new opportunity for the large-scale patterned production of flexible thermoelectric films.
Collapse
Affiliation(s)
- Yunhuan Yuan
- Flexible Printed Electronics Technology Center, Harbin Institute of Technology, Shenzhen 518055, China; (Y.Y.); (R.Y.); (W.Z.)
| | - Chaogang Ding
- Key Laboratory of Micro-Systems and Micro-Structures Manufacturing of Ministry of Education, Harbin Institute of Technology, Harbin 150001, China; (C.D.); (J.X.)
| | - Rui Yin
- Flexible Printed Electronics Technology Center, Harbin Institute of Technology, Shenzhen 518055, China; (Y.Y.); (R.Y.); (W.Z.)
| | - Shun Lu
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China;
| | - Jie Xu
- Key Laboratory of Micro-Systems and Micro-Structures Manufacturing of Ministry of Education, Harbin Institute of Technology, Harbin 150001, China; (C.D.); (J.X.)
| | - Wei Ren
- Changsha Semiconductor Technology and Application Innovation Research Institute, College of Semiconductors, Hunan University, Changsha 410082, China
| | - Kang Li
- Flexible Printed Electronics Technology Center, Harbin Institute of Technology, Shenzhen 518055, China; (Y.Y.); (R.Y.); (W.Z.)
| | - Weiwei Zhao
- Flexible Printed Electronics Technology Center, Harbin Institute of Technology, Shenzhen 518055, China; (Y.Y.); (R.Y.); (W.Z.)
- Key Laboratory of Micro-Systems and Micro-Structures Manufacturing of Ministry of Education, Harbin Institute of Technology, Harbin 150001, China; (C.D.); (J.X.)
| |
Collapse
|
12
|
Wu C, Liu Y, Li J, Zhang M, Wang Z, Cai K. High Power Factor Flexible Ag 2Te Film on Nylon by a Wet Chemical Method for Power Generator. ACS APPLIED MATERIALS & INTERFACES 2024; 16:39623-39630. [PMID: 39014936 DOI: 10.1021/acsami.4c07332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/18/2024]
Abstract
Herein, we develop a facile wet chemical method for the synthesis of Ag2Te powders at room temperature and flexible Ag2Te/nylon thermoelectric (TE) films are prepared by vacuum-assisted filtration of the synthesized Ag2Te powders and then hot pressing. Because of the good crystallinity of Ag2Te grains and continuous grain boundaries, an optimized film exhibits a power factor of 513 μW m-1 K-2 at 300 K, which stands among the highest values reported for Ag2Te-based films to date. In addition, the film also has good flexibility. A four-leg flexible TE device assembled with the film generates a power density of 5.46 W m-2 at a temperature gradient of 31.8 K. This work provides a facile and environmentally friendly method for preparing flexible Ag2Te films.
Collapse
Affiliation(s)
- Changxuan Wu
- Key Laboratory of Advanced Civil Engineering Materials of Ministry of Education, School of Materials Science & Engineering, Tongji University, 4800 Caoan Road, Shanghai 201804, People's Republic of China
| | - Ying Liu
- Key Laboratory of Advanced Civil Engineering Materials of Ministry of Education, School of Materials Science & Engineering, Tongji University, 4800 Caoan Road, Shanghai 201804, People's Republic of China
| | - Jiajia Li
- Key Laboratory of Advanced Civil Engineering Materials of Ministry of Education, School of Materials Science & Engineering, Tongji University, 4800 Caoan Road, Shanghai 201804, People's Republic of China
| | - Mingcheng Zhang
- Key Laboratory of Advanced Civil Engineering Materials of Ministry of Education, School of Materials Science & Engineering, Tongji University, 4800 Caoan Road, Shanghai 201804, People's Republic of China
| | - Zixing Wang
- Key Laboratory of Advanced Civil Engineering Materials of Ministry of Education, School of Materials Science & Engineering, Tongji University, 4800 Caoan Road, Shanghai 201804, People's Republic of China
| | - Kefeng Cai
- Key Laboratory of Advanced Civil Engineering Materials of Ministry of Education, School of Materials Science & Engineering, Tongji University, 4800 Caoan Road, Shanghai 201804, People's Republic of China
| |
Collapse
|
13
|
Liu M, Zhang X, Ding W, Pei Y. Screening Weldable Metal Electrodes for Ag 2Se Thermoelectric Devices below 300 °C. ACS APPLIED MATERIALS & INTERFACES 2024; 16:31826-31832. [PMID: 38848288 DOI: 10.1021/acsami.4c05134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2024]
Abstract
Thermoelectricity has been considered as the most important solution of generating electricity, particularly from low-grade heat below 300 °C. Despite efforts in recent years on exploring alternative materials to only commercialized Bi2Te3, the practical implementation of these new materials has been hindered by inadequate investigation into device design. Given that the utilization of weldable electrodes offers advantages in technical compatibility for a large-scale assembly of thermoelectric elements into modules, a thorough investigation into the potential of weldable metal electrodes at T < 300 °C is imperative. In this work, the diffusion of 11 kinds of thermoelectric materials in common weldable metals (Ni, Fe, Cu, and Ag) was screened. Ag is sorted out as a promising weldable electrode that can directly bond to thermoelectric Ag2Se in this temperature range, leading to a minimization of an interfacial contact resistivity down to 11 μΩ cm2 in a design of the Ag/Ag2Se/Ag structure. The conversion efficiency of ∼3% at ΔT of 95 K with an excellent stability indicates Ag2Se as a top alternative to n-type Bi2Te3 for low-grade heat recovery.
Collapse
Affiliation(s)
- Min Liu
- Interdisciplinary Materials Research Center, School of Materials Science and Engineering, Tongji University, 4800 Caoan Road, Shanghai 201804, People's Republic of China
| | - Xinyue Zhang
- Interdisciplinary Materials Research Center, School of Materials Science and Engineering, Tongji University, 4800 Caoan Road, Shanghai 201804, People's Republic of China
| | - Wenjun Ding
- Interdisciplinary Materials Research Center, School of Materials Science and Engineering, Tongji University, 4800 Caoan Road, Shanghai 201804, People's Republic of China
| | - Yanzhong Pei
- Interdisciplinary Materials Research Center, School of Materials Science and Engineering, Tongji University, 4800 Caoan Road, Shanghai 201804, People's Republic of China
| |
Collapse
|
14
|
Sarkar D, Bhui A, Maria I, Dutta M, Biswas K. Hidden structures: a driving factor to achieve low thermal conductivity and high thermoelectric performance. Chem Soc Rev 2024; 53:6100-6149. [PMID: 38717749 DOI: 10.1039/d4cs00038b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/18/2024]
Abstract
The long-range periodic atomic arrangement or the lack thereof in solids typically dictates the magnitude and temperature dependence of their lattice thermal conductivity (κlat). Compared to crystalline materials, glasses exhibit a much-suppressed κlat across all temperatures as the phonon mean free path reaches parity with the interatomic distances therein. While the occurrence of such glass-like thermal transport in crystalline solids captivates the scientific community with its fundamental inquiry, it also holds the potential for profoundly impacting the field of thermoelectric energy conversion. Therefore, efficient manipulation of thermal transport and comprehension of the microscopic mechanisms dictating phonon scattering in crystalline solids are paramount. As quantized lattice vibrations (i.e., phonons) drive κlat, atomistic insights into the chemical bonding characteristics are crucial to have informed knowledge about their origins. Recently, it has been observed that within the highly symmetric 'averaged' crystal structures, often there are hidden locally asymmetric atomic motifs (within a few Å), which exert far-reaching influence on phonon transport. Phenomena such as local atomic off-centering, atomic rattling or tunneling, liquid-like atomic motion, site splitting, local ordering, etc., which arise within a few Å scales, are generally found to drastically disrupt the passage of heat carrying phonons. Despite their profound implication(s) for phonon dynamics, they are often overlooked by traditional crystallographic techniques. In this review, we provide a brief overview of the fundamental aspects of heat transport and explore the status quo of innately low thermally conductive crystalline solids, wherein the phonon dynamics is majorly governed by local structural phenomena. We also discuss advanced techniques capable of characterizing the crystal structure at the sub-atomic level. Subsequently, we delve into the emergent new ideas with examples linked to local crystal structure and lattice dynamics. While discussing the implications of the local structure for thermal conductivity, we provide the state-of-the-art examples of high-performance thermoelectric materials. Finally, we offer our viewpoint on the experimental and theoretical challenges, potential new paths, and the integration of novel strategies with material synthesis to achieve low κlat and realize high thermoelectric performance in crystalline solids via local structure designing.
Collapse
Affiliation(s)
- Debattam Sarkar
- New Chemistry Unit, School of Advanced Materials and International Centre for Materials Science, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur P.O., Bangalore 560064, India.
| | - Animesh Bhui
- New Chemistry Unit, School of Advanced Materials and International Centre for Materials Science, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur P.O., Bangalore 560064, India.
| | - Ivy Maria
- New Chemistry Unit, School of Advanced Materials and International Centre for Materials Science, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur P.O., Bangalore 560064, India.
| | - Moinak Dutta
- New Chemistry Unit, School of Advanced Materials and International Centre for Materials Science, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur P.O., Bangalore 560064, India.
| | - Kanishka Biswas
- New Chemistry Unit, School of Advanced Materials and International Centre for Materials Science, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur P.O., Bangalore 560064, India.
| |
Collapse
|
15
|
Li A, Wang Y, Li Y, Yang X, Nan P, Liu K, Ge B, Fu C, Zhu T. High performance magnesium-based plastic semiconductors for flexible thermoelectrics. Nat Commun 2024; 15:5108. [PMID: 38876994 PMCID: PMC11178910 DOI: 10.1038/s41467-024-49440-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Accepted: 06/05/2024] [Indexed: 06/16/2024] Open
Abstract
Low-cost thermoelectric materials with simultaneous high performance and superior plasticity at room temperature are urgently demanded due to the lack of ever-lasting power supply for flexible electronics. However, the inherent brittleness in conventional thermoelectric semiconductors and the inferior thermoelectric performance in plastic organics/inorganics severely limit such applications. Here, we report low-cost inorganic polycrystalline Mg3Sb0.5Bi1.498Te0.002, which demonstrates a remarkable combination of large strain (~ 43%) and high figure of merit zT (~ 0.72) at room temperature, surpassing both brittle Bi2(Te,Se)3 (strain ≤ 5%) and plastic Ag2(Te,Se,S) and organics (zT ≤ 0.4). By revealing the inherent high plasticity in Mg3Sb2 and Mg3Bi2, capable of sustaining over 30% compressive strain in polycrystalline form, and the remarkable deformability of single-crystalline Mg3Bi2 under bending, cutting, and twisting, we optimize the Bi contents in Mg3Sb2-xBix (x = 0 to 1) to simultaneously boost its room-temperature thermoelectric performance and plasticity. The exceptional plasticity of Mg3Sb2-xBix is further revealed to be brought by the presence of a dense dislocation network and the persistent Mg-Sb/Bi bonds during slipping. Leveraging its high plasticity and strength, polycrystalline Mg3Sb2-xBix can be easily processed into micro-scale dimensions. As a result, we successfully fabricate both in-plane and out-of-plane flexible Mg3Sb2-xBix thermoelectric modules, demonstrating promising power density. The inherent remarkable plasticity and high thermoelectric performance of Mg3Sb2-xBix hold the potential for significant advancements in flexible electronics and also inspire further exploration of plastic inorganic semiconductors.
Collapse
Affiliation(s)
- Airan Li
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, School of Materials Science and Engineering, Zhejiang University, 310058, Hangzhou, China
| | - Yuechu Wang
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, School of Materials Science and Engineering, Zhejiang University, 310058, Hangzhou, China
| | - Yuzheng Li
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, School of Materials Science and Engineering, Zhejiang University, 310058, Hangzhou, China
- Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering, Taiyuan, 030000, China
| | - Xinlei Yang
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, School of Materials Science and Engineering, Zhejiang University, 310058, Hangzhou, China
| | - Pengfei Nan
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Institutes of Physical Science and Information Technology, Anhui University, Hefei, 230601, China
| | - Kai Liu
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, School of Materials Science and Engineering, Zhejiang University, 310058, Hangzhou, China
| | - Binghui Ge
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Institutes of Physical Science and Information Technology, Anhui University, Hefei, 230601, China
| | - Chenguang Fu
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, School of Materials Science and Engineering, Zhejiang University, 310058, Hangzhou, China.
| | - Tiejun Zhu
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, School of Materials Science and Engineering, Zhejiang University, 310058, Hangzhou, China.
- Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering, Taiyuan, 030000, China.
| |
Collapse
|
16
|
Shao B, Chen Z, Su H, Peng S, Song M. The Latest Advances in Ink-Based Nanogenerators: From Materials to Applications. Int J Mol Sci 2024; 25:6152. [PMID: 38892343 PMCID: PMC11172637 DOI: 10.3390/ijms25116152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/24/2024] [Accepted: 05/28/2024] [Indexed: 06/21/2024] Open
Abstract
Nanogenerators possess the capability to harvest faint energy from the environment. Among them, thermoelectric (TE), triboelectric, piezoelectric (PE), and moisture-enabled nanogenerators represent promising approaches to micro-nano energy collection. These nanogenerators have seen considerable progress in material optimization and structural design. Printing technology has facilitated the large-scale manufacturing of nanogenerators. Although inks can be compatible with most traditional functional materials, this inevitably leads to a decrease in the electrical performance of the materials, necessitating control over the rheological properties of the inks. Furthermore, printing technology offers increased structural design flexibility. This review provides a comprehensive framework for ink-based nanogenerators, encompassing ink material optimization and device structural design, including improvements in ink performance, control of rheological properties, and efficient energy harvesting structures. Additionally, it highlights ink-based nanogenerators that incorporate textile technology and hybrid energy technologies, reviewing their latest advancements in energy collection and self-powered sensing. The discussion also addresses the main challenges faced and future directions for development.
Collapse
Affiliation(s)
- Bingqian Shao
- School of Applied Science and Technology, Hainan University, Haikou 570228, China; (B.S.); (Z.C.); (H.S.); (S.P.)
| | - Zhitao Chen
- School of Applied Science and Technology, Hainan University, Haikou 570228, China; (B.S.); (Z.C.); (H.S.); (S.P.)
| | - Hengzhe Su
- School of Applied Science and Technology, Hainan University, Haikou 570228, China; (B.S.); (Z.C.); (H.S.); (S.P.)
| | - Shuzhe Peng
- School of Applied Science and Technology, Hainan University, Haikou 570228, China; (B.S.); (Z.C.); (H.S.); (S.P.)
| | - Mingxin Song
- School of Electronic Science and Technology, Hainan University, Haikou 570228, China
| |
Collapse
|
17
|
Liu S, Wen Y, Bai S, Shi H, Qin Y, Qin B, Liu D, Cao Q, Gao X, Su L, Chang C, Zhang X, Zhao LD. Lattice Plainification Leads to High Thermoelectric Performance of P-Type PbSe Crystals. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2401828. [PMID: 38466123 DOI: 10.1002/adma.202401828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 03/08/2024] [Indexed: 03/12/2024]
Abstract
Thermoelectrics has applications in power generation and refrigeration. Since only commercial Bi2Te3 has a low abundance Te, PbSe gets attention. This work enhances the near-room temperature performance of p-type PbSe through enhancing carrier mobility via lattice plainification. Composition controlled and Cu-doped p-type PbSe crystals are grown through physical vapor deposition. Results exhibit an enhanced carrier mobility ≈2578 cm2 V-1 s-1 for Pb0.996Cu0.0004Se. Microstructure characterization and density functional theory calculations verify the introduced Cu atoms filled Pb vacancies, realizing lattice plainification and enhancing the carrier mobility. The Pb0.996Cu0.0004Se sample achieves a power factor ≈42 µW cm-1 K-2 and a ZT ≈ 0.7 at 300 K. The average ZT of it reaches ≈0.9 (300-573 K), resulting in a single-leg power generation efficiency of 7.1% at temperature difference of 270 K, comparable to that of p-type commercial Bi2Te3. A 7-pairs device paired the p-type Pb0.996Cu0.0004Se with the n-type commercial Bi2Te3 shows a maximum cooling temperature difference ≈42 K with the hot side at 300 K, ≈65% of that of the commercial Bi2Te3 device. This work highlights the potential of p-type PbSe for power generation and refrigeration near room temperature and hope to inspire researchers on replacing commercial Bi2Te3.
Collapse
Affiliation(s)
- Shibo Liu
- School of Materials Science and Engineering, Beihang University, Beijing, 100191, China
| | - Yi Wen
- School of Materials Science and Engineering, Beihang University, Beijing, 100191, China
| | - Shulin Bai
- School of Materials Science and Engineering, Beihang University, Beijing, 100191, China
| | - Haonan Shi
- School of Materials Science and Engineering, Beihang University, Beijing, 100191, China
| | - Yongxin Qin
- School of Materials Science and Engineering, Beihang University, Beijing, 100191, China
| | - Bingchao Qin
- School of Materials Science and Engineering, Beihang University, Beijing, 100191, China
| | - Dongrui Liu
- School of Materials Science and Engineering, Beihang University, Beijing, 100191, China
| | - Qian Cao
- Huabei Cooling Device Co. LTD, Hebei, 065400, China
| | - Xiang Gao
- Center for High-Pressure Science and Technology Advanced Research (HPSTAR), Beijing, 100094, China
| | - Lizhong Su
- School of Materials Science and Engineering, Taiyuan University of Science and Technology, Taiyuan, 030024, China
| | - Cheng Chang
- School of Materials Science and Engineering, Beihang University, Beijing, 100191, China
| | - Xiao Zhang
- Research Institute for Frontier Science, Beihang University, Beijing, 100191, China
| | - Li-Dong Zhao
- School of Materials Science and Engineering, Beihang University, Beijing, 100191, China
- Tianmushan Laboratory, Yuhang District, Hangzhou, 311115, China
| |
Collapse
|
18
|
Cheng R, Ge H, Huang S, Xie S, Tong Q, Sang H, Yan F, Zhu L, Wang R, Liu Y, Hong M, Uher C, Zhang Q, Liu W, Tang X. Unraveling electronic origins for boosting thermoelectric performance of p-type (Bi,Sb) 2Te 3. SCIENCE ADVANCES 2024; 10:eadn9959. [PMID: 38787957 PMCID: PMC11122684 DOI: 10.1126/sciadv.adn9959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 04/22/2024] [Indexed: 05/26/2024]
Abstract
P-type Bi2-xSbxTe3 compounds are crucial for thermoelectric applications at room temperature, with Bi0.5Sb1.5Te3 demonstrating superior performance, attributed to its maximum density-of-states effective mass (m*). However, the underlying electronic origin remains obscure, impeding further performance optimization. Herein, we synthesized high-quality Bi2-xSbxTe3 (00 l) films and performed comprehensive angle-resolved photoemission spectroscopy (ARPES) measurements and band structure calculations to shed light on the electronic structures. ARPES results directly evidenced that the band convergence along the [Formula: see text]-[Formula: see text] direction contributes to the maximum m* of Bi0.5Sb1.5Te3. Moreover, strategic manipulation of intrinsic defects optimized the hole density of Bi0.5Sb1.5Te3, allowing the extra valence band along [Formula: see text]-[Formula: see text] to contribute to the electrical transport. The synergy of the above two aspects documented the electronic origins of the Bi0.5Sb1.5Te3's superior performance that resulted in an extraordinary power factor of ~5.5 milliwatts per meter per square kelvin. The study offers valuable guidance for further performance optimization of p-type Bi2-xSbxTe3.
Collapse
Affiliation(s)
- Rui Cheng
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China
| | - Haoran Ge
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China
| | - Shengpu Huang
- Institute for Structure and Function and Department of Physics, Chongqing University, Chongqing 400044, China
| | - Sen Xie
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China
| | - Qiwei Tong
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China
| | - Hao Sang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China
| | - Fan Yan
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China
| | - Liangyu Zhu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China
| | - Rui Wang
- Institute for Structure and Function and Department of Physics, Chongqing University, Chongqing 400044, China
| | - Yong Liu
- School of Physics and Technology and The Key Laboratory of Artificial Micro/Nano Structures of Ministry of Education, Wuhan University, Wuhan 430072, China
| | - Min Hong
- Centre for Future Materials, and School of Engineering, University of Southern Queensland, Springfield Central, Brisbane, Queensland 4300, Australia
| | - Ctirad Uher
- Department of Physics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Qingjie Zhang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China
| | - Wei Liu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China
| | - Xinfeng Tang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China
| |
Collapse
|
19
|
Yang J, Mukherjee S, Lehmann S, Krahl F, Wang X, Potapov P, Lubk A, Ritschel T, Geck J, Nielsch K. Low-Temperature ALD of SbO x /Sb 2 Te 3 Multilayers with Boosted Thermoelectric Performance. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2306350. [PMID: 37880880 DOI: 10.1002/smll.202306350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 09/22/2023] [Indexed: 10/27/2023]
Abstract
Nanoscale superlattice (SL) structures have proven to be effective in enhancing the thermoelectric (TE) properties of thin films. Herein, the main phase of antimony telluride (Sb2 Te3 ) thin film with sub-nanometer layers of antimony oxide (SbOx ) is synthesized via atomic layer deposition (ALD) at a low temperature of 80 °C. The SL structure is tailored by varying the cycle numbers of Sb2 Te3 and SbOx . A remarkable power factor of 520.8 µW m-1 K-2 is attained at room temperature when the cycle ratio of SbOx and Sb2 Te3 is set at 1:1000 (i.e., SO:ST = 1:1000), corresponding to the highest electrical conductivity of 339.8 S cm-1 . The results indicate that at the largest thickness, corresponding to ten ALD cycles, the SbOx layers act as a potential barrier that filters out the low-energy charge carriers from contributing to the overall electrical conductivity. In addition to enhancing the scattering of the mid-to-long-wavelength at the SbOx /Sb2 Te3 interface, the presence of the SbOx sub-layer induces the confinement effect and strain forces in the Sb2 Te3 thin film, thereby effectively enhancing the Seebeck coefficient and reducing the thermal conductivity. These findings provide a new perspective on the design of SL-structured TE materials and devices.
Collapse
Affiliation(s)
- Jun Yang
- Institute for Metallic Materials, Leibniz Institute for Solid State and Materials Research, 01069, Dresden, Germany
- Institute of Materials Science, Technische Universität Dresden, 01062, Dresden, Germany
| | - Samik Mukherjee
- Institute for Metallic Materials, Leibniz Institute for Solid State and Materials Research, 01069, Dresden, Germany
- Jio Institute, Navi Mumbai, Maharashtra, 410206, India
| | - Sebastian Lehmann
- Institute for Metallic Materials, Leibniz Institute for Solid State and Materials Research, 01069, Dresden, Germany
| | - Fabian Krahl
- Institute for Metallic Materials, Leibniz Institute for Solid State and Materials Research, 01069, Dresden, Germany
| | - Xiaoyu Wang
- Institute for Integrative Nanosciences, Leibniz Institute for Solid State and Materials Research, 01069, Dresden, Germany
- School of Physics and Optoelectronic Engineering, Hainan University, Haikou, 570228, China
| | - Pavel Potapov
- Institute for Solid State Research, Leibniz Institute for Solid State and Materials Research, 01069, Dresden, Germany
| | - Axel Lubk
- Institute for Solid State Research, Leibniz Institute for Solid State and Materials Research, 01069, Dresden, Germany
| | - Tobias Ritschel
- Institute of Solid State and Materials Physics, Technische Universität Dresden, 01069, Dresden, Germany
| | - Jochen Geck
- Institute of Solid State and Materials Physics, Technische Universität Dresden, 01069, Dresden, Germany
| | - Kornelius Nielsch
- Institute for Metallic Materials, Leibniz Institute for Solid State and Materials Research, 01069, Dresden, Germany
- Institute of Materials Science, Technische Universität Dresden, 01062, Dresden, Germany
| |
Collapse
|
20
|
Lin PS, Lin JM, Tung SH, Higashihara T, Liu CL. Synergistic Interactions in Sequential Process Doping of Polymer/Single-Walled Carbon Nanotube Nanocomposites for Enhanced n-Type Thermoelectric Performance. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2306166. [PMID: 37847895 DOI: 10.1002/smll.202306166] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 10/03/2023] [Indexed: 10/19/2023]
Abstract
This study focuses on the fabrication of nanocomposite thermoelectric devices by blending either a naphthalene-diimide (NDI)-based conjugated polymer (NDI-T1 or NDI-T2), or an isoindigo (IID)-based conjugated polymer (IID-T2), with single-walled carbon nanotubes (SWCNTs). This is followed by sequential process doping method with the small molecule 4-(2,3-dihydro-1,3-dimethyl-1H-benzimidazol-2-yl)-N,N-dimethylbenzenamine (N-DMBI) to provide the nanocomposite with n-type thermoelectric properties. Experiments in which the concentrations of the N-DMBI dopant are varied demonstrate the successful conversion of all three polymer/SWCNT nanocomposites from p-type to n-type behavior. Comprehensive spectroscopic, microstructural, and morphological analyses of the pristine polymers and the various N-DMBI-doped polymer/SWCNT nanocomposites are performed in order to gain insights into the effects of various interactions between the polymers and SWCNTs on the doping outcomes. Among the obtained nanocomposites, the NDI-T1/SWCNT exhibits the highest n-type Seebeck coefficient and power factor of -57.7 µV K-1 and 240.6 µW m-1 K-2 , respectively. However, because the undoped NDI-T2/SWCNT exhibits a slightly higher p-type performance, an integral p-n thermoelectric generator is fabricated using the doped and undoped NDI-T2/SWCNT nanocomposite. This device is shown to provide an output power of 27.2 nW at a temperature difference of 20 K.
Collapse
Affiliation(s)
- Po-Shen Lin
- Department of Materials Science and Engineering, National Taiwan University, Taipei, 10617, Taiwan
| | - Jhih-Min Lin
- National Synchrotron Radiation Research Center, Hsinchu, 30076, Taiwan
| | - Shih-Huang Tung
- Institute of Polymer Science and Engineering, National Taiwan University, Taipei, 10617, Taiwan
| | - Tomoya Higashihara
- Department of Organic Materials Science, Graduate School of Organic Materials Science, Yamagata University, 4-3-16 Jonan, Yonezawa, Yamagata, 992-8510, Japan
| | - Cheng-Liang Liu
- Department of Materials Science and Engineering, National Taiwan University, Taipei, 10617, Taiwan
- Advanced Research Center for Green Materials Science and Technology, National Taiwan University, Taipei, 10617, Taiwan
| |
Collapse
|
21
|
Ma H, Pu S, Wu H, Jia S, Zhou J, Wang H, Ma W, Wang Z, Yang L, Sun Q. Flexible Ag 2Se Thermoelectric Films Enable the Multifunctional Thermal Perception in Electronic Skins. ACS APPLIED MATERIALS & INTERFACES 2024; 16:7453-7462. [PMID: 38303156 DOI: 10.1021/acsami.3c17343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2024]
Abstract
Skin is critical for shaping our interactions with the environment. The electronic skin (E-skin) has emerged as a promising interface for medical devices to replicate the functions of damaged skin. However, exploration of thermal perception, which is crucial for physiological sensing, has been limited. In this work, a multifunctional E-skin based on flexible thermoelectric Ag2Se films is proposed, which utilizes the Seebeck effect to replicate the sensory functions of natural skin. The E-skin can enable capabilities including temperature perception, tactile perception, contactless perception, and material recognition by analyzing the thermal conduction behaviors of various materials. To further validate the capabilities of constructed E-skins, a wearable device with multiple sensory channels was fabricated and tested for gesture recognition. This work highlights the potential for using flexible thermoelectric materials in advanced biomedical applications including health monitoring and smart prosthetics.
Collapse
Affiliation(s)
- Huangshui Ma
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Shiyu Pu
- Department of Ultrasonography, West China Second University Hospital, Sichuan University, Chengdu 610044, Sichuan, China
| | - Hao Wu
- Department of Stomatology, The First Medical Centre, Chinese PLA General Hospital, Beijing 100853, China
| | - Shiyu Jia
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Jiamin Zhou
- School of Materials Science & Engineering, Sichuan University, Chengdu 610065, Sichuan, China
| | - Hao Wang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Wangta Ma
- College of Geography and Biological Information, Nanjing University of Posts and Telecommunications, Nanjing 210023, Jiangsu, China
| | - Zegao Wang
- School of Materials Science & Engineering, Sichuan University, Chengdu 610065, Sichuan, China
| | - Lei Yang
- School of Materials Science & Engineering, Sichuan University, Chengdu 610065, Sichuan, China
| | - Qiang Sun
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
- Sichuan Provincial Engineering Research Center of Oral Biomaterials, Chengdu 610041, Sichuan, China
| |
Collapse
|
22
|
Ai W, Chen F, Liu Z, Yuan X, Zhang L, He Y, Dong X, Fu H, Luo F, Deng M, Wang R, Wu J. Observation of giant room-temperature anisotropic magnetoresistance in the topological insulator β-Ag 2Te. Nat Commun 2024; 15:1259. [PMID: 38341422 DOI: 10.1038/s41467-024-45643-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 01/29/2024] [Indexed: 02/12/2024] Open
Abstract
Achieving room-temperature high anisotropic magnetoresistance ratios is highly desirable for magnetic sensors with scaled supply voltages and high sensitivities. However, the ratios in heterojunction-free thin films are currently limited to only a few percent at room temperature. Here, we observe a high anisotropic magnetoresistance ratio of -39% and a giant planar Hall effect (520 μΩ⋅cm) at room temperature under 9 T in β-Ag2Te crystals grown by chemical vapor deposition. We propose a theoretical model of anisotropic scattering - induced by a Dirac cone tilt and modulated by intrinsic properties of effective mass and sound velocity - as a possible origin. Moreover, small-size angle sensors with a Wheatstone bridge configuration were fabricated using the synthesized β-Ag2Te crystals. The sensors exhibited high output response (240 mV/V), high angle sensitivity (4.2 mV/V/°) and small angle error (<1°). Our work translates the developments in topological insulators to a broader impact on practical applications such as high-field magnetic and angle sensors.
Collapse
Affiliation(s)
- Wei Ai
- Tianjin Key Lab for Rare Earth Materials and Applications, Center for Rare Earth and Inorganic Functional Materials, Smart Sensor Interdisciplinary Science Center, School of Materials Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Fuyang Chen
- Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, School of Physics, South China Normal University, Guangzhou, 510006, China
| | - Zhaochao Liu
- Tianjin Key Lab for Rare Earth Materials and Applications, Center for Rare Earth and Inorganic Functional Materials, Smart Sensor Interdisciplinary Science Center, School of Materials Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Xixi Yuan
- Center of Quantum Materials and Devices & College of Physics, Chongqing University, Chongqing, 401331, China
| | - Lei Zhang
- Tianjin Key Lab for Rare Earth Materials and Applications, Center for Rare Earth and Inorganic Functional Materials, Smart Sensor Interdisciplinary Science Center, School of Materials Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Yuyu He
- Tianjin Key Lab for Rare Earth Materials and Applications, Center for Rare Earth and Inorganic Functional Materials, Smart Sensor Interdisciplinary Science Center, School of Materials Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Xinyue Dong
- Tianjin Key Lab for Rare Earth Materials and Applications, Center for Rare Earth and Inorganic Functional Materials, Smart Sensor Interdisciplinary Science Center, School of Materials Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Huixia Fu
- Center of Quantum Materials and Devices & College of Physics, Chongqing University, Chongqing, 401331, China.
| | - Feng Luo
- Tianjin Key Lab for Rare Earth Materials and Applications, Center for Rare Earth and Inorganic Functional Materials, Smart Sensor Interdisciplinary Science Center, School of Materials Science and Engineering, Nankai University, Tianjin, 300350, China.
| | - Mingxun Deng
- Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, School of Physics, South China Normal University, Guangzhou, 510006, China.
| | - Ruiqiang Wang
- Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, School of Physics, South China Normal University, Guangzhou, 510006, China
| | - Jinxiong Wu
- Tianjin Key Lab for Rare Earth Materials and Applications, Center for Rare Earth and Inorganic Functional Materials, Smart Sensor Interdisciplinary Science Center, School of Materials Science and Engineering, Nankai University, Tianjin, 300350, China.
| |
Collapse
|
23
|
Yang D, Shi XL, Li M, Nisar M, Mansoor A, Chen S, Chen Y, Li F, Ma H, Liang GX, Zhang X, Liu W, Fan P, Zheng Z, Chen ZG. Flexible power generators by Ag 2Se thin films with record-high thermoelectric performance. Nat Commun 2024; 15:923. [PMID: 38296942 PMCID: PMC10830499 DOI: 10.1038/s41467-024-45092-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 01/15/2024] [Indexed: 02/02/2024] Open
Abstract
Exploring new near-room-temperature thermoelectric materials is significant for replacing current high-cost Bi2Te3. This study highlights the potential of Ag2Se for wearable thermoelectric electronics, addressing the trade-off between performance and flexibility. A record-high ZT of 1.27 at 363 K is achieved in Ag2Se-based thin films with 3.2 at.% Te doping on Se sites, realized by a new concept of doping-induced orientation engineering. We reveal that Te-doping enhances film uniformity and (00l)-orientation and in turn carrier mobility by reducing the (00l) formation energy, confirmed by solid computational and experimental evidence. The doping simultaneously widens the bandgap, resulting in improved Seebeck coefficients and high power factors, and introduces TeSe point defects to effectively reduce the lattice thermal conductivity. A protective organic-polymer-based composite layer enhances film flexibility, and a rationally designed flexible thermoelectric device achieves an output power density of 1.5 mW cm-2 for wearable power generation under a 20 K temperature difference.
Collapse
Affiliation(s)
- Dong Yang
- Shenzhen Key Laboratory of Advanced Thin Films and Applications, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, Guangdong, 518060, China
- Univ Rennes, CNRS, ISCR (Istitut des Sciences Chimiques de Rennes) UMR 6226, Rennes, F-35000, France
| | - Xiao-Lei Shi
- School of Chemistry and Physics, ARC Research Hub in Zero-emission Power Generation for Carbon Neutrality, and Centre for Materials Science, Queensland University of Technology, Brisbane, QLD, 4001, Australia
| | - Meng Li
- School of Chemistry and Physics, ARC Research Hub in Zero-emission Power Generation for Carbon Neutrality, and Centre for Materials Science, Queensland University of Technology, Brisbane, QLD, 4001, Australia
| | - Mohammad Nisar
- Shenzhen Key Laboratory of Advanced Thin Films and Applications, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, Guangdong, 518060, China
| | - Adil Mansoor
- Shenzhen Key Laboratory of Advanced Thin Films and Applications, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, Guangdong, 518060, China
| | - Shuo Chen
- Shenzhen Key Laboratory of Advanced Thin Films and Applications, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, Guangdong, 518060, China
| | - Yuexing Chen
- Shenzhen Key Laboratory of Advanced Thin Films and Applications, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, Guangdong, 518060, China
| | - Fu Li
- Shenzhen Key Laboratory of Advanced Thin Films and Applications, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, Guangdong, 518060, China
| | - Hongli Ma
- Univ Rennes, CNRS, ISCR (Istitut des Sciences Chimiques de Rennes) UMR 6226, Rennes, F-35000, France
| | - Guang Xing Liang
- Shenzhen Key Laboratory of Advanced Thin Films and Applications, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, Guangdong, 518060, China
| | - Xianghua Zhang
- Univ Rennes, CNRS, ISCR (Istitut des Sciences Chimiques de Rennes) UMR 6226, Rennes, F-35000, France
| | - Weidi Liu
- School of Chemistry and Physics, ARC Research Hub in Zero-emission Power Generation for Carbon Neutrality, and Centre for Materials Science, Queensland University of Technology, Brisbane, QLD, 4001, Australia
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Ping Fan
- Shenzhen Key Laboratory of Advanced Thin Films and Applications, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, Guangdong, 518060, China
| | - Zhuanghao Zheng
- Shenzhen Key Laboratory of Advanced Thin Films and Applications, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, Guangdong, 518060, China.
| | - Zhi-Gang Chen
- School of Chemistry and Physics, ARC Research Hub in Zero-emission Power Generation for Carbon Neutrality, and Centre for Materials Science, Queensland University of Technology, Brisbane, QLD, 4001, Australia.
| |
Collapse
|
24
|
Dong J, Zhang D, Liu J, Jiang Y, Tan XY, Jia N, Cao J, Suwardi A, Zhu Q, Xu J, Li JF, Yan Q. N-Type Thermoelectric AgBiPbS 3 with Nanoprecipitates and Low Thermal Conductivity. Inorg Chem 2023; 62:17905-17912. [PMID: 37843461 DOI: 10.1021/acs.inorgchem.3c02777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2023]
Abstract
Thermoelectric sulfide materials are of particular interest due to the earth-abundant and cost-effective nature of sulfur. Here, we report a new n-type degenerate semiconductor sulfide, AgBiPbS3, which adopts a Fm3̅m structure with a narrow band gap of ∼0.32 eV. Despite the homogeneous distribution of elements at the scale of micrometer, Ag2S nanoprecipitates with dimensions of several nanometers were detected throughout the matrix. AgBiPbS3 exhibits a low room-temperature lattice thermal conductivity of 0.88 W m-1 K-1, owing to the intrinsic low lattice thermal conductivity of Ag2S and the effective scattering of phonons at nanoprecipitate boundaries. Moreover, compared to AgBiS2, AgBiPbS3 demonstrates a significantly improved weighted mobility of >16 cm2 V-1 s-1 at 300 K, leading to an enhanced PF of 1.6 μW cm-1 K-2 at 300 K. The superior electrical transport in AgBiPbS3 can be attributed to the high valley degeneracy of the L point (the conduction band minimum), which is contributed by the Pb s and Pb p orbitals. Further, Ga doping is found to be effective in modulating the Fermi levels of AgBiPbS3, leading to further enhancement of PF with a PFave of 2.7 μW cm-1 K-2 in the temperature range of 300-823 K. Consequently, a relatively high ZTave of 0.22 and a peak ZT of ∼0.4 at 823 K have been achieved in 3% Ga-doped AgBiPbS3, highlighting the potential of AgBiPbS3 as an n-type thermoelectric sulfide.
Collapse
Affiliation(s)
- Jinfeng Dong
- School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | - Dan Zhang
- Key Laboratory of High-precision Computation and Application of Quantum Field Theory of Hebei Province, College of Physics Science and Technology, Hebei University, Baoding 071002, P. R. China
| | - Jiawei Liu
- Institute of Sustainability for Chemicals, Energy and Environment, A*STAR, Singapore 627833, Singapore
| | - Yilin Jiang
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
| | - Xian Yi Tan
- Institute of Materials Research and Engineering, A*STAR, Singapore 138634, Singapore
| | - Ning Jia
- School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | - Jing Cao
- Institute of Materials Research and Engineering, A*STAR, Singapore 138634, Singapore
| | - Ady Suwardi
- Institute of Materials Research and Engineering, A*STAR, Singapore 138634, Singapore
| | - Qiang Zhu
- Institute of Sustainability for Chemicals, Energy and Environment, A*STAR, Singapore 627833, Singapore
| | - Jianwei Xu
- Institute of Sustainability for Chemicals, Energy and Environment, A*STAR, Singapore 627833, Singapore
- Institute of Materials Research and Engineering, A*STAR, Singapore 138634, Singapore
| | - Jing-Feng Li
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
| | - Qingyu Yan
- School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore
- Institute of Materials Research and Engineering, A*STAR, Singapore 138634, Singapore
| |
Collapse
|
25
|
Ang AKR, Yamazaki I, Hirata K, Singh S, Matsunami M, Takeuchi T. Development of Cu 2Se/Ag 2(S,Se)-Based Monolithic Thermoelectric Generators for Low-Grade Waste Heat Energy Harvesting. ACS APPLIED MATERIALS & INTERFACES 2023; 15:46962-46970. [PMID: 37768216 DOI: 10.1021/acsami.3c09823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/29/2023]
Abstract
With the ongoing climate and energy crises, thermoelectric conversion has slowly emerged as a clean and reliable alternative energy source for small Internet of Things (IoT) devices. Commercially available thermoelectric generators (TEGs) are typically composed of expensive and toxic Bi2Te3-based thermoelectric materials and require complicated and energy-intensive device assembly processes. As an alternative solution, we have developed a Ag- and Cu-chalcogenide-based monolithic TEG using simple, quick, and low-energy-cost device fabrication processes for low-grade waste heat recovery for energy harvesting. We used ductile Ag2S0.55Se0.45 and overstoichiometric Cu2.075Se, both possessing excellent transport properties around room temperature, with a zT value of ∼0.5 at 300 K. By optimizing the device fabrication process, we were successfully able to assemble the monolithic TEGs without any significant Ag- or Cu-ion migration and obtained a dense and robust device. Strategic optimization of the device structure was able to reduce the electrical contact resistance of the device, which resulted in increased power output. A maximum power density of 0.68 mW/cm2 at a ΔT = 30 K was obtained, which is comparable to a similar Bi2Te3-based monolithic TEG. These results show the potential of chalcogenide-based monolithic TEG as a simple and low-cost alternative to Bi2Te3-based TEGs for energy harvesting applications.
Collapse
Affiliation(s)
- Artoni Kevin R Ang
- Toyota Technological Institute, Nagoya, Aichi 468-8511, Japan
- MIRAI, Japan Science and Technology Agency, Kawaguchi, Saitama 332-0012, Japan
| | - Itsuki Yamazaki
- Toyota Technological Institute, Nagoya, Aichi 468-8511, Japan
| | - Keisuke Hirata
- Toyota Technological Institute, Nagoya, Aichi 468-8511, Japan
| | - Saurabh Singh
- Toyota Technological Institute, Nagoya, Aichi 468-8511, Japan
- Research Center for Smart Energy Technology, Toyota Technological Institute, Nagoya, Aichi 468-8511, Japan
| | - Masaharu Matsunami
- Toyota Technological Institute, Nagoya, Aichi 468-8511, Japan
- MIRAI, Japan Science and Technology Agency, Kawaguchi, Saitama 332-0012, Japan
- Research Center for Smart Energy Technology, Toyota Technological Institute, Nagoya, Aichi 468-8511, Japan
| | - Tsunehiro Takeuchi
- Toyota Technological Institute, Nagoya, Aichi 468-8511, Japan
- MIRAI, Japan Science and Technology Agency, Kawaguchi, Saitama 332-0012, Japan
- Research Center for Smart Energy Technology, Toyota Technological Institute, Nagoya, Aichi 468-8511, Japan
| |
Collapse
|
26
|
Gunatilleke WDCB, Ojo OP, Nolas GS. Thermal properties of cubic NaSbS 2: diffusion dominant thermal transport above the Debye temperature. Chem Commun (Camb) 2023; 59:10936-10939. [PMID: 37605517 DOI: 10.1039/d3cc03455k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2023]
Abstract
We elucidate the thermal properties of superionic conductors, which are of intense current interest for solid-state battery applications. The temperature-dependent thermal properties of superionic NaSbS2 were investigated by analyses of appropriate models revealing that a predominant contribution to thermal transport above the Debye temperature is from thermal diffusion.
Collapse
Affiliation(s)
| | - Oluwagbemiga P Ojo
- Department of Physics, University of South Florida, Tampa, FL 33620, USA.
| | - George S Nolas
- Department of Physics, University of South Florida, Tampa, FL 33620, USA.
| |
Collapse
|
27
|
Wang H, Feng X, Lu Z, Duan B, Yang H, Wu L, Zhou L, Zhai P, Snyder GJ, Li G, Zhang Q. Synergetic Enhancement of Strength-Ductility and Thermoelectric Properties of Ag 2 Te by Domain Boundaries. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2302969. [PMID: 37192421 DOI: 10.1002/adma.202302969] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 12/12/2012] [Indexed: 05/18/2023]
Abstract
Simultaneously improving the mechanical and thermoelectric (TE) properties is significant for the engineering applications of inorganic TE materials. In this work, a novel nanodomain strategy is developed for Ag2 Te compounds to yield 40% and 200% improved compressive strength (160 MPa) and fracture strain (16%) when compared to domain-free samples (115 MPa and 5.5%, respectively). The domained samples also achieve a 45% improvement in average ZT value. The domain boundaries (DBs) provide extra sites for dislocation nucleation while pinning the dislocation movement, resulting in superior strength and ductility. In addition, phonon scattering induced by DBs suppresses the lattice thermal conductivity of Ag2 Te and also reduces the weighted mobility. These findings provide new insights into grain and DB engineering for high-performance inorganic semiconductors with robust mechanical properties.
Collapse
Affiliation(s)
- Hongtao Wang
- Hubei Key Laboratory of Theory and Application of Advanced Materials Mechanics, Wuhan University of Technology, Wuhan, 430070, China
| | - Xiaobin Feng
- Hubei Key Laboratory of Theory and Application of Advanced Materials Mechanics, Wuhan University of Technology, Wuhan, 430070, China
| | - Zhongtao Lu
- Hubei Key Laboratory of Theory and Application of Advanced Materials Mechanics, Wuhan University of Technology, Wuhan, 430070, China
| | - Bo Duan
- Hubei Key Laboratory of Theory and Application of Advanced Materials Mechanics, Wuhan University of Technology, Wuhan, 430070, China
| | - Houjiang Yang
- Hubei Key Laboratory of Theory and Application of Advanced Materials Mechanics, Wuhan University of Technology, Wuhan, 430070, China
| | - Luoqi Wu
- Hubei Key Laboratory of Theory and Application of Advanced Materials Mechanics, Wuhan University of Technology, Wuhan, 430070, China
| | - Ling Zhou
- Hubei Key Laboratory of Theory and Application of Advanced Materials Mechanics, Wuhan University of Technology, Wuhan, 430070, China
| | - Pengcheng Zhai
- Hubei Key Laboratory of Theory and Application of Advanced Materials Mechanics, Wuhan University of Technology, Wuhan, 430070, China
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, China
| | - G Jeffrey Snyder
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL, 60208, USA
| | - Guodong Li
- Hubei Key Laboratory of Theory and Application of Advanced Materials Mechanics, Wuhan University of Technology, Wuhan, 430070, China
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, China
| | - Qingjie Zhang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, China
| |
Collapse
|
28
|
Youssef MS, Ahmed SI, Mohamed IMA, Abdel-Kareem MM. Biosynthesis, Spectrophotometric Follow-Up, Characterization, and Variable Antimicrobial Activities of Ag Nanoparticles Prepared by Edible Macrofungi. Biomolecules 2023; 13:1102. [PMID: 37509137 PMCID: PMC10377419 DOI: 10.3390/biom13071102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 07/05/2023] [Accepted: 07/08/2023] [Indexed: 07/30/2023] Open
Abstract
The biosynthesis of silver nanoparticles (Ag NPs) could play a significant role in the development of commercial antimicrobials. Herein, the biosynthesis of Ag NPs was studied using the edible mushroom Pleurotus floridanus, and following its formation, spectrophotometry was used to detect the best mushroom content, pH, temperature, and silver concentration. After that, the morphology was described via transmission electron microscopy (TEM), and nanoscale-size particles were found ranging from 11 to 13 nm. The best conditions of Ag content and pH were found at 1.0 mM and 11.0, respectively. In addition, the best mushroom extract concentration was found at 30 g/L. According to XRD analysis, the crystal structure of the formed amorphous Ag NPs is cubic with a space group of fm-3m and a space group number of 225. After that, the function groups at the surface of the prepared Ag NPs were studied via FTIR analysis, which indicated the presence of C=O, C-H, and O-H groups. These groups could indicate the presence of mushroom traces in the Ag NPs, which was confirmed via the amorphous characteristics of Ag NPs from the XRD analysis. The prepared Ag NPs have a high impact against different microorganisms, which could be attributed to the ability of Ag NPs to penetrate the cell bacterial wall.
Collapse
Affiliation(s)
- Mohamed S Youssef
- Botany and Microbiology Department, Faculty of Science, Sohag University, Sohag 82524, Egypt
| | - Sanaa Ibrahim Ahmed
- Botany and Microbiology Department, Faculty of Science, Sohag University, Sohag 82524, Egypt
| | - Ibrahim M A Mohamed
- Chemistry Department, Faculty of Science, Sohag University, Sohag 82524, Egypt
| | - Marwa M Abdel-Kareem
- Botany and Microbiology Department, Faculty of Science, Sohag University, Sohag 82524, Egypt
| |
Collapse
|
29
|
Li Z, Zhang J, Luo P, Chen J, Huang B, Sun Y, Luo J. Flexible Ag-S-Te System with Promising Room-Temperature Thermoelectric Performance. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37392426 DOI: 10.1021/acsami.3c05688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/03/2023]
Abstract
Silver chalcogenides demonstrate great potential as flexible thermoelectric materials due to their excellent ductility and tunable electrical and thermal transport properties. In this work, we report that the amorphous/crystalline phase ratio and thermoelectric properties of the Ag2SxTe1-x (x = 0.55-0.75) samples can be modified by altering the S content. The room-temperature power factor of the Ag2S0.55Te0.45 sample is 4.9 μW cm-1 K-2, and a higher power factor can be achieved by decreasing the carrier concentration as predicted by the single parabolic band model. The addition of a small amount of excessive Te into Ag2S0.55Te0.45 (Ag2S0.55Te0.45+y) not only enhances the power factor by decreasing the carrier concentration but also reduces the total thermal conductivity due to decreased electronic thermal conductivity. Owing to the effectively optimized carrier concentration, the thermoelectric power factor and dimensionless figure of merit zT of the sample with y = 0.007 reaches, respectively, 6.2 μW cm-1 K-2 and 0.39, while the excellent plastic deformability is well maintained, demonstrating its promising potential as a flexible thermoelectric material at room temperature.
Collapse
Affiliation(s)
- Zhili Li
- School of Materials Science and Engineering, Shanghai University, Shanghai 200444, China
| | - Jiye Zhang
- School of Materials Science and Engineering, Shanghai University, Shanghai 200444, China
| | - Pengfei Luo
- School of Materials Science and Engineering, Shanghai University, Shanghai 200444, China
| | - Jiayi Chen
- School of Materials Science and Engineering, Shanghai University, Shanghai 200444, China
| | - Bowen Huang
- School of Materials Science and Engineering, Shanghai University, Shanghai 200444, China
| | - Yuzhe Sun
- Materials Genome Institute, Shanghai University, Shanghai 200444, China
| | - Jun Luo
- School of Materials Science and Engineering, Shanghai University, Shanghai 200444, China
- School of Materials Science and Engineering, Tongji University, Shanghai 201804, China
| |
Collapse
|
30
|
Liang J, Zhang X, Wan C. From Brittle to Ductile: A Scalable and Tailorable All-Inorganic Semiconductor Foil through a Rolling Process toward Flexible Thermoelectric Modules. ACS APPLIED MATERIALS & INTERFACES 2022; 14:52017-52024. [PMID: 36356197 DOI: 10.1021/acsami.2c16338] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Inorganic thermoelectric (TE) materials with outstanding capacity for energy conversion are expected to be promising eco-friendly and renewable power sources, but they are always intrinsically brittle, restricting their development in flexible TE electronics. Therefore, we have developed a facile manufacturing method of large-scale all-inorganic silver chalcogenide foils and flexible TE generators in this work. A rolling process, as an effective and facile molding technique, is applied in ductile TE materials. The figure-of-merit for flexibility of this free-standing foil is in the range of 0.02-0.13, suggesting the superior flexibility of the all-inorganic TE foils. A high TE figure-of-merit ZT of 0.47 at room temperature is reached for Ag2S0.45Se0.45Te0.1, which is one of the most promising room-temperature ZTs among flexible TE materials. A proof-of-concept flexible TE generator based on silver chalcogenide foils achieves an open-circuit voltage of 1.19 mV and an output power density of 1.8 mW/m2 with a temperature difference of 2.7 °C across the TE leg, showing great potential in heat-to-electricity conversion.
Collapse
Affiliation(s)
- Jia Liang
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing100084, China
| | - Xuefei Zhang
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing100084, China
| | - Chunlei Wan
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing100084, China
| |
Collapse
|