1
|
Hu C, Dong Y, Shi Q, Long R, Xiong Y. Catalysis under electric-/magnetic-/electromagnetic-field coupling. Chem Soc Rev 2024. [PMID: 39698872 DOI: 10.1039/d4cs00869c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2024]
Abstract
The ultimate goal of catalysis is to control the cleavage and formation of chemical bonds at the molecular or even atomic level, enabling the customization of catalytic products. The essence of chemical bonding is the electromagnetic interaction between atoms, which makes it possible to directly manipulate the dynamic behavior of molecules and electrons in catalytic processes using external electric, magnetic and electromagnetic fields. In this tutorial review, we first introduce the feasibility and importance of field effects in regulating catalytic reaction processes and then outline the basic principles of electric-/magnetic-/electromagnetic-field interaction with matter, respectively. In each section, we further summarize the relevant important advances from two complementary perspectives: the macroscopic molecular motion (including translation, vibration and rotation) and the microscopic intramolecular electron state alteration (including spin polarization, transfer or excitation, and density of states redistribution). Finally, we discuss the challenges and opportunities for further development of catalysis under electric-/magnetic-/electromagnetic-field coupling.
Collapse
Affiliation(s)
- Canyu Hu
- Hefei National Research Center for Physical Sciences at the Microscale, Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Materials Science, and National Synchrotron Radiation Laboratory, School of Nuclear Science and Technology, University of Science and Technology of China, Hefei, Anhui 230026, China.
| | - Yueyue Dong
- Hefei National Research Center for Physical Sciences at the Microscale, Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Materials Science, and National Synchrotron Radiation Laboratory, School of Nuclear Science and Technology, University of Science and Technology of China, Hefei, Anhui 230026, China.
| | - Qianqi Shi
- Hefei National Research Center for Physical Sciences at the Microscale, Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Materials Science, and National Synchrotron Radiation Laboratory, School of Nuclear Science and Technology, University of Science and Technology of China, Hefei, Anhui 230026, China.
| | - Ran Long
- Hefei National Research Center for Physical Sciences at the Microscale, Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Materials Science, and National Synchrotron Radiation Laboratory, School of Nuclear Science and Technology, University of Science and Technology of China, Hefei, Anhui 230026, China.
| | - Yujie Xiong
- Hefei National Research Center for Physical Sciences at the Microscale, Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Materials Science, and National Synchrotron Radiation Laboratory, School of Nuclear Science and Technology, University of Science and Technology of China, Hefei, Anhui 230026, China.
| |
Collapse
|
2
|
Deepak, Saini D, Naskar S, Mandal D, Roy RK. Room Temperature Single-Component Organic Multiferroics with Large Magnetoelectric Coupling: Proficient Approach for Stray-Magnetic Field Harvesting. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2405248. [PMID: 39240077 DOI: 10.1002/smll.202405248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 08/17/2024] [Indexed: 09/07/2024]
Abstract
Magnetoelectric materials are highly desirable for technological applications due to their ability to produce electricity under a magnetic field. Among the various types of magnetoelectric materials studied, their organic counterparts provide an opportunity to develop solution-processable, flexible, lightweight, and wearable electronic devices. However, there is a rare choice of solution-processable, flexible, lightweight magnetoelectric materials which has tremendous technological interest. A supramolecular scaffold with precisely positioned structure-forming and functional units (electrical dipoles and magnetic spins) is designed so that self-assembly results in functional unit organization. Structure-forming segments allow these scaffolds to self-assemble into hierarchically ordered structures in nonpolar solvents, creating nanofibrous organogel networks. In particular, the xerogel derived from this organogel exhibits the highest magnetoelectric coupling coefficient (αME ≈ 216 mV Oe-1 cm-1) reported to date for organic materials. This is even greater than commonly envisioned composite materials made of piezoelectric polymers and inorganic magnets. This single-component organic multiferroic material displays ferroelectricity (Tc ≈ 46 °C) and paramagnetic behavior at room temperature. With this, it is demonstrated that the possibilities of effectively harvesting stray magnetic fields that are copiously available in the surroundings and wasted otherwise.
Collapse
Affiliation(s)
- Deepak
- Department of Chemical Sciences, Indian Institute of Science Education and Research Mohali, Knowledge City, Sector 81, SAS Nagar, Punjab, India
| | - Dalip Saini
- Quantum Materials and Devices Unit, Institute of Nanoscience and Technology, Knowledge City, Sector 81, SAS Nagar, Mohali, 140306, India
| | - Sudip Naskar
- Quantum Materials and Devices Unit, Institute of Nanoscience and Technology, Knowledge City, Sector 81, SAS Nagar, Mohali, 140306, India
| | - Dipankar Mandal
- Quantum Materials and Devices Unit, Institute of Nanoscience and Technology, Knowledge City, Sector 81, SAS Nagar, Mohali, 140306, India
| | - Raj Kumar Roy
- Department of Chemical Sciences, Indian Institute of Science Education and Research Mohali, Knowledge City, Sector 81, SAS Nagar, Punjab, India
| |
Collapse
|
3
|
Roy K, Datta R, Maitra S, Kumar P. Dimensionality-Tailored Ferromagnetism in Quasi-Two-Dimensional MnSe 2 for the Magnetoelectrochemical Hydrogen Evolution Reaction in Alkaline Media. ACS NANO 2024; 18:24569-24580. [PMID: 39166894 DOI: 10.1021/acsnano.4c09540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
The application of an external magnetic field to the cathode shows great promise in facilitating the hydrogen evolution reaction (HER) via water electrolysis. However, the criteria for designing such cathodes are still under investigation. Among various aspects, understanding the effect of different magnetic states of the cathode material is crucial, especially for the HER in alkaline conditions, which possesses different reaction steps compared to that in acidic conditions. Herein, we present MnSe2 as a cathode material for the magneto-electrocatalytic HER in alkaline media, utilizing its dimension-dependent magnetic phase transition. By tailoring its dimensionality, we have achieved room-temperature ferromagnetism in its quasi-two-dimensional (2D) form, whereas its bulk counterpart exhibits paramagnetism. Upon being subjected to a low external magnetic field of 0.4 T at -182 mV (vs RHE) overpotential, quasi-2D MnSe2 exhibited a 120% improvement in current density compared to itself at zero magnetic field, while negligible changes were observed in the bulk material. This performance enhancement under a magnetic field could originate from the higher spin polarization of the ferromagnetic catalyst. This work signifies a conceptual advancement of the catalyst's spin state in magnetically enhanced electrocatalytic reaction kinetics.
Collapse
Affiliation(s)
- Krishnendu Roy
- School of Materials Sciences, Indian Association for the Cultivation of Science, Kolkata700032, India
| | - Raktim Datta
- School of Materials Sciences, Indian Association for the Cultivation of Science, Kolkata700032, India
| | - Soumyajit Maitra
- School of Materials Sciences, Indian Association for the Cultivation of Science, Kolkata700032, India
| | - Praveen Kumar
- School of Materials Sciences, Indian Association for the Cultivation of Science, Kolkata700032, India
| |
Collapse
|
4
|
Sarma H, Mandal S, Borbora A, Das J, Kumar S, Manna U. Self-healable, Tolerant Superaerophobic Coating for Improving Electrochemical Hydrogen Production. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2309359. [PMID: 38243839 DOI: 10.1002/smll.202309359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 11/25/2023] [Indexed: 01/22/2024]
Abstract
Gas-evolving electrodes often suffer from the blocking of catalytic active sites-due to unwanted and unavoidable adhesion of generated gas bubbles, which elevates the overpotential for the electrochemical hydrogen evolution reaction (HER)- by raising the resistance of the electrode. Here, a catalyst-free and self-healable superaerophobic coating having ultra-low bubble adhesion is introduced for achieving significantly depleted overpotentials of 209 and 506 mV at both low (50 mA cm-2) and high (500 mA cm-2) current densities, respectively, compared to a bare nickel-foam electrode. The optimized coating ensured an early detachment of the generated tiny (0.8 ± 0.1 mm) gas bubble-and thus, prevented the undesired rise in resistance of the coated electrode. The systematic association of physical (i.e., ionic interactions, H-bonding, etc.) cross-linkage, β-amino ester type covalent cross-linkage and reinforced halloysite nano clay enables the design of such functional material embedded with essential characteristics-including improved mechanical (toughness of 63.7 kJ m-3, and tensile modulus of 26 kPa) property and chemical (extremes of pH (1 and 14), salinity, etc.) stability, rapid (<10 min) self-healing ability (even at alkaline condition) and desired bubble-wettability (bubble contact angle of 158.2 ± 0.2°) with ultralow force (4.2 ± 0.4 µN) of bubble adhesion.
Collapse
Affiliation(s)
- Hrisikesh Sarma
- Bio-Inspired Polymeric Materials Lab, Department of Chemistry, Indian Institute of Technology Guwahati, Kamrup, Assam, 781039, India
| | - Subhankar Mandal
- Centre for Nanotechnology, Indian Institute of Technology Guwahati, Kamrup, Assam, 781039, India
| | - Angana Borbora
- Bio-Inspired Polymeric Materials Lab, Department of Chemistry, Indian Institute of Technology Guwahati, Kamrup, Assam, 781039, India
| | - Jaysri Das
- Bio-Inspired Polymeric Materials Lab, Department of Chemistry, Indian Institute of Technology Guwahati, Kamrup, Assam, 781039, India
| | - Saurav Kumar
- Bio-Inspired Polymeric Materials Lab, Department of Chemistry, Indian Institute of Technology Guwahati, Kamrup, Assam, 781039, India
| | - Uttam Manna
- Bio-Inspired Polymeric Materials Lab, Department of Chemistry, Indian Institute of Technology Guwahati, Kamrup, Assam, 781039, India
- Centre for Nanotechnology, Indian Institute of Technology Guwahati, Kamrup, Assam, 781039, India
- School of Health Science & Technology, Indian Institute of Technology Guwahati, Kamrup, Assam, 781039, India
| |
Collapse
|
5
|
Zhong S, Guo X, Zhou A, Chen Z, Jin D, Fan M, Ma T. Fundamentals and Recent Progress in Magnetic Field Assisted CO 2 Capture and Conversion. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2305533. [PMID: 37786306 DOI: 10.1002/smll.202305533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 08/24/2023] [Indexed: 10/04/2023]
Abstract
CO2 capture and conversion technology are highly promising technologies that definitely play a part in the journey towards carbon neutrality. Releasing CO2 by mild stimulation and the development of high efficiency catalytic processes are urgently needed. The magnetic field, as a thermodynamic parameter independent of temperature and pressure, is vital in the enhancement of CO2 capture and conversion process. In this review, the recent progress of magnetic field-enhanced CO2 capture and conversion is comprehensively summarized. The theoretical fundamentals of magnetic field on CO2 adsorption, release and catalytic reduction process are discussed, including the magnetothermal, magnetohydrodynamic, spin selection, Lorentz forces, magnetoresistance and spin relaxation effects. Additionally, a thorough review of the current progress of the enhancement strategies of magnetic field coupled with a variety of fields (including thermal, electricity, and light) is summarized in the aspect of CO2 related process. Finally, the challenges and prospects associated with the utilization of magnetic field-assisted techniques in the construction of CO2 capture and conversion systems are proposed. This review offers a reference value for the future design of catalysts, mechanistic investigations, and practical implementation for magnetic field enhanced CO2 capture and conversion.
Collapse
Affiliation(s)
- Siyi Zhong
- College of Materials and Chemistry, China Jiliang University, Hangzhou, 310018, P. R. China
| | - Xiaolin Guo
- College of Materials and Chemistry, China Jiliang University, Hangzhou, 310018, P. R. China
- Institute of Catalysis, Zhejiang University, Hangzhou, 310028, P. R. China
| | - Ang Zhou
- College of Materials and Chemistry, China Jiliang University, Hangzhou, 310018, P. R. China
| | - Zi'ang Chen
- College of Materials and Chemistry, China Jiliang University, Hangzhou, 310018, P. R. China
| | - Dingfeng Jin
- College of Materials and Chemistry, China Jiliang University, Hangzhou, 310018, P. R. China
| | - Meiqiang Fan
- College of Materials and Chemistry, China Jiliang University, Hangzhou, 310018, P. R. China
| | - Tingli Ma
- College of Materials and Chemistry, China Jiliang University, Hangzhou, 310018, P. R. China
- Graduate School of Life Science and Systems Engineering, Kyushu Institute of Technology 2-4 Hibikino, Wakamatsu, Kitakyushu, 808-0135, Japan
| |
Collapse
|
6
|
Marelli E, Lyu J, Morin M, Leménager M, Shang T, Yüzbasi NS, Aegerter D, Huang J, Daffé ND, Clark AH, Sheptyakov D, Graule T, Nachtegaal M, Pomjakushina E, Schmidt TJ, Krack M, Fabbri E, Medarde M. Cobalt-free layered perovskites RBaCuFeO 5+δ (R = 4f lanthanide) as electrocatalysts for the oxygen evolution reaction. EES CATALYSIS 2024; 2:335-350. [PMID: 38222064 PMCID: PMC10782807 DOI: 10.1039/d3ey00142c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 10/30/2023] [Indexed: 01/16/2024]
Abstract
Co-based perovskite oxides are intensively studied as promising catalysts for electrochemical water splitting in an alkaline environment. However, the increasing Co demand by the battery industry is pushing the search for Co-free alternatives. Here we report a systematic study of the Co-free layered perovskite family RBaCuFeO5+δ (R = 4f lanthanide), where we uncover the existence of clear correlations between electrochemical properties and several physicochemical descriptors. Using a combination of advanced neutron and X-ray synchrotron techniques with ab initio DFT calculations we demonstrate and rationalize the positive impact of a large R ionic radius in their oxygen evolution reaction (OER) activity. We also reveal that, in these materials, Fe3+ is the transition metal cation the most prone to donate electrons. We also show that similar R3+/Ba2+ ionic radii favor the incorporation and mobility of oxygen in the layered perovskite structure and increase the number of available O diffusion paths, which have an additional, positive impact on both, the electric conductivity and the OER process. An unexpected result is the observation of a clear surface reconstruction exclusively in oxygen-rich samples (δ > 0), a fact that could be related to their superior OER activity. The encouraging intrinsic OER values obtained for the most active electrocatalyst (LaBaCuFeO5.49), together with the possibility of industrially producing this material in nanocrystalline form should inspire the design of other Co-free oxide catalysts with optimal properties for electrochemical water splitting.
Collapse
Affiliation(s)
- Elena Marelli
- Laboratory for Multiscale Materials Experiments, Paul Scherrer Institut CH-5232 Villigen PSI Switzerland
- Electrochemistry Laboratory, Paul Scherrer Institut CH-5232 Villigen PSI Switzerland
| | - Jike Lyu
- Laboratory for Multiscale Materials Experiments, Paul Scherrer Institut CH-5232 Villigen PSI Switzerland
| | - Mickaël Morin
- Laboratory for Multiscale Materials Experiments, Paul Scherrer Institut CH-5232 Villigen PSI Switzerland
- Excelsus Structural Solutions (Swiss) AG, PARK InnovAARE CH-5234 Villigen PSI Switzerland
| | - Maxime Leménager
- Laboratory for Multiscale Materials Experiments, Paul Scherrer Institut CH-5232 Villigen PSI Switzerland
| | - Tian Shang
- Laboratory for Multiscale Materials Experiments, Paul Scherrer Institut CH-5232 Villigen PSI Switzerland
- Key Laboratory of Polar Materials and Devices (MOE), School of Physics and Electronic Science, East China Normal University Shanghai China
| | - N Sena Yüzbasi
- High Performance Ceramics, EMPA, Swiss Federal Laboratories for Materials Science and Technology CH-8600 Dübendorf Switzerland
| | - Dino Aegerter
- Electrochemistry Laboratory, Paul Scherrer Institut CH-5232 Villigen PSI Switzerland
| | - Jinzhen Huang
- Electrochemistry Laboratory, Paul Scherrer Institut CH-5232 Villigen PSI Switzerland
| | - Niéli D Daffé
- Laboratory for Condensed Matter, Paul Scherrer Institut CH-5232 Villigen PSI Switzerland
| | - Adam H Clark
- Laboratory for Synchrotron Radiation and Femtochemistry, Paul Scherrer Institut CH-5232 Villigen PSI Switzerland
| | - Denis Sheptyakov
- Laboratory for Neutron Scattering and Imaging, Paul Scherrer Institut CH-5232 Villigen PSI Switzerland
| | - Thomas Graule
- High Performance Ceramics, EMPA, Swiss Federal Laboratories for Materials Science and Technology CH-8600 Dübendorf Switzerland
| | - Maarten Nachtegaal
- Laboratory for Synchrotron Radiation and Femtochemistry, Paul Scherrer Institut CH-5232 Villigen PSI Switzerland
| | - Ekaterina Pomjakushina
- Laboratory for Multiscale Materials Experiments, Paul Scherrer Institut CH-5232 Villigen PSI Switzerland
| | - Thomas J Schmidt
- Electrochemistry Laboratory, Paul Scherrer Institut CH-5232 Villigen PSI Switzerland
- Laboratory of Physical Chemistry, ETH Zürich CH-8093 Zürich Switzerland
| | - Matthias Krack
- Laboratory for Materials Simulations, Paul Scherrer Institut CH-5232 Villigen PSI Switzerland
| | - Emiliana Fabbri
- Electrochemistry Laboratory, Paul Scherrer Institut CH-5232 Villigen PSI Switzerland
| | - Marisa Medarde
- Laboratory for Multiscale Materials Experiments, Paul Scherrer Institut CH-5232 Villigen PSI Switzerland
| |
Collapse
|
7
|
Campbell S, Preciado Rivera N, Said S, Lam A, Weir L, Gour J, Smeets NMB, Hoare T. Injectable On-Demand Pulsatile Drug Delivery Hydrogels Using Alternating Magnetic Field-Triggered Polymer Glass Transitions. ACS APPLIED MATERIALS & INTERFACES 2023; 15:48892-48902. [PMID: 37816152 DOI: 10.1021/acsami.3c09299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/12/2023]
Abstract
Remote-controlled pulsatile or staged release has significant potential in a wide range of therapeutic treatments. However, most current approaches are hindered by the low resolution between the on- and off-states of drug release and the need for surgical implantation of larger controlled-release devices. Herein, we describe a method that addresses these limitations by combining injectable hydrogels, superparamagnetic iron oxide nanoparticles (SPIONs) that heat when exposed to an alternating magnetic field (AMF), and polymeric nanoparticles with a glass transition temperature (Tg) just above physiological temperature. Miniemulsion polymerization was used to fabricate poly(methyl methacrylate-co-butyl methacrylate) (p(MMA-co-BMA)) nanoparticles loaded with a model hydrophobic drug and tuned to have a Tg value just above physiological temperature (∼43 °C). Co-encapsulation of these drug-loaded nanoparticles with SPIONs inside a carbohydrate-based injectable hydrogel matrix (formed by rapid hydrazone cross-linking chemistry) enables injection and immobilization of the nanoparticles at the target site. Temperature cycling facilitated a 2.5:1 to 6:1 on/off rhodamine release ratio when the nanocomposites were switched between 37 and 45 °C; release was similarly enhanced by exposing the nanocomposite hydrogel to an AMF to drive heating, with enhanced release upon pulsing observed even 1 week after injection. Coupled with the apparent cytocompatibility of all of the nanocomposite components, these injectable nanocomposite hydrogels are promising as minimally invasive but remotely actuated release delivery vehicles capable of complex release kinetics with high on-off resolution.
Collapse
Affiliation(s)
- Scott Campbell
- Department of Chemical Engineering, McMaster University, 1280 Main St. W., Hamilton L8S 4L7, Ontario, Canada
| | - Nahieli Preciado Rivera
- Department of Chemical Engineering, McMaster University, 1280 Main St. W., Hamilton L8S 4L7, Ontario, Canada
| | - Somiraa Said
- Department of Chemical Engineering, McMaster University, 1280 Main St. W., Hamilton L8S 4L7, Ontario, Canada
- Department of Pharmaceutics, Alexandria University, Alexandria 21521, Egypt
| | - Angus Lam
- Department of Chemical Engineering, McMaster University, 1280 Main St. W., Hamilton L8S 4L7, Ontario, Canada
| | - Lauren Weir
- Department of Chemical Engineering, McMaster University, 1280 Main St. W., Hamilton L8S 4L7, Ontario, Canada
| | - Jared Gour
- Department of Chemical Engineering, McMaster University, 1280 Main St. W., Hamilton L8S 4L7, Ontario, Canada
| | - Niels M B Smeets
- Department of Chemical Engineering, McMaster University, 1280 Main St. W., Hamilton L8S 4L7, Ontario, Canada
| | - Todd Hoare
- Department of Chemical Engineering, McMaster University, 1280 Main St. W., Hamilton L8S 4L7, Ontario, Canada
| |
Collapse
|
8
|
Llacer-Wintle J, Renz J, Hertle L, Veciana A, von Arx D, Wu J, Bruna P, Vukomanovic M, Puigmartí-Luis J, Nelson BJ, Chen XZ, Pané S. The magnetopyroelectric effect: heat-mediated magnetoelectricity in magnetic nanoparticle-ferroelectric polymer composites. MATERIALS HORIZONS 2023. [PMID: 37185815 DOI: 10.1039/d2mh01361d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Magnetoelectricity enables a solid-state material to generate electricity under magnetic fields. Most magnetoelectric composites are developed through a strain-mediated route by coupling piezoelectric and magnetostrictive phases. However, the limited availability of high-performance magnetostrictive components has become a constraint for the development of novel magnetoelectric materials. Here, we demonstrate that nanostructured composites of magnetic and pyroelectric materials can generate electrical output, a phenomenon we refer to as the magnetopyroelectric (MPE) effect, which is analogous to the magnetoelectric effect in strain-mediated composite multiferroics. Our composite consists of magnetic iron oxide nanoparticles (IONPs) dispersed in a ferroelectric (and also pyroelectric) poly(vinylidene fluoride-trifluoroethylene) (P(VDF-TrFE)) matrix. Under a high-frequency low-magnitude alternating magnetic field, the IONPs generate heat through hysteresis loss, which stimulates the depolarization process of the pyroelectric polymer. This magnetopyroelectric approach creates a new opportunity to develop magnetoelectric materials for a wide range of applications.
Collapse
Affiliation(s)
- Joaquin Llacer-Wintle
- Multi-Scale Robotics Lab (MSRL), Institute of Robotics and Intelligent Systems (IRIS), ETH Zurich, CH-8092 Zurich, Switzerland.
| | - Jan Renz
- Multi-Scale Robotics Lab (MSRL), Institute of Robotics and Intelligent Systems (IRIS), ETH Zurich, CH-8092 Zurich, Switzerland.
| | - Lukas Hertle
- Multi-Scale Robotics Lab (MSRL), Institute of Robotics and Intelligent Systems (IRIS), ETH Zurich, CH-8092 Zurich, Switzerland.
| | - Andrea Veciana
- Multi-Scale Robotics Lab (MSRL), Institute of Robotics and Intelligent Systems (IRIS), ETH Zurich, CH-8092 Zurich, Switzerland.
| | - Denis von Arx
- Multi-Scale Robotics Lab (MSRL), Institute of Robotics and Intelligent Systems (IRIS), ETH Zurich, CH-8092 Zurich, Switzerland.
| | - Jiang Wu
- Multi-Scale Robotics Lab (MSRL), Institute of Robotics and Intelligent Systems (IRIS), ETH Zurich, CH-8092 Zurich, Switzerland.
| | - Pere Bruna
- Departament de Física, Universitat Politècnica de Catalunya, BarcelonaTech (UPC); Institut de Tècniques Energètiques (INTE); Barcelona Research Center in Multiscale Science and Engineering, Av. Eduard Maristany 16, 08019 Barcelona, Spain
| | - Marija Vukomanovic
- Biomaterials group, Advanced Materials Department, Jožef Stefan Institute, 1000 Ljubljana, Slovenia
| | - Josep Puigmartí-Luis
- Departament de Ciència dels Materials i Química Física, Institut de Química Teòrica i Computacional, 08028 Barcelona, Spain; Institució Catalana de Recerca i Estudis Avançats (ICREA), 08010 Barcelona, Spain
| | - Bradley J Nelson
- Multi-Scale Robotics Lab (MSRL), Institute of Robotics and Intelligent Systems (IRIS), ETH Zurich, CH-8092 Zurich, Switzerland.
| | - Xiang-Zhong Chen
- Multi-Scale Robotics Lab (MSRL), Institute of Robotics and Intelligent Systems (IRIS), ETH Zurich, CH-8092 Zurich, Switzerland.
| | - Salvador Pané
- Multi-Scale Robotics Lab (MSRL), Institute of Robotics and Intelligent Systems (IRIS), ETH Zurich, CH-8092 Zurich, Switzerland.
| |
Collapse
|
9
|
Kim E, Jeon S, Yang YS, Jin C, Kim JY, Oh YS, Rah JC, Choi H. A Neurospheroid-Based Microrobot for Targeted Neural Connections in a Hippocampal Slice. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2208747. [PMID: 36640750 DOI: 10.1002/adma.202208747] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 01/10/2023] [Indexed: 06/17/2023]
Abstract
Functional restoration by the re-establishment of cellular or neural connections remains a major challenge in targeted cell therapy and regenerative medicine. Recent advances in magnetically powered microrobots have shown potential for use in controlled and targeted cell therapy. In this study, a magnetic neurospheroid (Mag-Neurobot) that can form both structural and functional connections with an organotypic hippocampal slice (OHS) is assessed using an ex vivo model as a bridge toward in vivo application. The Mag-Neurobot consists of hippocampal neurons and superparamagnetic nanoparticles (SPIONs); it is precisely and skillfully manipulated by an external magnetic field. Furthermore, the results of patch-clamp recordings of hippocampal neurons indicate that neither the neuronal excitabilities nor the synaptic functions of SPION-loaded cells are significantly affected. Analysis of neural activity propagation using high-density multi-electrode arrays shows that the delivered Mag-Neurobot is functionally connected with the OHS. The applications of this study include functional verification for targeted cell delivery through the characterization of novel synaptic connections and the functionalities of transported and transplanted cells. The success of the Mag-Neurobot opens up new avenues of research and application; it offers a test platform for functional neural connections and neural regenerative processes through cell transplantation.
Collapse
Affiliation(s)
- Eunhee Kim
- IMsystem Co., Ltd., 333, Technojungang-daero, Hyeonpung-eup, Dalseong-gun, Daegu, 42988, Republic of Korea
| | - Sungwoong Jeon
- IMsystem Co., Ltd., 333, Technojungang-daero, Hyeonpung-eup, Dalseong-gun, Daegu, 42988, Republic of Korea
| | - Yoon-Sil Yang
- Emerging Infectious Disease Vaccines Division, National Institute of Food and Drug Safety Evaluation, 187, Osongsaengmyeong 2-ro, Osong-eup, Heungdeok-gu, Cheongju-si, Chungcheongbuk-do, 28159, Republic of Korea
- Korea Brain Research Institute, 61, Cheomdan-ro, Dong-gu, Daegu, 41062, Republic of Korea
| | - Chaewon Jin
- DGIST-ETH Microrobotics Research Center, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, 42988, Republic of Korea
| | - Jin-Young Kim
- DGIST-ETH Microrobotics Research Center, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, 42988, Republic of Korea
- Department of Robotics and Mechatronics Engineering, DGIST, Daegu, 42988, Republic of Korea
| | - Yong-Seok Oh
- Department of Brain Sciences, DGIST, Daegu, 42988, Republic of Korea
| | - Jong-Cheol Rah
- Korea Brain Research Institute, 61, Cheomdan-ro, Dong-gu, Daegu, 41062, Republic of Korea
- Department of Brain Sciences, DGIST, Daegu, 42988, Republic of Korea
| | - Hongsoo Choi
- DGIST-ETH Microrobotics Research Center, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, 42988, Republic of Korea
- Department of Robotics and Mechatronics Engineering, DGIST, Daegu, 42988, Republic of Korea
- Robotics and Mechatronics Engineering Research Center, DGIST, Daegu, 42988, Republic of Korea
| |
Collapse
|
10
|
Jiang X, Chen Y, Zhang X, You F, Yao J, Yang H, Xia BY. Magnetic Field-Assisted Construction and Enhancement of Electrocatalysts. CHEMSUSCHEM 2022; 15:e202201551. [PMID: 36193685 DOI: 10.1002/cssc.202201551] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 09/30/2022] [Indexed: 06/16/2023]
Abstract
Driven by the energy crisis and environmental pollution, developing sustainable clean energy is an effective strategy to realize carbon neutrality. Electrocatalytic reactions are crucial to sustainable energy conversion and storage technologies, and advanced electrocatalysts are required to improve the sluggish electrocatalytic reactions. The magnetic field, as a thermodynamic parameter independent of temperature and pressure, is vital in the construction of electrocatalysts and enhancement of electrocatalysis. In this Review, the recent progress of magnetic field-assisted construction of electrocatalysts and enhancement of electrocatalysis is comprehensively summarized. Originating from the structure-activity-performance relationship of electrocatalysts, the fundamentals of the magnetic field-induced construction of electrocatalysts, including the magnetocaloric effect, nucleation and growth, and phase regulation, have been illustrated. In addition, the magnetic effect on the electrocatalytic reaction, namely, the magnetothermal, magnetohydrodynamic and micro magnetohydrodynamic, Maxwell stress, Kelvin force, and spin selection effects, are discussed. Finally, the perspective and challenges for magnetic field-assisted construction of electrocatalysts and enhancement of electrocatalysis are proposed.
Collapse
Affiliation(s)
- Xueliang Jiang
- Hubei Key Laboratory of Plasma Chemistry and Advanced Materials, School of Materials Science and Engineering, Key Laboratory of Green Chemical Engineering Process of Ministry of Education, Wuhan Institute of Technology, No. 206 Guanggu 1st Road, Wuhan, 430205, P. R. China
| | - Yana Chen
- Hubei Key Laboratory of Plasma Chemistry and Advanced Materials, School of Materials Science and Engineering, Key Laboratory of Green Chemical Engineering Process of Ministry of Education, Wuhan Institute of Technology, No. 206 Guanggu 1st Road, Wuhan, 430205, P. R. China
| | - Xianzheng Zhang
- Hubei Key Laboratory of Plasma Chemistry and Advanced Materials, School of Materials Science and Engineering, Key Laboratory of Green Chemical Engineering Process of Ministry of Education, Wuhan Institute of Technology, No. 206 Guanggu 1st Road, Wuhan, 430205, P. R. China
| | - Feng You
- Hubei Key Laboratory of Plasma Chemistry and Advanced Materials, School of Materials Science and Engineering, Key Laboratory of Green Chemical Engineering Process of Ministry of Education, Wuhan Institute of Technology, No. 206 Guanggu 1st Road, Wuhan, 430205, P. R. China
| | - Junlong Yao
- Hubei Key Laboratory of Plasma Chemistry and Advanced Materials, School of Materials Science and Engineering, Key Laboratory of Green Chemical Engineering Process of Ministry of Education, Wuhan Institute of Technology, No. 206 Guanggu 1st Road, Wuhan, 430205, P. R. China
| | - Huan Yang
- Hubei Key Laboratory of Plasma Chemistry and Advanced Materials, School of Materials Science and Engineering, Key Laboratory of Green Chemical Engineering Process of Ministry of Education, Wuhan Institute of Technology, No. 206 Guanggu 1st Road, Wuhan, 430205, P. R. China
| | - Bao Yu Xia
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Hubei Key Laboratory of Material Chemistry and Service Failure, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan, 430074, P. R. China
| |
Collapse
|
11
|
Biz C, Gracia J, Fianchini M. Review on Magnetism in Catalysis: From Theory to PEMFC Applications of 3d Metal Pt-Based Alloys. Int J Mol Sci 2022; 23:14768. [PMID: 36499096 PMCID: PMC9739051 DOI: 10.3390/ijms232314768] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/18/2022] [Accepted: 11/22/2022] [Indexed: 11/29/2022] Open
Abstract
The relationship between magnetism and catalysis has been an important topic since the mid-20th century. At present time, the scientific community is well aware that a full comprehension of this relationship is required to face modern challenges, such as the need for clean energy technology. The successful use of (para-)magnetic materials has already been corroborated in catalytic processes, such as hydrogenation, Fenton reaction and ammonia synthesis. These catalysts typically contain transition metals from the first to the third row and are affected by the presence of an external magnetic field. Nowadays, it appears that the most promising approach to reach the goal of a more sustainable future is via ferromagnetic conducting catalysts containing open-shell metals (i.e., Fe, Co and Ni) with extra stabilization coming from the presence of an external magnetic field. However, understanding how intrinsic and extrinsic magnetic features are related to catalysis is still a complex task, especially when catalytic performances are improved by these magnetic phenomena. In the present review, we introduce the relationship between magnetism and catalysis and outline its importance in the production of clean energy, by describing the representative case of 3d metal Pt-based alloys, which are extensively investigated and exploited in PEM fuel cells.
Collapse
Affiliation(s)
- Chiara Biz
- MagnetoCat SL, General Polavieja 9 3I, 03012 Alicante, Spain
- Departamento de Química Inorgánica y Orgánica, Universitat Jaume I, Av. Vicente Sos Baynat s/n, 12071 Castellón de la Plana, Spain
| | - José Gracia
- MagnetoCat SL, General Polavieja 9 3I, 03012 Alicante, Spain
| | - Mauro Fianchini
- MagnetoCat SL, General Polavieja 9 3I, 03012 Alicante, Spain
| |
Collapse
|
12
|
Adsorption Mechanism and Electrochemical Characteristic of Methyl Blue onto Calcium Ferrite Nanosheets. ADSORPT SCI TECHNOL 2022. [DOI: 10.1155/2022/6999213] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
A rapid combustion process was applied to prepare CaFe2O4 nanomaterials using CaBr2·xH2O and Fe(NO3)3·9H2O as raw materials and CaFe2O4 nanomaterials were characterized by SEM, TEM, VSM, XRD, and FTIR techniques. The results showed that the prepared nanomaterials had a sheet-like structure, and for larger adsorption capacity of dyes, CaFe2O4 nanosheets prepared at 700°C for 2 h with average grain size was 93.3 nm, a thickness of 8.4 nm, and the saturation magnetization of 8.15 emu/g were employed as adsorbate for the removal of methyl blue (MB). The adsorption performance of MB onto CaFe2O4 nanosheets was investigated; CaFe2O4 nanosheets displayed favorable adsorption capacity, and the adsorption conformed to the pseudo-second-order model and the Freundlich model, which demonstrated that the adsorption process of MB on CaFe2O4 nanosheets belonged to multilayer chemisorption process. When the pH value reached 3, the adsorption capacity of MB by CaFe2O4 nanosheets kept maximum value of 478.07 mg/g; and after 5 regenerations, the removal efficiency of MB was reduced to 59.06% of the first time. The electrochemical behavior of MB onto the nanosheets was evaluated through CV in conjunction with EIS. The CaFe2O4 nanosheets revealed a promising prospect for the adsorption of dyes.
Collapse
|