1
|
Vo TH, Lam PK, Sheng YJ, Tsao HK. A functional eutectogel based on ultrahigh-molecular weight polymers: Physical entanglements in deep eutectic solvent. J Colloid Interface Sci 2025; 683:610-619. [PMID: 39706080 DOI: 10.1016/j.jcis.2024.12.126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Revised: 12/16/2024] [Accepted: 12/17/2024] [Indexed: 12/23/2024]
Abstract
Eutectogels have emerged as a promising material for wearable devices due to its superior ionic conductivity, non-volatility, and low cost. Despite numerous efforts, only a limited number of polymers and gelling mechanisms have been successfully employed in the fabrication of eutectogels. In this study, an effective three-dimensional network is developed based on the entanglements of polymer chains, facilitating the formation of an entangled eutectogel. The fabrication process involves directly dissolving ultra-high molecular weight polyvinylpyrrolidone (PVP) in deep eutectic solvent (reline) through a simple heating-cooling method. The resulting eutectogel, containing 40 wt% PVP, exhibits excellent stretchability of 1410 % strain, toughness of 544.8 kJ/m3, and ionic conductivity of 0.015 S/m. It also generates a reliable resistance signal suitable for strain-sensing applications. Furthermore, this entangled eutectogel displays self-healing capabilities, enabled by the diffusion and re-entanglement of polymer chains. This work not only demonstrates a facile fabrication approach for an entangled eutectogel but also provides the first investigation into employing long chain entanglements in the development of eutectogels.
Collapse
Affiliation(s)
- Trung Hieu Vo
- Department of Chemical and Materials Engineering, National Central University, Taoyuan 32001, Taiwan; Department of Chemistry, National Central University, Taoyuan 32001, Taiwan
| | - Phuc Khanh Lam
- Department of Chemical and Materials Engineering, National Central University, Taoyuan 32001, Taiwan; Department of Chemistry, National Central University, Taoyuan 32001, Taiwan
| | - Yu-Jane Sheng
- Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan.
| | - Heng-Kwong Tsao
- Department of Chemical and Materials Engineering, National Central University, Taoyuan 32001, Taiwan.
| |
Collapse
|
2
|
Kong B, Pan G, Wang M, Tang H, Lv Z, Sun S, Luo Y, You W, Xu W, Mao Y. Superior Multimodal Luminescence in a Stable Single-Host Nanomaterial with Large-Scale Synthesis for High-Level Anti-Counterfeiting and Encryption. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2415473. [PMID: 39804940 DOI: 10.1002/advs.202415473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 12/19/2024] [Indexed: 01/16/2025]
Abstract
Multimode luminescent materials exhibit tunable photon emissions under different excitation or stimuli channels, endowing them high encoding capacity and confidentiality for anti-counterfeiting and encryption. Achieving multimode luminescence into a stable single material presents a promising but remains a challenge. Here, the downshifting/upconversion emissions, color-tuning persistent luminescence (PersL), temperature-dependent multi-color emissions, and hydrochromism are integrated into Er3+ ions doped Cs2NaYbCl6 nanocrystals (NCs) by leveraging shallow defect levels and directed energy migration. The resulting NCs display strong static and dynamic colorful luminescence in response to ultraviolet, 980-nm laser, and X-ray. Additionally, the NCs exhibit distinct luminescent colors as the temperature increases from 330 to 430 K. Surprisingly, it also demonstrates the ability of the reversible emission modal and color in response to water. Theoretical calculations and experimental characterizations reveal that self-trapped exciton state (STEs), chlorine vacancy defects, and ladderlike 4f energy levels of Er3+ ions contribute to multimodal luminescence. More importantly, it has extremely remarkable environmental stability, which can be stored in the air for more than 18 months, showing promising commercial prospects. This work not only gives new insights into lanthanide-based metal halide NCs but also provides a new route for developing multimodal luminescent nanomaterials for anti-counterfeiting and encryption.
Collapse
Affiliation(s)
- Bingyin Kong
- Key Laboratory for High Efficiency Energy Conversion Science and Technology of Henan Province, International Joint Research Laboratory of New Energy Materials and Devices of Henan Province, School of Physics and Electronics, Henan University, Kaifeng, 475004, P. R. China
| | - Gencai Pan
- Key Laboratory for High Efficiency Energy Conversion Science and Technology of Henan Province, International Joint Research Laboratory of New Energy Materials and Devices of Henan Province, School of Physics and Electronics, Henan University, Kaifeng, 475004, P. R. China
| | - Mengke Wang
- Key Laboratory for High Efficiency Energy Conversion Science and Technology of Henan Province, International Joint Research Laboratory of New Energy Materials and Devices of Henan Province, School of Physics and Electronics, Henan University, Kaifeng, 475004, P. R. China
| | - Hongye Tang
- Key Laboratory for High Efficiency Energy Conversion Science and Technology of Henan Province, International Joint Research Laboratory of New Energy Materials and Devices of Henan Province, School of Physics and Electronics, Henan University, Kaifeng, 475004, P. R. China
| | - Zhipeng Lv
- Key Laboratory for High Efficiency Energy Conversion Science and Technology of Henan Province, International Joint Research Laboratory of New Energy Materials and Devices of Henan Province, School of Physics and Electronics, Henan University, Kaifeng, 475004, P. R. China
| | - Shiyu Sun
- Key Laboratory for High Efficiency Energy Conversion Science and Technology of Henan Province, International Joint Research Laboratory of New Energy Materials and Devices of Henan Province, School of Physics and Electronics, Henan University, Kaifeng, 475004, P. R. China
| | - Yuxin Luo
- Key Laboratory for High Efficiency Energy Conversion Science and Technology of Henan Province, International Joint Research Laboratory of New Energy Materials and Devices of Henan Province, School of Physics and Electronics, Henan University, Kaifeng, 475004, P. R. China
| | - Wenwu You
- Key Laboratory for High Efficiency Energy Conversion Science and Technology of Henan Province, International Joint Research Laboratory of New Energy Materials and Devices of Henan Province, School of Physics and Electronics, Henan University, Kaifeng, 475004, P. R. China
| | - Wen Xu
- Key Laboratory of New Energy and Rare Earth Resource Utilization of State Ethnic Affairs Commission, School of Physics and Materials Engineering, Dalian Minzu University, Dalian, 116600, P. R. China
| | - Yanli Mao
- Key Laboratory for High Efficiency Energy Conversion Science and Technology of Henan Province, International Joint Research Laboratory of New Energy Materials and Devices of Henan Province, School of Physics and Electronics, Henan University, Kaifeng, 475004, P. R. China
| |
Collapse
|
3
|
Wang Y, Sun X, Liu Q, Yu G. Functional gel materials for next-generation electrochromic devices and applications. Chem Soc Rev 2025. [PMID: 40019199 DOI: 10.1039/d4cs01256a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2025]
Abstract
Flexible, wearable, bistable displays, visualized energy storage devices and large-area smart windows based on electrochromic (EC) technology are regarded as promising next-generation sustainable display technologies, with the potential to improve people's lives by enabling low-energy consumption, vision-friendly, smart display, and energy-efficient building solutions. Recently, gel-based EC devices have gained considerable research interest and have emerged as an effective platform for EC applications due to their unique and enhanced properties. Compared to solid-state and liquid-state EC devices, gel-based EC systems offer superior processability and scalability, improved mechanical properties such as flexibility and stretchability, and high ionic conductivity without leakage or volatility issues. This review summarizes and analyzes the gelation chemistry in EC systems, focusing on their relationship with key EC properties of the device. Ionic conductivity, temperature adaptability, and mechanical characteristics of the gels such as stretchability, self-healing ability, flexibility, and viscosity are foundational for enabling diverse functional EC applications. We introduce the preparation methods of related gels for EC devices and then discuss the factors influencing the properties and the strategies for tuning them, including the control of morphology, network architecture, polymer skeletons, functional groups, and additives within ion gels. Representative and latest applications of gel-based electrolytes in EC devices for various promising displays were then presented. Finally, we critically analyze the remaining challenges that need to be addressed to enable the practical deployment of gel-based EC devices and offer more insights into future directions for advancing EC technologies.
Collapse
Affiliation(s)
- Yuyang Wang
- Materials Science and Engineering Program and Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, TX 78712, USA.
| | - Xiaoyan Sun
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, China.
| | - Quanbing Liu
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, China.
| | - Guihua Yu
- Materials Science and Engineering Program and Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, TX 78712, USA.
| |
Collapse
|
4
|
Li LY, Tan QW, Wang XL, Wang YZ, Song F. Bioinspired Hierarchical Photonic Structures with Controllable Polarization and Color for Optical-Multiplexed Information Encryption. ACS NANO 2025; 19:6426-6436. [PMID: 39912931 DOI: 10.1021/acsnano.4c16597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2025]
Abstract
Optical multiplexing technologies, which integrate multiple optical channels based on photonic structures, offer a significant solution for high-capacity information storage and advanced encryption. However, these photonic materials are limited by their inherent and unswitchable chiral structures, which result in a restricted control over the spatial distribution of light. Here, we propose to construct an integrating optical-multiplexed structure using tunable 1D photonic crystals and orientation texture via a combined self-assembly and shear-aligning approach. In this photonic system, the created diverse orientation structure of ethyl cellulose (EC) offers a wide range of light modulations through phase retardation. When combined with the chromatic layer formed by the self-assembly of EC, tunable wavelength and polarization are achieved. Notably, due to the identical components of the light modulation and chiral photonic crystal layers, the traceless interface between them ensures both high confidentiality and durability. By leveraging these hierarchical structures, photonic slices with well-defined polarization states and structural colors are created, enabling the construction of an advanced photonic platform for multiplexed information storage and multichannel 3D and 4D encryption. This study presents a promising strategy to develop traceless, highly confidential photonic units with controllable polarization and color for advanced encryption technologies.
Collapse
Affiliation(s)
- Lin-Yue Li
- The Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials (MoE), National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), State Key Laboratory of Polymer Materials Engineering, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Qiang-Wu Tan
- The Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials (MoE), National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), State Key Laboratory of Polymer Materials Engineering, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Xiu-Li Wang
- The Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials (MoE), National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), State Key Laboratory of Polymer Materials Engineering, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Yu-Zhong Wang
- The Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials (MoE), National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), State Key Laboratory of Polymer Materials Engineering, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Fei Song
- The Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials (MoE), National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), State Key Laboratory of Polymer Materials Engineering, College of Chemistry, Sichuan University, Chengdu 610064, China
| |
Collapse
|
5
|
Zeng W, Jiang Q, Ruan C, Ni W, Zhu C, Zeng X, Shi X, You R, Ma N, Tsai FC. A rewritable and shape memory hydrogel doped with fluorescein-functionalized ZIF-8 for information storage and fluorescent anti-counterfeiting. Talanta 2025; 283:127088. [PMID: 39461041 DOI: 10.1016/j.talanta.2024.127088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 09/27/2024] [Accepted: 10/20/2024] [Indexed: 10/29/2024]
Abstract
The emergence of stimuli-responsive fluorescence anti-counterfeiting technology has garnered increasing attention in the era of intelligent internet. Smart fluorescent hydrogels combine the characteristics of luminous materials with the unique structure of hydrogels, offering the potential for dynamic reversible erasing and multi-tiered data encryption. In this work, a fluorescent hydrogel was constructed by zeolitic imidazolate framework-8 loaded with fluorescein and then mixed with polyvinyl alcohol hydrogel, sodium carboxymethyl cellulose and borax, which could be used for image hiding in visible light. The reversible bonds cross-linked fluorescent hydrogel was stretchable and self-healing with a three-dimensional network structure. The hydrogel presented bright green fluorescence under 365 nm UV light, which was quenched by adding copper ions. Meanwhile, the imprint of the hydrogel could be cleared by L-Cysteine and repeatedly recorded information many times. The alkali-induced shape memory capability was further utilized to achieve multi-tiered data encryption by deforming it to a 3D-specific shape through folding. The rewritable and multi-dimensional encrypted hydrogel is expected to improve data security and reduce resource consumption.
Collapse
Affiliation(s)
- Wenyan Zeng
- Hubei Key Laboratory of Polymer Materials, Key Laboratory for the Green Preparation and Application of Functional Materials (Ministry of Education), Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, School of Materials Science and Engineering, Hubei University, Wuhan, 430062, China.
| | - Qingyuan Jiang
- Hubei Key Laboratory of Polymer Materials, Key Laboratory for the Green Preparation and Application of Functional Materials (Ministry of Education), Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, School of Materials Science and Engineering, Hubei University, Wuhan, 430062, China.
| | - Chaofan Ruan
- Hubei Key Laboratory of Polymer Materials, Key Laboratory for the Green Preparation and Application of Functional Materials (Ministry of Education), Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, School of Materials Science and Engineering, Hubei University, Wuhan, 430062, China.
| | - Wang Ni
- Hubei Key Laboratory of Polymer Materials, Key Laboratory for the Green Preparation and Application of Functional Materials (Ministry of Education), Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, School of Materials Science and Engineering, Hubei University, Wuhan, 430062, China.
| | - Changchang Zhu
- Hubei Key Laboratory of Polymer Materials, Key Laboratory for the Green Preparation and Application of Functional Materials (Ministry of Education), Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, School of Materials Science and Engineering, Hubei University, Wuhan, 430062, China.
| | - Xueling Zeng
- Hubei Key Laboratory of Polymer Materials, Key Laboratory for the Green Preparation and Application of Functional Materials (Ministry of Education), Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, School of Materials Science and Engineering, Hubei University, Wuhan, 430062, China.
| | - Xuan Shi
- Hubei Key Laboratory of Polymer Materials, Key Laboratory for the Green Preparation and Application of Functional Materials (Ministry of Education), Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, School of Materials Science and Engineering, Hubei University, Wuhan, 430062, China.
| | - Rongke You
- Hubei Key Laboratory of Polymer Materials, Key Laboratory for the Green Preparation and Application of Functional Materials (Ministry of Education), Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, School of Materials Science and Engineering, Hubei University, Wuhan, 430062, China.
| | - Ning Ma
- Hubei Key Laboratory of Polymer Materials, Key Laboratory for the Green Preparation and Application of Functional Materials (Ministry of Education), Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, School of Materials Science and Engineering, Hubei University, Wuhan, 430062, China; State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, 430062, China.
| | - Fang-Chang Tsai
- Hubei Key Laboratory of Polymer Materials, Key Laboratory for the Green Preparation and Application of Functional Materials (Ministry of Education), Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, School of Materials Science and Engineering, Hubei University, Wuhan, 430062, China.
| |
Collapse
|
6
|
Xie J, Yue C, Chen S, Jiang Z, Wu S, Yang W, Zhang K, Chen T, Wang Y, Lu W. Electrothermally powered synergistic fluorescence-colour/3D-shape changeable polymer gel systems for rewritable and programmable information display. MATERIALS HORIZONS 2025; 12:487-498. [PMID: 39480658 DOI: 10.1039/d4mh01172d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2024]
Abstract
Intelligent luminescent materials for rewritable and programmable information display have long been expected to be used to address potential environmental concerns stemming from the extensive use of disposable displays. However, most reported luminescence-colour changeable examples are chemically responsive and not well programmed to sequentially deliver different information within a single system. Additionally, they may suffer from residual chemical accumulation caused by the repeated addition of chemical inks and usually have poor rewritability. Herein, we draw inspiration from the bioelectricity-triggered information display mechanism of chameleon skin to report a robust electrothermally powered polymer gel actuator consisting of one soft conductive graphene/PDMS film and one humidity-responsive fluorescence-colour changeable CD-functionalized polymer (PAHCDs) gel layer. Owing to the good electrocaloric effect of the bottom graphene film and excellent hygroscopicity of the top PAHCDs gel layer, the as-designed actuator could be facilely controlled to exhibit reversible and synergistic 3D-shape/fluorescence-colour changeable behaviours in response to alternating electricity and humidity stimuli. On this basis, robust rewritable information display systems are fabricated, which enable not only on-demand delivery of written information, but also facile rewriting of lots of different information by the synergization of electroheat/humidity-triggered local 3D-deformation and fluorescence-colour changes. This work opens new avenues of research into rewritable information display and potentially inspires the future development of intelligent luminescent materials.
Collapse
Affiliation(s)
- Junni Xie
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, People's Republic of China.
- School of Chemical Sciences, University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, People's Republic of China
| | - Chaojun Yue
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, People's Republic of China.
- College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, People's Republic of China
| | - Shaohuang Chen
- Sustainable Materials and Chemistry, Department of Wood Technology and Wood-based Composites, University of Göttingen, Göttingen 37077, Germany.
| | - Zhenyi Jiang
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, People's Republic of China.
- School of Chemical Sciences, University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, People's Republic of China
| | - Shuangshuang Wu
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, People's Republic of China.
- School of Chemical Sciences, University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, People's Republic of China
| | - Weiqing Yang
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, People's Republic of China.
- School of Chemical Sciences, University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, People's Republic of China
| | - Kai Zhang
- Sustainable Materials and Chemistry, Department of Wood Technology and Wood-based Composites, University of Göttingen, Göttingen 37077, Germany.
| | - Tao Chen
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, People's Republic of China.
- School of Chemical Sciences, University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, People's Republic of China
- College of Material Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology Ministry of Education, Hangzhou Normal University, Hangzhou 311121, People's Republic of China
| | - Yunan Wang
- Zhejiang Key Laboratory of Advanced Fuel Cells and Electrolyzers Technology, Ningbo Institute of Materials Technology and Engineering, CAS, 1219 Zhongguan Road, Ningbo 315201, People's Republic of China.
| | - Wei Lu
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, People's Republic of China.
- School of Chemical Sciences, University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, People's Republic of China
- College of Material Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology Ministry of Education, Hangzhou Normal University, Hangzhou 311121, People's Republic of China
| |
Collapse
|
7
|
Shi J, Wang Z, Jia N, Wang M, Xu Y, Li X, Shao J. Patterned Lead-Free Double Perovskite/Polymer Fluorescent Piezoelectric Composite Films for Advanced Anti-Counterfeiting. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2409692. [PMID: 39527668 PMCID: PMC11714162 DOI: 10.1002/advs.202409692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 11/03/2024] [Indexed: 11/16/2024]
Abstract
The limitations of single fluorescent anti-counterfeiting technologies necessitate the development of more sophisticated encryption methods to protect information and data. Traditional optical anti-counterfeiting encryption techniques, which rely on light sources with varying wavelengths to identify information, are now insufficient to meet contemporary security demands due to their restricted response to a narrow range of wavelengths. In this study, the fabrication of patterned, lead-free double perovskite (DP)/poly(vinylidene fluoride-trifluoroethylene) (P(VDF-TrFE)) fluorescent piezoelectric composite films (CFs) is reported. These CFs integrate the up-conversion and down-conversion photoluminescent properties of Cs2Na0.8Ag0.2BiCl6:Yb3+/Er3+ DP crystals with the piezoelectric properties of P(VDF-TrFE) film, facilitating multi-modal information protection. The fluorescent signals of different concealed information in CFs are observable under the excitation of 365 nm UV light and 980 nm infrared (IR) light. Additionally, external pressure applied at various locations on the CFs generates corresponding electrical signals, thereby providing triple-layer encryption for protected information. A multifunctional anti-counterfeiting device has been further developed by integrating patterned optical and electrical responses onto flexible CFs, achieving synergistic protection of information security in cross fields and bringing a significant advancement to the high-level anti-counterfeiting market.
Collapse
Affiliation(s)
- Jindou Shi
- Electronic Materials Research LaboratoryKey Laboratory of the Ministry of Education International Center for Dielectric Research&Shaanxi Engineering Research Center of Advanced Energy Materials and DevicesXi'an Jiaotong UniversityXi'an710049China
| | - Zeyu Wang
- Frontier Institute of Science and Technology (FIST)Xi'an Jiaotong UniversityXi'an710049China
- Micro‐ and Nano‐technology Research Center of State Key Laboratory for Manufacturing Systems EngineeringXi'an Jiaotong UniversityXi'an710049China
| | - Nanxiang Jia
- Electronic Materials Research LaboratoryKey Laboratory of the Ministry of Education International Center for Dielectric Research&Shaanxi Engineering Research Center of Advanced Energy Materials and DevicesXi'an Jiaotong UniversityXi'an710049China
| | - Minqiang Wang
- Electronic Materials Research LaboratoryKey Laboratory of the Ministry of Education International Center for Dielectric Research&Shaanxi Engineering Research Center of Advanced Energy Materials and DevicesXi'an Jiaotong UniversityXi'an710049China
| | - Youlong Xu
- Electronic Materials Research LaboratoryKey Laboratory of the Ministry of Education International Center for Dielectric Research&Shaanxi Engineering Research Center of Advanced Energy Materials and DevicesXi'an Jiaotong UniversityXi'an710049China
| | - Xiangming Li
- Frontier Institute of Science and Technology (FIST)Xi'an Jiaotong UniversityXi'an710049China
- Micro‐ and Nano‐technology Research Center of State Key Laboratory for Manufacturing Systems EngineeringXi'an Jiaotong UniversityXi'an710049China
| | - Jinyou Shao
- Frontier Institute of Science and Technology (FIST)Xi'an Jiaotong UniversityXi'an710049China
- Micro‐ and Nano‐technology Research Center of State Key Laboratory for Manufacturing Systems EngineeringXi'an Jiaotong UniversityXi'an710049China
| |
Collapse
|
8
|
Niu P, Geng J, Jiang Q, Wang Y, Sang J, Wang Z, Shi L. Femtosecond Laser-Induced Recrystallized Nanotexturing for Identity Document Security With Physical Unclonable Functions. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2411449. [PMID: 39527669 PMCID: PMC11714173 DOI: 10.1002/advs.202411449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 10/21/2024] [Indexed: 11/16/2024]
Abstract
Counterfeit identity (ID) documents pose a serious threat to personal credit and national security. As a promising candidate, optical physical unclonable functions (PUFs) offer a robust defense mechanism against counterfeits. Despite the innovations in chemically synthesized PUFs, challenges persist, including harmful chemical treatments, low yields, and incompatibility of reaction conditions with the ID document materials. More notably, surface relief nanostructures for PUFs, such as wrinkles, are still at risk of being replicated through scanning lithography or nanoimprint. Here, a femtosecond laser-induced recrystallized silicon nanotexture is reported as latent PUF nanofingerprint for document anti-counterfeiting. With femtosecond laser irradiation, nanotextures spontaneously emerge within 100 ms of exposure. By introducing a low-absorption metal layer, surface plasmon polariton waves are excited on the silicon-metal multilayer nanofilms with long-range boosting, ensuring the uniqueness and non-replicability of the final nanotextures. Furthermore, the femtosecond laser induces a phase transition in the latent nanotexture from amorphous to polycrystalline state, rather than creating replicable relief wrinkles. The random nanotextures are easily identifiable through optical microscopy and Raman imaging, yet they remain undetectable by surface characterization methods such as scanning electron and atomic force microscopies. This property significantly hinders counterfeiting efforts, as it prevents the precise replication of these nanostructures.
Collapse
Affiliation(s)
- Panpan Niu
- Hangzhou Institute of TechnologyXidian UniversityHangzhou311231China
| | - Jiao Geng
- Hangzhou Institute of TechnologyXidian UniversityHangzhou311231China
- School of Optoelectronic EngineeringXidian UniversityXi'an710126China
| | - Qilin Jiang
- Hangzhou Institute of TechnologyXidian UniversityHangzhou311231China
| | - Yangyundou Wang
- Hangzhou Institute of TechnologyXidian UniversityHangzhou311231China
| | - Jianxin Sang
- Shanghai Guanzhong Optical Technology Co., Ltd.Shanghai201900China
| | - Zhenghong Wang
- Shanghai Guanzhong Optical Technology Co., Ltd.Shanghai201900China
| | - Liping Shi
- Hangzhou Institute of TechnologyXidian UniversityHangzhou311231China
- School of Optoelectronic EngineeringXidian UniversityXi'an710126China
| |
Collapse
|
9
|
Xie X, Bai W, Wang N, Qiu Z, Song X, Gao Y, Li B. Mechano-Responsive Fluorescent Gel based on Tetraphenylethylene-Crosslinked Dynamic Covalent Network. Chemistry 2024; 30:e202403623. [PMID: 39508827 DOI: 10.1002/chem.202403623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 11/05/2024] [Accepted: 11/07/2024] [Indexed: 11/15/2024]
Abstract
The rapid development of mechano-responsive fluorescence has been driven by its promising applications in the fields of sensors, information encryption, and anti-counterfeiting. However, designing mechanophores that can exhibit fluorescence changes under relatively low force remains challenging. In this study, a mechano-responsive fluorescent gel was developed using a tetraphenylethylene derivative as a cross-linker, producing a dynamic covalent network that exhibits increased fluorescence under tensile stress. Based on controlled experimental studies and molecular modeling calculations, the fluorescence enhancement by external forces was attributed to the restriction of intramolecular motion in tetraphenylethylene by macromolecular chain orientation. In time-dependent experiments, due to the exchange of dynamic covalent bonds, the stress relaxation and the decrease in fluorescence intensity of the gel at fixed strain occurred simultaneously, demonstrating the potential of this fluorescence as an indication of internal stress through aggregation-induced emission (AIE) type mechanophore.
Collapse
Affiliation(s)
- Xiaohe Xie
- College of New Energy and Materials, China University of Petroleum, Beijing, 102249, China
| | - Weiwei Bai
- College of New Energy and Materials, China University of Petroleum, Beijing, 102249, China
| | - Nanqiao Wang
- College of New Energy and Materials, China University of Petroleum, Beijing, 102249, China
| | - Ziyan Qiu
- College of New Energy and Materials, China University of Petroleum, Beijing, 102249, China
| | - Xianxiao Song
- College of New Energy and Materials, China University of Petroleum, Beijing, 102249, China
| | - Yuhao Gao
- College of New Energy and Materials, China University of Petroleum, Beijing, 102249, China
| | - Botian Li
- College of New Energy and Materials, China University of Petroleum, Beijing, 102249, China
| |
Collapse
|
10
|
Wu Y, Shen Y, Han J, Théato P, Le X, Chen T. Brush-Like Polymeric Gels Enabled Photonic Crystals toward Ultrasensitive Cosolvent Chromism. Angew Chem Int Ed Engl 2024; 63:e202414136. [PMID: 39161230 DOI: 10.1002/anie.202414136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 08/16/2024] [Accepted: 08/17/2024] [Indexed: 08/21/2024]
Abstract
Responsive photonic crystals (RPCs) exhibit dynamic chromism upon trigger by various solvents, showing potential applications in qualitative identification and quantitative analysis of multicomponent solvents. However, distinguishing similar solvents, especially traces of cosolvents, remains challenging due to the limited sensitivity of RPCs. To address this, we herein introduce brush-like polymeric gels inside photonic crystals, forming a brush-like polymeric photonic gel (BPPG) that can trace tiny component changes. In this BPPG system, the acrylate backbones and polyethylene glycol (PEG) side-chains stretch incrementally due to the cosolvency of ethanol-water mixtures, resulting in highly sensitive chromatic responses within ethanol-rich concentrations. With water content varying slightly from 0 to 1 vol %, the reflection wavelength of BPPG can sharply redshift over 30 nm, leading to very noticeable changes in structural color. This enhanced sensitivity makes BPPG suitable for real-time, in situ purity monitoring of absolute ethanol during storage, transportation, and other applications.
Collapse
Affiliation(s)
- Yue Wu
- Key Laboratory of Advanced Marine Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, 315201, Ningbo, China
| | - Ying Shen
- Key Laboratory of Advanced Marine Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, 315201, Ningbo, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Junyi Han
- Key Laboratory of Advanced Marine Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, 315201, Ningbo, China
| | - Patrick Théato
- Soft Matter Synthesis Laboratory, Institute for Biological Interfaces III, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
- Institute for Chemical Technology and Polymer Chemistry, Karlsruhe Institute of Technology, Engesser Str. 18, 76131, Karlsruhe, Germany
| | - Xiaoxia Le
- Key Laboratory of Advanced Marine Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, 315201, Ningbo, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Tao Chen
- Key Laboratory of Advanced Marine Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, 315201, Ningbo, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, 100049, Beijing, China
- College of Material Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, 311121, Hangzhou, Zhejiang, China
| |
Collapse
|
11
|
Wang M, Jiang J, Liang S, Sui C, Wu S. Functional Semi-Interpenetrating Polymer Networks. Macromol Rapid Commun 2024; 45:e2400539. [PMID: 39212315 DOI: 10.1002/marc.202400539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 08/01/2024] [Indexed: 09/04/2024]
Abstract
Semi-interpenetrating polymer networks (SIPNs) have garnered significant interest due to their potential applications in self-healing materials, drug delivery systems, electrolytes, functional membranes, smart gels and, toughing. SIPNs combine the characteristics of physical cross-linking with advantageous chemical properties, offering broad application prospects in materials science and engineering. This perspective introduces the history of semi-interpenetrating polymer networks and their diverse applications. Additionally, the ongoing challenges associated with traditional semi-interpenetrating polymer materials are discussed and provide an outlook on future advancements in novel functional SIPNs.
Collapse
Affiliation(s)
- Minghao Wang
- Hefei National Research Center for Physical Sciences at the Microscale, CAS Key Laboratory of Soft Matter Chemistry, Anhui Key Laboratory of Optoelectronic Science and Technology, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Jiawei Jiang
- Hefei National Research Center for Physical Sciences at the Microscale, CAS Key Laboratory of Soft Matter Chemistry, Anhui Key Laboratory of Optoelectronic Science and Technology, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Shuofeng Liang
- Hefei National Research Center for Physical Sciences at the Microscale, CAS Key Laboratory of Soft Matter Chemistry, Anhui Key Laboratory of Optoelectronic Science and Technology, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Cong Sui
- Hefei National Research Center for Physical Sciences at the Microscale, CAS Key Laboratory of Soft Matter Chemistry, Anhui Key Laboratory of Optoelectronic Science and Technology, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, 230026, China
- Department of Orthopedics, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - Si Wu
- Hefei National Research Center for Physical Sciences at the Microscale, CAS Key Laboratory of Soft Matter Chemistry, Anhui Key Laboratory of Optoelectronic Science and Technology, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, 230026, China
| |
Collapse
|
12
|
Deng XW, Liu S, Fan C, Liu H, Zou Y, He HF, Deng DD, Pu S, Chen Z. Tetraphenylethene-based mononuclear aggregation-induced emission (AIE)-active mechanofluorochromism gold(I) complexes with different auxiliary ligands. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 321:124712. [PMID: 38950476 DOI: 10.1016/j.saa.2024.124712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 06/09/2024] [Accepted: 06/24/2024] [Indexed: 07/03/2024]
Abstract
In this study, a series of tetraphenylethene-containing gold(I) complexes with different auxiliary ligands have been synthesized. These complexes were characterized using a variety of techniques including nuclear magnetic resonance spectroscopy, mass spectrometry, and single crystal X-ray diffraction. Their aggregation-induced emission (AIE) behaviors were investigated through ultraviolet/visible and photoluminescence spectrum analyses, and dynamic light scattering measurements. Meanwhile, their mechanofluorochromic properties were also studied via solid-state photoluminescence spectroscopy. Intriguingly, all these mononuclear gold(I) molecules functionalized by tetraphenylethene group demonstrated AIE phenomena. Furthermore, five gold(I) complexes possessing diverse auxiliary ligands exhibited distinct fluorescence changes in response to mechanical grinding. For luminogens 2-5, their solids showed reversible mechanofluorochromic behaviors triggered by the mutual transformation of crystalline and amorphous states, while for luminogen 1, blue-green-cyan three-color solid fluorescence conversion was realized by sequential mechanical grinding and solvent fumigation. Based on this stimuli-responsive tricolored fluorescence feature of 1, an information encryption system was successfully constructed.
Collapse
Affiliation(s)
- Xiao-Wen Deng
- Jiangxi Province Key Laboratory of Organic Functional Molecules, Institute of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang 330013, PR China
| | - Shanting Liu
- Jiangxi Province Key Laboratory of Organic Functional Molecules, Institute of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang 330013, PR China
| | - Congbin Fan
- Jiangxi Province Key Laboratory of Organic Functional Molecules, Institute of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang 330013, PR China
| | - Hongliang Liu
- Jiangxi Province Key Laboratory of Organic Functional Molecules, Institute of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang 330013, PR China
| | - Yijie Zou
- School of Chemistry and Chemical Engineering, Jiangxi Science and Technology Normal University, Nanchang 330013, PR China
| | - Hai-Feng He
- School of Chemistry and Chemical Engineering, Jiangxi Science and Technology Normal University, Nanchang 330013, PR China.
| | - Dian-Dian Deng
- Jiangxi Province Key Laboratory of Organic Functional Molecules, Institute of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang 330013, PR China; School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, PR China.
| | - Shouzhi Pu
- Jiangxi Province Key Laboratory of Organic Functional Molecules, Institute of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang 330013, PR China; Department of Ecology and Environment, Yuzhang Normal University, Nanchang 330103, PR China.
| | - Zhao Chen
- Jiangxi Province Key Laboratory of Organic Functional Molecules, Institute of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang 330013, PR China.
| |
Collapse
|
13
|
Chen Q, Liu E, Long Y, Xia X, Xu S. Multiresponsive Color-Changing and Tough Hydrogels Enabled by Self-Assembled Epoxy Oligomer Microspheres. ACS APPLIED MATERIALS & INTERFACES 2024; 16:59370-59378. [PMID: 39418574 DOI: 10.1021/acsami.4c14115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
The fabrication process of hydrogels often incorporates various strategies to achieve multiple responses and enhance strength, which always make the procedure complex and even hinder the incorporation. Here, we develop a facile and flexible method to simultaneously achieve multiresponsive color-changing and tough properties in hydrogels by introducing epoxy oligomer microspheres (DEPMS) to hydrophobic association (HA) hydrogels. DEPMS is responsive to both pH and solvents, showing color changes due to conversion to a conjugated structure. The obtained DEPMS composite hydrogels could demonstrate diverse color-changing patterns by simply adjusting the components and pH of the solvents. Meanwhile, amphiphilic DEPMS helps to disperse hydrophobic regions of the HA hydrogel, resulting in more uniform cross-linking and thereby contributing to the enhanced mechanical properties. The tensile strength and toughness of the composite hydrogels could be easily adjusted and reach 1.00 MPa and 11.18 MJ m-3, respectively. This work provides an approach to the design of multiple responsive and tough hydrogels while offering insights into the recycling of waste epoxy resins.
Collapse
Affiliation(s)
- Qiuyue Chen
- Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials (MoE), State Key Laboratory of Polymer Materials Engineering, National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu 610064, China
| | - E Liu
- Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials (MoE), State Key Laboratory of Polymer Materials Engineering, National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu 610064, China
| | - Yuwei Long
- Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials (MoE), State Key Laboratory of Polymer Materials Engineering, National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu 610064, China
| | - Xuehuan Xia
- Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials (MoE), State Key Laboratory of Polymer Materials Engineering, National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu 610064, China
| | - Shimei Xu
- Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials (MoE), State Key Laboratory of Polymer Materials Engineering, National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu 610064, China
| |
Collapse
|
14
|
Shang H, Sun Y, Le X, Shen Y, Chen T. Dynamic metal-ligand coordination enables a hydrogel with rewritable dual-mode pattern display. MATERIALS HORIZONS 2024; 11:5244-5250. [PMID: 39279755 DOI: 10.1039/d4mh00996g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/18/2024]
Abstract
The realization of dual-mode information display in the same material is of great significance to the expansion of information capacity and the improvement of information security. However, the existing systems lose the ability to re-encode information once they are constructed. Here, dynamic metal-ligand coordination is introduced into a novel hydrogel-based optical platform that allows rewritable dual-mode information display. The hydrogel system consists of a hard lamellar structure of poly(dodecylglyceryl itaconate) (pDGI) and soft double networks of poly(acrylamide)/poly(acrylic acid) (PAAm/PAAc) containing fluorescent carbon dots (CDs). As the carboxylic acid groups can coordinate with metal ions such as Al3+, the layer spacing of the lamellar structure is reduced while CDs aggregate, leading to the blue shift of the structural color and the red shift of the fluorescent color. Additionally, the metal chelating agent, ethylenediaminetetraacetic acid (EDTA), is able to strip away Al3+ ions and restore the two colors, realizing an erasable dual-mode information display. This study opens up a path for the development of new materials and technologies for rewritable dual-mode information protection.
Collapse
Affiliation(s)
- Hui Shang
- Key Laboratory of Advanced Marine Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China.
- School of Chemical Sciences, University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
| | - Yu Sun
- Key Laboratory of Advanced Marine Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China.
- School of Chemical Sciences, University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
| | - Xiaoxia Le
- Key Laboratory of Advanced Marine Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China.
- School of Chemical Sciences, University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
| | - Ying Shen
- Key Laboratory of Advanced Marine Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China.
- School of Chemical Sciences, University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
| | - Tao Chen
- Key Laboratory of Advanced Marine Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China.
- School of Chemical Sciences, University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
- College of Material Chemistry and Chemical Engineering Key Laboratory of Organosilicon Chemistry and Material Technology Ministry of Education Hangzhou Normal University Hangzhou, 311121, China
| |
Collapse
|
15
|
Al-Qahtani SD, Al-Senani GM, Alrasheedi M, Mohammed AEME. Multi-Stimuli Responsive Viologen-Imprinted Polyvinyl Alcohol and Tricarboxy Cellulose Nanocomposite Hydrogels. SENSORS (BASEL, SWITZERLAND) 2024; 24:6860. [PMID: 39517757 PMCID: PMC11548534 DOI: 10.3390/s24216860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 10/20/2024] [Accepted: 10/23/2024] [Indexed: 11/16/2024]
Abstract
Photochromic inks have shown disadvantages, such as poor durability and high cost. Self-healable hydrogels have shown photostability and durability. Herein, a viologen-based covalent polymer was printed onto a paper surface toward the development of a multi-stimuli responsive chromogenic sheet with thermochromic, photochromic, and vapochromic properties. Viologen polymer was created by polymerizing a dialdehyde-based viologen with a hydroxyl-bearing dihydrazide in an acidic aqueous medium. The viologen polymer was well immobilized as a colorimetric agent into a polyvinyl alcohol (PVA)/tricarboxy cellulose (TCC)-based self-healable hydrogel. The viologen/hydrogel nanocomposite films were applied onto a paper surface. The coloration measurements showed that when exposed to ultraviolet light, the orange layer printed on the paper surface switched to green. The photochromic film was used to develop anti-counterfeiting prints using the organic hydrogel composed of a PVA/TCC composite and a viologen polymer. Reversible photochromism with strong photostability was observed when the printed papers were exposed to UV irradiation. A detection limit was monitored in the range of 0.5-300 ppm for NH3(aq). The exposure to heat (70 °C) was found to reversibly initiate a colorimetric change.
Collapse
Affiliation(s)
- Salhah D. Al-Qahtani
- Department of Chemistry, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia;
| | - Ghadah M. Al-Senani
- Department of Chemistry, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia;
| | - Muneera Alrasheedi
- Department of Chemistry, College of Science, Qassim University, Buraidah 51452, Saudi Arabia;
| | | |
Collapse
|
16
|
Hu W, Bao Y, Zhou Y, Zhang J, Lian S, Qiu Z. Realizing Bright-Dark Dual-Field Multimode Optical Signals in Photochromic Apatite Phosphors for Security Identification. Inorg Chem 2024. [PMID: 39265104 DOI: 10.1021/acs.inorgchem.4c02570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/14/2024]
Abstract
Regulating defect distribution in inorganic phosphors is paramount for realizing multimode dual-field optical signals for high security level identification but remains an ongoing challenge. Here, we propose a strategy of equivalent anion doping and nonequivalent cation doping to successfully regulate the trap distribution and density in Ba5(PO4)3Cl:F-,Eu2+,Ce3+ (BPCF-AG) phosphors. Due to the coexistence of shallow and deep traps for different photon processes, the BPCF-AG exhibits simultaneous photochromism in a bright field and tetramode luminescence (photoluminescence, afterglow, 980 nm photostimulated luminescence, and 650/532 nm photostimulated afterglow) in a dark field. The trap roles responsible for versatile optical behaviors are investigated by thermoluminescence curves, and a reasonable mechanism is proposed. In addition, we design a series of demonstrations for security identification and information encryption based on the dual-field multimode optical signals of BPCF-AG to illustrate its potential application scenarios.
Collapse
Affiliation(s)
- Wei Hu
- Key Laboratory of Light Energy Conversion Materials of Hunan Province College, Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research (Ministry of Education), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, China
| | - Yunwen Bao
- Key Laboratory of Light Energy Conversion Materials of Hunan Province College, Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research (Ministry of Education), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, China
| | - Yiqing Zhou
- Key Laboratory of Light Energy Conversion Materials of Hunan Province College, Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research (Ministry of Education), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, China
| | - Jilin Zhang
- Key Laboratory of Light Energy Conversion Materials of Hunan Province College, Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research (Ministry of Education), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, China
| | - Shixun Lian
- Key Laboratory of Light Energy Conversion Materials of Hunan Province College, Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research (Ministry of Education), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, China
| | - Zhongxian Qiu
- Key Laboratory of Light Energy Conversion Materials of Hunan Province College, Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research (Ministry of Education), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, China
| |
Collapse
|
17
|
Liu N, Lu Y, Li Z, Zhao H, Yu Q, Huang Y, Yang J, Huang L. Smart Wrinkled Interfaces: Patterning, Morphing, and Coding of Polymer Surfaces by Dynamic Anisotropic Wrinkling. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:18837-18856. [PMID: 39207273 DOI: 10.1021/acs.langmuir.4c02162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
In contrast to traditional static surfaces, smart patterned surfaces with periodical and reversible morphologies offer limitless opportunities for encoding surface functions and properties on demand, facilitating their widespread application as functional building blocks in various devices. Advances in intelligently controlling the macroscopic properties of these smart surfaces have been accomplished through various techniques (such as three-dimensional printing, imprint lithography and femtosecond laser) and responsive materials. In contrast to the sophisticated techniques above, dynamic anisotropic wrinkling, taking advantage of dynamic programmable manipulation of surface wrinkling and its orientation, offers a powerful alternative for fabricating dynamic periodical patterns due to its spontaneous formation, versatility, convenient scale-up fabrication, and sensitivity to various stimuli. This review comprehensively summarizes recent advances in smart patterned surfaces with dynamic oriented wrinkles, covering design principles, fabrication techniques, representative types of physical and chemical stimuli, as well as fine-tuning of wrinkle dimensions and orientation. Finally, advanced applications of these smart patterned surfaces are presented, along with a discussion of current challenges and future prospects in this rapidly evolving field. This review would offer some insights and guidelines for designing and engineering novel stimuli-responsive smart wrinkled surfaces, thereby facilitating their sustainable development and progressing toward commercialization.
Collapse
Affiliation(s)
- Ning Liu
- Hubei Key Laboratory of Multi-media Pollution Cooperative Control in Yangtze Basin, School of Environmental Science & Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Yenie Lu
- Hubei Key Laboratory of Multi-media Pollution Cooperative Control in Yangtze Basin, School of Environmental Science & Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Ziyue Li
- Hubei Key Laboratory of Multi-media Pollution Cooperative Control in Yangtze Basin, School of Environmental Science & Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Hongyang Zhao
- Hubei Key Laboratory of Multi-media Pollution Cooperative Control in Yangtze Basin, School of Environmental Science & Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Qingyue Yu
- Hubei Key Laboratory of Multi-media Pollution Cooperative Control in Yangtze Basin, School of Environmental Science & Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Yaxin Huang
- Hubei Key Laboratory of Multi-media Pollution Cooperative Control in Yangtze Basin, School of Environmental Science & Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Jiakuan Yang
- Hubei Key Laboratory of Multi-media Pollution Cooperative Control in Yangtze Basin, School of Environmental Science & Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Liang Huang
- Hubei Key Laboratory of Multi-media Pollution Cooperative Control in Yangtze Basin, School of Environmental Science & Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| |
Collapse
|
18
|
Yin G, Zhou J, Lu W, Li L, Liu D, Qi M, Tang BZ, Théato P, Chen T. Targeting Compact and Ordered Emitters by Supramolecular Dynamic Interactions for High-performance Organic Ambient Phosphorescence. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2311347. [PMID: 38335472 DOI: 10.1002/adma.202311347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 01/31/2024] [Indexed: 02/12/2024]
Abstract
Purely organic room-temperature phosphorescence (RTP) materials have received intense attention due to their fascinating optical properties and advanced optoelectronic applications. The promotion of intersystem crossing (ISC) and minimalization of nonradiative dissipation under ambient conditions are key prerequisites for realizing high-performance organic RTP; However, the ISC process is generally inefficient for organic fluorogens and the populated triplet excitons are always too susceptible to be well stabilized by conventional means. Particularly, organizing organic fluorophores into compact and ordered entities by supramolecular dynamic interactions has proven to be a newly-emerged strategy to boost the ISC process greatly and suppress the non-radiative relaxations immensely, facilitating the population and stabilization of triplet excitons to access high-performance organic RTP. Consequently, well-defined organic emitters enable robust RTP emission even in the solution state, thus greatly extending the applications. Here, this review is focused on a timely and brief introduction to recent progress in tailoring ordered high-performance RTP emitters by supramolecular dynamic interactions. Their typical preparation strategies, optoelectronic properties, and applications are thoroughly summarized. In the summary section, key challenges and perspectives of this field are highlighted to suggest potential directions for future study.
Collapse
Affiliation(s)
- Guangqiang Yin
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jiayin Zhou
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wei Lu
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Longqiang Li
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Depeng Liu
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Min Qi
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ben Zhong Tang
- School of Science and Engineering Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong Shenzhen (CUHK-Shenzhen), Guangdong, 518172, China
| | - Patrick Théato
- Soft Matter Synthesis Laboratory, Institute for Biological Interfaces III, Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
- Institute for Chemical Technology and Polymer Chemistry, Karlsruhe Institute of Technology (KIT), Engesser Str.18, 76131, Karlsruhe, Germany
| | - Tao Chen
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
- College of Material Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China
| |
Collapse
|
19
|
Liu G, Wu X, Xiong F, Yang J, Liu Y, Liu J, Li Z, Qin Z, Deng S, Yang BR. Fluorescent, multifunctional anti-counterfeiting, fast response electrophoretic display based on TiO 2/CsPbBr 3 composite particles. LIGHT, SCIENCE & APPLICATIONS 2024; 13:198. [PMID: 39164241 PMCID: PMC11335904 DOI: 10.1038/s41377-024-01526-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 06/25/2024] [Accepted: 07/11/2024] [Indexed: 08/22/2024]
Abstract
Traditional optical anti-counterfeiting (AC) is achieved by static printed images, which makes them susceptible to lower levels of security and easier replication. Therefore, it is essential to develop AC device with dynamic modulation for higher security. Electrophoretic display (EPD) has the advantages of low power consumption, high ambient contrast ratio, and capability of showing dynamic images which is suitable for dynamic AC applications. Herein, we prepared a dynamical AC device based on a fluorescent EPD, and achieving the image switch between black, white, and green fluorescence states under the dual-mode driving (electronic field and UV light). We loaded perovskite quantum dots (CsPbBr3) onto the TiO2 particles and further prepared fluorescent electrophoretic particles TiO2/CsPbBr3-3-PLMA (TiO/CPB-3) by grafting and polymerizing method. In addition, we fabricated the AC devices based on the fluorescent EPD, which exhibits the multifunctional AC, where the fluorescent EPD has a fast response time of 350 ms, a high contrast ratio of 17, and bright green fluorescence. This prototype demonstrates a new way for future dynamic AC and identification.
Collapse
Affiliation(s)
- Guangyou Liu
- State Key Laboratory of Opto-electronic Materials and Technology, Guangdong Province Key Laboratory of Display Materials and Technologies, School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Xinzao Wu
- State Key Laboratory of Opto-electronic Materials and Technology, Guangdong Province Key Laboratory of Display Materials and Technologies, School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Feng Xiong
- State Key Laboratory of Opto-electronic Materials and Technology, Guangdong Province Key Laboratory of Display Materials and Technologies, School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Jinglan Yang
- State Key Laboratory of Opto-electronic Materials and Technology, Guangdong Province Key Laboratory of Display Materials and Technologies, School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Yunhe Liu
- State Key Laboratory of Opto-electronic Materials and Technology, Guangdong Province Key Laboratory of Display Materials and Technologies, School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Jie Liu
- State Key Laboratory of Opto-electronic Materials and Technology, Guangdong Province Key Laboratory of Display Materials and Technologies, School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Zhuohang Li
- State Key Laboratory of Opto-electronic Materials and Technology, Guangdong Province Key Laboratory of Display Materials and Technologies, School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Zong Qin
- State Key Laboratory of Opto-electronic Materials and Technology, Guangdong Province Key Laboratory of Display Materials and Technologies, School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Shaozhi Deng
- State Key Laboratory of Opto-electronic Materials and Technology, Guangdong Province Key Laboratory of Display Materials and Technologies, School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Bo-Ru Yang
- State Key Laboratory of Opto-electronic Materials and Technology, Guangdong Province Key Laboratory of Display Materials and Technologies, School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou, 510006, China.
| |
Collapse
|
20
|
Lin YY, Jiao CJ, Qi YG, Zou JW, Xu DH, Luan SF. Multiple Stimuli-Responsive Color-Changing Polymer Materials for Reversible Writing and Anti-Counterfeiting. ACS APPLIED MATERIALS & INTERFACES 2024; 16:43064-43071. [PMID: 39092612 DOI: 10.1021/acsami.4c10488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
Polymer materials with multiple stimuli-responsive properties have demonstrated many potential and practical applications. By covalently introducing spiropyran (SP1) and spirothiopyran (STP) into the polyurethane backbone, photochromic, mechanochromic, and thermally discolored polymer materials have been prepared. In this work, we report for the first time that white light (violet, blue, and green light) above a certain intensity can activate STP to green color. Based on the above discovery, the polyurethane with SP1 and STP can exhibit reversible three-color changes (brown, green, and purple) in response to four stimuli: ultraviolet irradiation, white light irradiation, mechanical stress, and heat. The color-changing polymer materials have high color contrast and excellent reversibility, and can be used for reversible writing, anticounterfeiting and information encryption, etc.
Collapse
Affiliation(s)
- Yuan-Yuan Lin
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Chuan-Jia Jiao
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Yong-Gang Qi
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Jia-Wei Zou
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Dong-Hua Xu
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Shi-Fang Luan
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
21
|
Han Y, Bao S, Shi B, Wu J, Wang B, Ding P, Chen Q. Fast and Accurate Recognition of Perovskite Fluorescent Anti-counterfeiting Labels Based on Lightweight Convolutional Neural Networks. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 39052538 DOI: 10.1021/acsami.4c06515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
Anti-counterfeiting technology has always been a key issue in the field of information security. Physical Unclonable Function (PUF) labels, which are random patterns produced by a stochastic process, emerge as an effective anti-counterfeiting strategy due to the inherent randomness of their physical patterns. In this study, we developed a high-throughput droplet array generation technique based on surface tension confinement to prepare perovskite crystal films with controllable shapes and sizes. We utilized the random distribution of perovskite nanocrystal particles to construct the PUF textures of the labels. Compared to other anti-counterfeiting labels, our labels not only possess fluorescent properties but also feature microscale dimensions (less than 5.3 × 10-2mm2), low cost (less than 3 × 10-4 USD), and high encoding capacity (1.7 × 101956), providing support for multilevel anti-counterfeiting protection. Additionally, we introduce an innovative PUF recognition method based on a Partial Convolutional Network (PaCoNet), effectively addressing the limitations of previous methods, in terms of recognition accuracy and speed. Experimental validation on a data set of perovskite nanocrystal films with up to 60 different macroscopic shapes and unique microscopic textures demonstrates that our method achieves a recognition accuracy of up to 99.65% and significantly reduces the recognition time per image to just 0.177 s, highlighting the potential application of these labels in the field of anti-counterfeiting.
Collapse
Affiliation(s)
- Yuexing Han
- School of Computer Engineering and Science, Shanghai University, Shanghai 200444, China
- Key Laboratory of Silicate Cultural Relics Conservation (Shanghai University), Ministry of Education, Shanghai 200444, China
| | - Shengqi Bao
- School of Computer Engineering and Science, Shanghai University, Shanghai 200444, China
| | - Bori Shi
- Materials Genome Institute, Shanghai University, Shanghai 200444, China
| | - Jinbo Wu
- Materials Genome Institute, Shanghai University, Shanghai 200444, China
- Faculty of Materials Science, Shenzhen MSU-BIT University, Shenzhen 518000, China
| | - Bing Wang
- School of Computer Engineering and Science, Shanghai University, Shanghai 200444, China
| | - Peng Ding
- Research Center of Nanoscience and Nanotechnology, College of Sciences, Shanghai University, Shanghai 200444, China
| | - Qiaochuan Chen
- School of Computer Engineering and Science, Shanghai University, Shanghai 200444, China
- Key Laboratory of Silicate Cultural Relics Conservation (Shanghai University), Ministry of Education, Shanghai 200444, China
| |
Collapse
|
22
|
Wang X, Gao Z, Tian W. An enzymolysis-induced energy transfer co-assembled system for spontaneously recoverable supramolecular dynamic memory. Chem Sci 2024; 15:11084-11091. [PMID: 39027284 PMCID: PMC11253121 DOI: 10.1039/d4sc02756f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 05/30/2024] [Indexed: 07/20/2024] Open
Abstract
The continuing growth of the digital world requires new ways of constructing memory devices to process and store dynamic data, because the current ones suffer from inefficiency, limited reads, and difficulty to manufacture. Here we propose a supramolecular dynamic memory (SDM) strategy based on an enzymolysis-induced energy transfer co-assembly derived from a naphthalene-based cationic monomer and organic dye sulforhodamine 101, enabling the construction of spontaneously recoverable dynamic memory devices. Benefitting from the large exciton migration rate (4.48 × 1015 L mol-1 s-1) between the monomer and sulforhodamine 101, the energy transfer process between the two is effectively achieved. Since alkaline phosphatase can selectively hydrolyze adenosine triphosphate, leading to the disruption of the co-assemblies, an enzyme-mediated time-dependent fluorochromic system is realized. On this basis, a SDM system featuring spontaneous recovery and enabling the memory of dynamic information in optical and electrical modes is successfully constructed. The current study represents a promising step in the nascent development of supramolecular materials for computational systems.
Collapse
Affiliation(s)
- Xuanyu Wang
- Shaanxi Key Laboratory of Macromolecular Science and Technology, Xi'an Key Laboratory of Hybrid Luminescent Materials and Photonic Device, MOE Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University Xi'an 710072 P. R. China
| | - Zhao Gao
- Shaanxi Key Laboratory of Macromolecular Science and Technology, Xi'an Key Laboratory of Hybrid Luminescent Materials and Photonic Device, MOE Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University Xi'an 710072 P. R. China
| | - Wei Tian
- Shaanxi Key Laboratory of Macromolecular Science and Technology, Xi'an Key Laboratory of Hybrid Luminescent Materials and Photonic Device, MOE Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University Xi'an 710072 P. R. China
| |
Collapse
|
23
|
Zhang T, Wang W, Ju X, Liu Z, Pan D, Xie R, Chu L. A thermo-responsive hydrogel for body temperature-induced spontaneous information decryption and self-encryption. Chem Commun (Camb) 2024; 60:7156-7159. [PMID: 38912556 DOI: 10.1039/d4cc01349b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/25/2024]
Abstract
A thermo-responsive poly(N-isopropylacrylamide) (PNIPAM) hydrogel, exhibiting an interesting phenomenon of an opaque-transparent-opaque transition in the successive processes of heating and cooling, is reported. It is fabricated by means of both the porogenic effect of hydroxypropyl cellulose and the cononsolvency effect of PNIPAM in a mixed solvent of dimethyl sulfoxide and water. After being mildly triggered by body temperature, the hydrogel is used to spontaneously decrypt the quick response code within 4 min and then autonomously encrypts the code again within 10 min at room temperature. The mechanism for the transient transparency of hydrogels during the quenching process has been elucidated.
Collapse
Affiliation(s)
- Tingying Zhang
- School of Chemical Engineering, Sichuan University, Chengdu 610065, Sichuan, China.
| | - Wei Wang
- School of Chemical Engineering, Sichuan University, Chengdu 610065, Sichuan, China.
- State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, Sichuan, China
| | - Xiaojie Ju
- School of Chemical Engineering, Sichuan University, Chengdu 610065, Sichuan, China.
- State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, Sichuan, China
| | - Zhuang Liu
- School of Chemical Engineering, Sichuan University, Chengdu 610065, Sichuan, China.
- State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, Sichuan, China
| | - Dawei Pan
- School of Chemical Engineering, Sichuan University, Chengdu 610065, Sichuan, China.
- State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, Sichuan, China
| | - Rui Xie
- School of Chemical Engineering, Sichuan University, Chengdu 610065, Sichuan, China.
- State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, Sichuan, China
| | - Liangyin Chu
- School of Chemical Engineering, Sichuan University, Chengdu 610065, Sichuan, China.
- State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, Sichuan, China
| |
Collapse
|
24
|
Khalaf MM, Gouda M, Hamdalla TA, Abou Taleb MF, Abd El-Lateef HM. Preparation of thermochromic ink from anthocyanidin-encapsulated alginate nanoparticles for anticounterfeiting applications. LUMINESCENCE 2024; 39:e4842. [PMID: 39051524 DOI: 10.1002/bio.4842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 06/10/2024] [Accepted: 07/12/2024] [Indexed: 07/27/2024]
Abstract
In order to make commercial products less vulnerable to counterfeiting, thermochromic inks have proven to be a viable authentication strategy. Herein, we developed a thermochromic ink for authentication by combining an anthocyanidin (ACYD) extract with alginate (ALG). To increase the anthocyanidin/alginate ink stability, a mordant (ferrous sulfate) was employed to tie up the anthocyanidin biomolecules with alginate. ACYD was extracted from red-cabbage and then immobilized into alginate to serve as an environmentally friendly spectroscopic probe. Thermochromic composite inks (ACYD@ALG) were made by adjusting the content of anthocyanidin. A homogenous blue film (608 nm) was printed on a paper surface and investigated by the CIE Lab coordinate system. The blue color transformed into reddish (477 nm) when heated from 35°C to 65°C. Nanoparticles (NPs) of anthocyanidin/mordant (ACYD/M) were examined for their size and morphology to indicate diameters of 80-90 nm, whereas the ACYD/M-encapsulated alginate nanoparticles showed diameters of 120-150 nm. Multiple analytical techniques were utilized to examine the printed papers. The mechanical and rheological performance of both stamped sheets and ink fluid were explored. The cytotoxicity and antimicrobial efficacy of ink (ACYD@ALG) were investigated.
Collapse
Affiliation(s)
- Mai M Khalaf
- Department of Chemistry, College of Science, King Faisal University, Al-Ahsa, Saudi Arabia
- Department of Chemistry, Faculty of Science, Sohag University, Sohag, Egypt
| | - Mohamed Gouda
- Department of Chemistry, College of Science, King Faisal University, Al-Ahsa, Saudi Arabia
| | - Taymour A Hamdalla
- Physics department faculty of science, University of Tabuk, Tabuk, Saudi Arabia
| | - Manal F Abou Taleb
- Department of Chemistry, College of Science and Humanities, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Hany M Abd El-Lateef
- Department of Chemistry, College of Science, King Faisal University, Al-Ahsa, Saudi Arabia
- Department of Chemistry, Faculty of Science, Sohag University, Sohag, Egypt
| |
Collapse
|
25
|
Sun Y, Le X, Shang H, Shen Y, Wu Y, Liu Q, Théato P, Chen T. Dual-Mode Hydrogels with Structural and Fluorescent Colors toward Multistage Secure Information Encryption. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2401589. [PMID: 38744437 DOI: 10.1002/adma.202401589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 05/10/2024] [Indexed: 05/16/2024]
Abstract
Constructing an anti-counterfeiting material with non-interference dual optical modes is an effective way to improve information security. However, it remains challenging to achieve multistage secure information encryption due to the limited stimulus responsiveness and color tunability of the current dual-mode materials. Herein, a dual-mode hydrogel with both independently tunable structural and fluorescent colors toward multistage information encryption, is reported. In this hydrogel system, the rigid lamellar structure of poly(dodecylglyceryl itaconate) (pDGI) formed by shear flow-induced self-assembly provides the restricted domains wherein monomers undergo polymerization to form a hydrogel network, producing structural color. The introduction of fluorescent monomer 6-acrylamidopicolinate (6APA) as a complexation site provides the possibility of fluorescent color formation. The hydrogel's angle-dependent structural color can be controlled by adjusting the crosslinking density and water content. Additionally, the fluorescence color can be modulated by adjusting the ratio of lanthanide ions. Information of dual-mode can be displayed separately in different channels and synergistically overlayed to read the ultimate message. Thus, a multistage information encryption system based on this hydrogel is devised through the programed decryption process. This strategy holds tremendous potential as a platform for encrypting and safeguarding valuable and authentic information in the field of anti-counterfeiting.
Collapse
Affiliation(s)
- Yu Sun
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Material Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing, 100049, China
| | - Xiaoxia Le
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Material Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing, 100049, China
| | - Hui Shang
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Material Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing, 100049, China
| | - Ying Shen
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Material Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing, 100049, China
| | - Yue Wu
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Material Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing, 100049, China
| | - Qingquan Liu
- Hunan Provincial Key Laboratory of Advanced Materials for New Energy Storage and Conversion, Hunan University of Science and Technology, Xiangtan, 411201, China
| | - Partick Théato
- Soft Matter Synthesis Laboratory, Institute for Biological Interfaces III, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
- Institute for Chemical Technology and Polymer Chemistry, Karlsruhe Institute of Technology, Engesser Str.18, 76131, Karlsruhe, Germany
| | - Tao Chen
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Material Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing, 100049, China
| |
Collapse
|
26
|
Shang H, Le X, Sun Y, Wu S, Wang Y, Théato P, Chen T. Water-sensitive fluorescent microgel inks to produce verifiable information for highly secured anti-counterfeiting. MATERIALS HORIZONS 2024; 11:2856-2864. [PMID: 38804229 DOI: 10.1039/d4mh00210e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
The decryption and verification of encrypted information via a simple and efficient method is always difficult and challenging in the field of information security. Herein, a series of water-sensitive fluorescent microgels are fabricated for highly secured anti-counterfeiting with authenticity identification. The initial negatively charged microgels (MG) are made up of N-isopropylacrylamide (NIPAM), acrylic acid (AAc) and anthracen-9-yl acrylate (9-ANA, blue fluorescent monomer). The prepared MGs can bind cationic fluorescent dyes such as 5-aminofluorescein (FITC, green fluorescent dye) and rhodamine B (Rh B, red fluorescent dye) via electrostatic interaction, emitting multi-fluorescent colors based on the fluorescence resonance energy transfer (FRET) process. Furthermore, the fluorescence colors of MG-derived systems can be rapidly changed by swelling in water, which can block the FRET process and change the aggregation state of dyes. With the assistance of inkjet printing, multi-color security patterns can be designed and encoded, which can be revealed by UV irradiation and further verified by water stimulation. This study has pioneered a novel strategy to verify the authenticity of decrypted information, which greatly improves the security level of information.
Collapse
Affiliation(s)
- Hui Shang
- Key Laboratory of Advanced Marine Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China.
- School of Chemical Sciences, University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
| | - Xiaoxia Le
- Key Laboratory of Advanced Marine Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China.
- School of Chemical Sciences, University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
| | - Yu Sun
- Key Laboratory of Advanced Marine Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China.
- School of Chemical Sciences, University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
| | - Shuangshuang Wu
- Key Laboratory of Advanced Marine Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China.
- School of Chemical Sciences, University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
| | - Yu Wang
- Shanghai Yuking Water Soluble Material Tech Co., Ltd, Banxia Road, Shanghai 200120, China
| | - Patrick Théato
- Soft Matter Synthesis Laboratory, Institute for Biological Interfaces III, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
- Institute for Chemical Technology and Polymer Chemistry, Karlsruhe Institute of Technology, Engesser Str.18, 76131 Karlsruhe, Germany
| | - Tao Chen
- Key Laboratory of Advanced Marine Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China.
- School of Chemical Sciences, University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
- College of Material Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology Ministry of Education Hangzhou Normal University, Hangzhou 311121, China
| |
Collapse
|
27
|
Abdelrahman MS, Khattab TA. Recent advances in photoresponsive printing inks for security encoding applications. LUMINESCENCE 2024; 39:e4800. [PMID: 38923447 DOI: 10.1002/bio.4800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 05/02/2024] [Accepted: 05/27/2024] [Indexed: 06/28/2024]
Abstract
Counterfeiting of banknotes, important documents, and branded goods continues to be a major worldwide problem for governments, businesses, and consumers. This problem has serious financial, security, and health implications. Due to their stability for printing on various substrates, the photochromic anticounterfeiting inks have received important interest. There have been various photochromic agents, such as polymer nanoparticles, quantum and carbon dots, and organic and inorganic fluorophores and luminophores, which have been broadly used for antiforging applications. In comparison to organic agents, inorganic photochromic materials have better stability under reversible/long-term light illumination. Recently, the remarkable optical characteristics and chemical stability of photoluminescent and photochromic agents have led to their extensive usage anticounterfeiting products. There have been also several strategies to tackle the rising problem of counterfeiting. Both of solvent-based and water-based inks have been developed for security encoding purposes. Additionally, the printing methods, including screen printing, labeling, stamping, inkjet printing, and handwriting, that have been used to apply anticounterfeiting inks onto various surfaces are discussed. The limitations of photoluminescent and photochromic agents and the potential for their future preparation to combat counterfeiting were discussed. This review would benefit academic researchers and industrial developers who are interested in the area of security printing.
Collapse
Affiliation(s)
- Meram S Abdelrahman
- Dyeing, Printing and Auxiliaries Department, Textile Research and Technology Institute, National Research Centre, Cairo, Egypt
| | - Tawfik A Khattab
- Dyeing, Printing and Auxiliaries Department, Textile Research and Technology Institute, National Research Centre, Cairo, Egypt
| |
Collapse
|
28
|
Wu B, Si M, Hua L, Zhang D, Li W, Zhao C, Lu W, Chen T. Cephalopod-Inspired Chemical-Gated Hydrogel Actuation Systems for Information 3D-Encoding Display. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2401659. [PMID: 38533903 DOI: 10.1002/adma.202401659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/14/2024] [Indexed: 03/28/2024]
Abstract
Cephalopods evolve the acetylcholine-gated actuation control function of their skin muscles, which enables their dynamic/static multimode display capacities for achieving perfectly spatial control over the colors/patterns on every inch of skin. Reproduction of artificial analogs that exhibit similar multimodal display is essential to reach advanced information three-dimensional (3D) encoding with higher security than the classic 2D-encoding strategy, but remains underdeveloped. The core difficulty is how to replicate such chemical-gated actuation control function into artificial soft actuating systems. Herein, this work proposes to develop azobenzene-functionalized poly(acrylamide) (PAAm) hydrogel systems, whose upper critical solution temperature (UCST) type actuation responsiveness can be intelligently programmed or even gated by the addition of hydrophilic α-cyclodextrin (α-CD) molecules for reversible association with pendant azobenzene moieties via supramolecular host-guest interactions. By employing such α-CD-gated hydrogel actuator as an analogue of cephalopods' skin muscle, biomimetic mechanically modulated multicolor fluorescent display systems are designed, which demonstrate a conceptually new α-CD-gated "thermal stimulation-hydrogel actuation-fluorescence output" display mechanism. Consequently, high-security 3D-encoding information carriers with an unprecedented combination of single-input multiple-output, dynamic/static dual-mode and spatially controlled display capacities are achieved. This bioinspired strategy brings functional-integrated features for artificial display systems and opens previously unidentified avenues for information security.
Collapse
Affiliation(s)
- Baoyi Wu
- Laboratory of Advanced Marine Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing, 100049, China
| | - Muqing Si
- Laboratory of Advanced Marine Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing, 100049, China
| | - Luqin Hua
- School of Materials Science & Chemical Engineering, Ningbo University, Ningbo, 315211, China
| | - Dong Zhang
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, 30332, USA
| | - Wanning Li
- Laboratory of Advanced Marine Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing, 100049, China
| | - Chuanzhuang Zhao
- School of Materials Science & Chemical Engineering, Ningbo University, Ningbo, 315211, China
| | - Wei Lu
- Laboratory of Advanced Marine Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing, 100049, China
| | - Tao Chen
- Laboratory of Advanced Marine Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing, 100049, China
- College of Material Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou, 311121, China
| |
Collapse
|
29
|
Yuan W, Deng X, Wang Z, Ma T, Yan S, Gao X, Li J, Ma X, Yin J, Hu K, Zhang W, Jiang X. Photochemical Design for Diverse Controllable Patterns in Self-Wrinkling Films. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2400849. [PMID: 38567824 DOI: 10.1002/adma.202400849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 03/11/2024] [Indexed: 04/11/2024]
Abstract
Harnessing the spontaneous surface instability of pliable substances to create intricate, well-ordered, and on-demand controlled surface patterns holds great potential for advancing applications in optical, electrical, and biological processes. However, the current limitations stem from challenges in modulating multidirectional stress fields and diverse boundary environments. Herein, this work proposes a universal strategy to achieve arbitrarily controllable wrinkle patterns via the spatiotemporal photochemical boundaries. Utilizing constraints and inductive effects of the photochemical boundaries, the multiple coupling relationship is accomplished among the light fields, stress fields, and morphology of wrinkles in photosensitive polyurethane (PSPU) film. Moreover, employing sequential light-irradiation with photomask enables the attainment of a diverse array of controllable patterns, ranging from highly ordered 2D patterns to periodic or intricate designs. The fundamental mechanics of underlying buckling and the formation of surface features are comprehensively elucidated through theoretical stimulation and finite element analysis. The results reveal the evolution laws of wrinkles under photochemical boundaries and represent a new effective toolkit for fabricating intricate and captivating patterns in single-layer films.
Collapse
Affiliation(s)
- Wenqiang Yuan
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, State Key Laboratory for Metal Matrix Composite Materials, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xinlu Deng
- School of Mechanical Engineering, State Key Laboratory of Mechanical Systems and Vibration, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Zehong Wang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, State Key Laboratory for Metal Matrix Composite Materials, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Tianjiao Ma
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, State Key Laboratory for Metal Matrix Composite Materials, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Shuzhen Yan
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, State Key Laboratory for Metal Matrix Composite Materials, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xiaxin Gao
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, State Key Laboratory for Metal Matrix Composite Materials, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Jin Li
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, State Key Laboratory for Metal Matrix Composite Materials, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xiaodong Ma
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, State Key Laboratory for Metal Matrix Composite Materials, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Jie Yin
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, State Key Laboratory for Metal Matrix Composite Materials, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Kaiming Hu
- School of Mechanical Engineering, State Key Laboratory of Mechanical Systems and Vibration, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Wenming Zhang
- School of Mechanical Engineering, State Key Laboratory of Mechanical Systems and Vibration, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xuesong Jiang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, State Key Laboratory for Metal Matrix Composite Materials, Shanghai Jiao Tong University, Shanghai, 200240, China
| |
Collapse
|
30
|
Ding S, Lv X, Xia Y, Liu Y. Fluorescent Materials Based on Spiropyran for Advanced Anti-Counterfeiting and Information Encryption. Molecules 2024; 29:2536. [PMID: 38893412 PMCID: PMC11173752 DOI: 10.3390/molecules29112536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 05/18/2024] [Accepted: 05/24/2024] [Indexed: 06/21/2024] Open
Abstract
In daily life, counterfeit and substandard products, particularly currency, medicine, food, and confidential documents, are capable of bringing about very serious consequences. The development of anti-counterfeiting and authentication technologies with multilevel securities is a powerful means to overcome this challenge. Among various anti-counterfeiting technologies, fluorescent anti-counterfeiting technology is well-known and commonly used to fight counterfeiters due to its wide material source, low cost, simple usage, good concealment, and simple response mechanism. Spiropyran is favored by scientists in the fields of anti-counterfeiting and information encryption due to its reversible photochromic property. Here, we summarize the current available spiropyran-based fluorescent materials from design to anti-counterfeiting applications. This review will be help scientists to design and develop fluorescent anti-counterfeiting materials with high security, high performance, quick response, and high anti-counterfeiting level.
Collapse
Affiliation(s)
| | | | - Yong Xia
- Key Laboratory of Advanced Packaging Materials and Technology of Hunan Province, Hunan University of Technology, Zhuzhou 412007, China; (S.D.); (X.L.)
| | - Yuejun Liu
- Key Laboratory of Advanced Packaging Materials and Technology of Hunan Province, Hunan University of Technology, Zhuzhou 412007, China; (S.D.); (X.L.)
| |
Collapse
|
31
|
Xue Y, Lai X, Wang L, Shi H, Liu G, Liu X, Chen X. A stimuli-responsive hydrogel for reversible information storage, encryption and decryption. J Colloid Interface Sci 2024; 662:231-241. [PMID: 38350346 DOI: 10.1016/j.jcis.2024.02.066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/22/2024] [Accepted: 02/06/2024] [Indexed: 02/15/2024]
Abstract
Smart hydrogel materials, known for their sensitivity to external stimuli, exhibit a reversible dynamic response and find applications in diverse fields, particularly in information storage. Despite significant efforts in this domain, developing a hydrogel with high-resolution, repeatable recording, and robust information encryption/decryption capabilities still remains a challenge. In this study, we synthesized a polymer hydrogel, namely polyvinyl alcohol-n-isopropylacrylamide-octadecyl polyoxyethylene ether acrylate hydrogel (PPNS), which features multiple hydrogen bonds through copolymerization, by using N-isopropylacrylamide, polyvinyl alcohol, and octadecyl polyoxyethylene ether acrylate (SGA15) as raw materials. The PPNS hydrogel demonstrated outstanding high-resolution, repeatable recording capabilities, enabling reversible recording, encryption, and decryption of information using anhydrous ethanol as the inducer. Varying the SGA15 monomer concentration revealed that the PPNS-2% hydrogel, prepared with 2% SGA15, outperformed the other hydrogels in terms of information recording and encryption/decryption when immersed in anhydrous ethanol and deionized water. Furthermore, the PPNS-2% hydrogel exhibited the ability to undergo multiple information cycles while maintaining excellent mechanical properties even after 25 cycles. Notably, ethanol served as a specialized ink for inscribing different patterns on the hydrogel surface for information recording. The recorded information could be erased through water wiping or ethanol volatilization, enabling reversible information recording, encryption, and decryption. Due to their responsive and dynamic nature of PPNS hydrogels are positions them as promising candidates for use as innovative information storage platforms.
Collapse
Affiliation(s)
- Yuyu Xue
- Key Laboratory of Auxiliary Chemistry &Technology for Chemical Industry, Ministry of Education, Shaanxi University of Science &Technology, Weiyang district, Xi'an 710021, PR China
| | - Xiaojuan Lai
- Key Laboratory of Auxiliary Chemistry &Technology for Chemical Industry, Ministry of Education, Shaanxi University of Science &Technology, Weiyang district, Xi'an 710021, PR China; Shaanxi Research Institute of Agricultural Products Processing Technology, Weiyang district, Xi'an 710021, PR China.
| | - Lei Wang
- Key Laboratory of Auxiliary Chemistry &Technology for Chemical Industry, Ministry of Education, Shaanxi University of Science &Technology, Weiyang district, Xi'an 710021, PR China; Shaanxi Research Institute of Agricultural Products Processing Technology, Weiyang district, Xi'an 710021, PR China.
| | - Huaqiang Shi
- Research Institute of Oil & Gas Technology, Changqing Oilfield Branch Company, Xi'an 710021, PR China
| | - Guiru Liu
- Key Laboratory of Auxiliary Chemistry &Technology for Chemical Industry, Ministry of Education, Shaanxi University of Science &Technology, Weiyang district, Xi'an 710021, PR China
| | - Xuan Liu
- Key Laboratory of Auxiliary Chemistry &Technology for Chemical Industry, Ministry of Education, Shaanxi University of Science &Technology, Weiyang district, Xi'an 710021, PR China
| | - XiangLi Chen
- Key Laboratory of Auxiliary Chemistry &Technology for Chemical Industry, Ministry of Education, Shaanxi University of Science &Technology, Weiyang district, Xi'an 710021, PR China
| |
Collapse
|
32
|
Yu X, Ryadun AA, Pavlov DI, Guselnikova TY, Potapov AS, Fedin VP. Ln-MOF-Based Hydrogel Films with Tunable Luminescence and Afterglow Behavior for Visual Detection of Ofloxacin and Anti-Counterfeiting Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2311939. [PMID: 38275004 DOI: 10.1002/adma.202311939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 01/23/2024] [Indexed: 01/27/2024]
Abstract
Highly selective and sensitive quantitative detection of ofloxacin (OFX) at ultralow concentrations in aqueous media and development of new afterglow materials remains a challenge. Herein, a new 2D water-stable lanthanide metal-organic framework (NIIC-2-Tb) is proposed, which exhibits high selectivity towards OFX through the luminescence quenching with the lowest detection limit (1.1 × 10-9 M) reported to date and a fast response within 6 s. In addition, the luminescent detection of OFX by NIIC-2-Tb is not affected by typical components of blood plasma and urine. The excellent sensing effect of NIIC-2-Tb is further utilized to prepare a composite functional sensing carrageenan hydrogel material for the rapid detection of OFX in meat in real time and the first discovery of impressive afterglow in MOF-based hydrogels. This study not only presents novel Ln-MOF materials and Ln-MOF-based hydrogel films for luminescent sensing of OFX, but also demonstrates color-tunable luminescent films with afterglow, which expands the application of composite luminescent materials for detection and anti-counterfeiting.
Collapse
Affiliation(s)
- Xiaolin Yu
- Department of Natural Sciences, Novosibirsk State University, 2 Pirogov Str., Novosibirsk, 630090, Russia
- Nikolaev Institute of Inorganic Chemistry, Siberian Branch of the Russian Academy of Sciences, 3 Lavrentiev Ave., Novosibirsk, 630090, Russia
| | - Alexey A Ryadun
- Nikolaev Institute of Inorganic Chemistry, Siberian Branch of the Russian Academy of Sciences, 3 Lavrentiev Ave., Novosibirsk, 630090, Russia
| | - Dmitry I Pavlov
- Department of Natural Sciences, Novosibirsk State University, 2 Pirogov Str., Novosibirsk, 630090, Russia
- Nikolaev Institute of Inorganic Chemistry, Siberian Branch of the Russian Academy of Sciences, 3 Lavrentiev Ave., Novosibirsk, 630090, Russia
| | - Tatiana Y Guselnikova
- Nikolaev Institute of Inorganic Chemistry, Siberian Branch of the Russian Academy of Sciences, 3 Lavrentiev Ave., Novosibirsk, 630090, Russia
| | - Andrei S Potapov
- Department of Natural Sciences, Novosibirsk State University, 2 Pirogov Str., Novosibirsk, 630090, Russia
- Nikolaev Institute of Inorganic Chemistry, Siberian Branch of the Russian Academy of Sciences, 3 Lavrentiev Ave., Novosibirsk, 630090, Russia
| | - Vladimir P Fedin
- Department of Natural Sciences, Novosibirsk State University, 2 Pirogov Str., Novosibirsk, 630090, Russia
- Nikolaev Institute of Inorganic Chemistry, Siberian Branch of the Russian Academy of Sciences, 3 Lavrentiev Ave., Novosibirsk, 630090, Russia
| |
Collapse
|
33
|
Fang F, Jin Y, Hu W, Chen Y, Wei Y, Zhang Z, Wang C, Meng F, Cao L, Huang F, Ma L, Wang XJ, Ren H. Optical Information Transmission and Multimode Fluorescence Anticounterfeiting of Ca 2-xMg xGe 7O 16:Mn 2. Inorg Chem 2024; 63:6938-6947. [PMID: 38551338 DOI: 10.1021/acs.inorgchem.4c00299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
Multimode emission of Mn2+ for multimode fluorescence anticounterfeiting is achieved by cation site and interstitial occupancy in Ca2-xMgxGe7O16. The rings in Ca2-xMgxGe7O16 have a significant distortion for Mn2+ ions to enter the ring interstitials with a luminescence center at 665 nm, which is supported by XRD refinement results and first-principles calculations. The interstitial Mn2+ ion has good thermal stability with an activation energy of 0.36 eV. Surprisingly, these two luminescence centers, the cation site Mn and the interstitial Mn, have an obvious afterglow, and the disappearing afterglow will reappear by heating or irradiating with the 980 nm laser. The afterglow is significantly enhanced, as MnO2 is used as the manganese source, which is explained in detail by the thermal luminescence spectrum. Finally, Ca2-xMgxGe7O16:Mn2+ fully demonstrates its excellent prospects in fluorescent anticounterfeiting, information encryption, and optical information storage.
Collapse
Affiliation(s)
- Fei Fang
- College of Science, Chongqing University of Technology, Chongqing 400054, China
| | - Ye Jin
- College of Science, Chongqing University of Technology, Chongqing 400054, China
| | - Weixin Hu
- College of Science, Chongqing University of Technology, Chongqing 400054, China
| | - Yifei Chen
- College of Science, Chongqing University of Technology, Chongqing 400054, China
| | - Yang Wei
- College of Science, Chongqing University of Technology, Chongqing 400054, China
| | - Zhihui Zhang
- College of Science, Chongqing University of Technology, Chongqing 400054, China
| | - Chongzhou Wang
- College of Science, Chongqing University of Technology, Chongqing 400054, China
| | - Fancheng Meng
- College of Materials Science and Engineering, Chongqing University of Technology, Chongqing 400054, China
| | - Liangliang Cao
- College of Materials Science and Engineering, Chongqing University of Technology, Chongqing 400054, China
| | - Fuxiang Huang
- College of Materials Science and Engineering, Chongqing University of Technology, Chongqing 400054, China
| | - Li Ma
- Department of Physics, Georgia Southern University, Statesboro, Georgia 30460, United States
| | - Xiao-Jun Wang
- Department of Physics, Georgia Southern University, Statesboro, Georgia 30460, United States
| | - Haishen Ren
- Key Laboratory of Inorganic Functional Materials and Devices, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 201800, China
| |
Collapse
|
34
|
Long S, Chen F, Ren H, Hu Y, Chen C, Huang Y, Li X. Ion-Cross-Linked Hybrid Photochromic Hydrogels with Enhanced Mechanical Properties and Shape Memory Behaviour. Polymers (Basel) 2024; 16:1031. [PMID: 38674950 PMCID: PMC11054056 DOI: 10.3390/polym16081031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 04/04/2024] [Accepted: 04/05/2024] [Indexed: 04/28/2024] Open
Abstract
Shape-shifting polymers usually require not only reversible stimuli-responsive ability, but also strong mechanical properties. A novel shape-shifting photochromic hydrogel system was designed and fabricated by embedding hydrophobic spiropyran (SP) into double polymeric network (DN) through micellar copolymerisation. Here, sodium alginate (Alg) and poly acrylate-co-methyl acrylate-co-spiropyran (P(SA-co-MA-co-SPMA)) were employed as the first network and the second network, respectively, to realise high mechanical strength. After being soaked in the CaCl2 solution, the carboxyl groups in the system underwent metal complexation with Ca2+ to enhance the hydrogel. Moreover, after the hydrogel was exposed to UV-light, the closed isomer of spiropyran in the hydrogel network could be converted into an open zwitterionic isomer merocyanine (MC), which was considered to interact with Ca2+ ions. Interestingly, Ca2+ and UV-light responsive programmable shape of the copolymer hydrogel could recover to its original form via immersion in pure water. Given its excellent metal ion and UV light stimuli-responsive and mechanical properties, the hydrogel has potential applications in the field of soft actuators.
Collapse
Affiliation(s)
- Shijun Long
- Hubei Provincial Key Laboratory of Green Materials for Light Industry, Hubei University of Technology, Wuhan 430068, China; (S.L.); (F.C.); (H.R.); (Y.H.)
- Hubei Longzhong Laboratory, Xiangyang 441000, China
- New Materials and Green Manufacturing Talent Introduction and Innovation Demonstration Base, Hubei University of Technology, Wuhan 430068, China
| | - Fan Chen
- Hubei Provincial Key Laboratory of Green Materials for Light Industry, Hubei University of Technology, Wuhan 430068, China; (S.L.); (F.C.); (H.R.); (Y.H.)
| | - Han Ren
- Hubei Provincial Key Laboratory of Green Materials for Light Industry, Hubei University of Technology, Wuhan 430068, China; (S.L.); (F.C.); (H.R.); (Y.H.)
| | - Yali Hu
- Hubei Provincial Key Laboratory of Green Materials for Light Industry, Hubei University of Technology, Wuhan 430068, China; (S.L.); (F.C.); (H.R.); (Y.H.)
| | - Chao Chen
- Hubei Key Laboratory of Polymer Materials, Hubei University, Wuhan 430062, China
| | - Yiwan Huang
- Hubei Provincial Key Laboratory of Green Materials for Light Industry, Hubei University of Technology, Wuhan 430068, China; (S.L.); (F.C.); (H.R.); (Y.H.)
- Hubei Longzhong Laboratory, Xiangyang 441000, China
| | - Xuefeng Li
- Hubei Provincial Key Laboratory of Green Materials for Light Industry, Hubei University of Technology, Wuhan 430068, China; (S.L.); (F.C.); (H.R.); (Y.H.)
- Hubei Longzhong Laboratory, Xiangyang 441000, China
- New Materials and Green Manufacturing Talent Introduction and Innovation Demonstration Base, Hubei University of Technology, Wuhan 430068, China
| |
Collapse
|
35
|
Zhao Z, Dong D, Yu S, Xia S, Duan Y, Liu H, Cheng F, Wang L, Zhu H, He H. A time-multiplexed self-erasing nanopaper for water induced information transmission. J Colloid Interface Sci 2024; 659:127-138. [PMID: 38159489 DOI: 10.1016/j.jcis.2023.12.140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 12/09/2023] [Accepted: 12/21/2023] [Indexed: 01/03/2024]
Abstract
The progressive presentation of multilevel information enhances the security level of information storage and transmission. Here, a time-multiplexed self-erasing nanopaper was developed by integrating cellulose nanofiber (CNF)-stabilized gold nanoclusters and CNF-modified long afterglow materials. The orange fluorescence of gold nanoclusters on nanopaper was regulated by the reversible swelling and shrinking of CNF induced by water solution, while the cyan fluorescence of micron-long afterglow remained stable and acted as the background signal. It was noteworthy that the fluorescence colour and intensity of the nanopaper could be freely adjusted between orange and cyan on the time scale. Therefore, the array information on the nanopaper could be encoded by a water solution, iterated variation as the step-by-step solvent volatilized on the time scale measured by the time of the afterglow duration. This work provides a new approach for constructing time-multiplexed self-erasing nanopaper for confidential information storage and transmission.
Collapse
Affiliation(s)
- Zihan Zhao
- School of Light Industry and Food Engineering, Guangxi University, Nanning 530004, PR China; Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, Nanning 530004, PR China
| | - Die Dong
- School of Light Industry and Food Engineering, Guangxi University, Nanning 530004, PR China; Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, Nanning 530004, PR China
| | - Shanshan Yu
- School of Light Industry and Food Engineering, Guangxi University, Nanning 530004, PR China; Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, Nanning 530004, PR China
| | - Siyuan Xia
- School of Light Industry and Food Engineering, Guangxi University, Nanning 530004, PR China; Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, Nanning 530004, PR China
| | - Yujie Duan
- School of Light Industry and Food Engineering, Guangxi University, Nanning 530004, PR China; Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, Nanning 530004, PR China
| | - Hui Liu
- School of Light Industry and Food Engineering, Guangxi University, Nanning 530004, PR China; Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, Nanning 530004, PR China
| | - Fei Cheng
- School of Light Industry and Food Engineering, Guangxi University, Nanning 530004, PR China; Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, Nanning 530004, PR China
| | - Lei Wang
- School of Light Industry and Food Engineering, Guangxi University, Nanning 530004, PR China; Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, Nanning 530004, PR China
| | - Hongxiang Zhu
- School of Light Industry and Food Engineering, Guangxi University, Nanning 530004, PR China; Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, Nanning 530004, PR China.
| | - Hui He
- School of Light Industry and Food Engineering, Guangxi University, Nanning 530004, PR China; Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, Nanning 530004, PR China.
| |
Collapse
|
36
|
Wang JT, Pei YY, Han BJ, Sun RS, Zuo RT, Cui GX, Zhang H, Cao ZZ, Jin L, Li QF. Multifunctional chitosan-based lanthanide luminescent hydrogel with stretchability, adhesion, self-healing, color tunability and antibacterial ability. Int J Biol Macromol 2024; 264:130768. [PMID: 38467228 DOI: 10.1016/j.ijbiomac.2024.130768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 02/20/2024] [Accepted: 03/08/2024] [Indexed: 03/13/2024]
Abstract
Lanthanide luminescent hydrogels have broad application prospects in various fields. However, most of lanthanide hydrogels possess relatively simple functions, which is not conducive to practical applications. Therefore, it is becoming increasingly urgent to develop multifunctional hydrogels. Herein, a multifunctional chitosan-based lanthanide luminescent hydrogel with ultra-stretchability, multi-adhesion, excellent self-healing, emission color tunability, and good antibacterial ability was prepared by a simple one-step free radical polymerization. In this work, our designed lanthanide complexes [Ln(4-VDPA)3] contain three reaction sites, which can be copolymerized with N-[tris(hydroxymethyl) methyl] acrylamide (THMA), acrylamide (AM), and diacryloyl poly(ethylene glycol) (DPEG) to form the first chemical crosslinking network, while hydroxypropyltrimethyl ammonium chloride chitosan (HACC) interacts with the hydroxyl and amino groups derived from the chemical crosslinking network through hydrogen bonds to form the second physical crosslinking network. The structure of the double network as well as the dynamic hydrogen bond and lanthanide coordination endow the hydrogel with excellent stretchability, adhesion and self-healing properties. Moreover, the introduction of lanthanide complexes and chitosan makes the hydrogel exhibit outstanding luminescence and antibacterial performances. This research not only realizes the simple synthesis of multifunctional luminescent hydrogels, but also provides a new idea for the fabrication of biomass-based hydrogels as intelligent and sustainable materials.
Collapse
Affiliation(s)
- Jin-Tao Wang
- Henan Key Laboratory of Rare Earth Functional Materials, International Joint Research Laboratory for Biomedical Nanomaterials of Henan, Zhoukou Normal University, Zhoukou 466001, China
| | - Ying-Ying Pei
- Henan Key Laboratory of Rare Earth Functional Materials, International Joint Research Laboratory for Biomedical Nanomaterials of Henan, Zhoukou Normal University, Zhoukou 466001, China.
| | - Bing-Jie Han
- Henan Key Laboratory of Rare Earth Functional Materials, International Joint Research Laboratory for Biomedical Nanomaterials of Henan, Zhoukou Normal University, Zhoukou 466001, China
| | - Rui-Shuang Sun
- Henan Key Laboratory of Rare Earth Functional Materials, International Joint Research Laboratory for Biomedical Nanomaterials of Henan, Zhoukou Normal University, Zhoukou 466001, China
| | - Ruo-Tong Zuo
- Henan Key Laboratory of Rare Earth Functional Materials, International Joint Research Laboratory for Biomedical Nanomaterials of Henan, Zhoukou Normal University, Zhoukou 466001, China
| | - Gai-Xia Cui
- Henan Key Laboratory of Rare Earth Functional Materials, International Joint Research Laboratory for Biomedical Nanomaterials of Henan, Zhoukou Normal University, Zhoukou 466001, China
| | - Hao Zhang
- Henan Key Laboratory of Rare Earth Functional Materials, International Joint Research Laboratory for Biomedical Nanomaterials of Henan, Zhoukou Normal University, Zhoukou 466001, China
| | - Ze-Zhong Cao
- Henan Key Laboratory of Rare Earth Functional Materials, International Joint Research Laboratory for Biomedical Nanomaterials of Henan, Zhoukou Normal University, Zhoukou 466001, China
| | - Lin Jin
- Henan Key Laboratory of Rare Earth Functional Materials, International Joint Research Laboratory for Biomedical Nanomaterials of Henan, Zhoukou Normal University, Zhoukou 466001, China.
| | - Qing-Feng Li
- Henan Key Laboratory of Rare Earth Functional Materials, International Joint Research Laboratory for Biomedical Nanomaterials of Henan, Zhoukou Normal University, Zhoukou 466001, China.
| |
Collapse
|
37
|
Petelinšek N, Mommer S. Tough Hydrogels for Load-Bearing Applications. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2307404. [PMID: 38225751 PMCID: PMC10966577 DOI: 10.1002/advs.202307404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 12/08/2023] [Indexed: 01/17/2024]
Abstract
Tough hydrogels have emerged as a promising class of materials to target load-bearing applications, where the material has to resist multiple cycles of extreme mechanical impact. A variety of chemical interactions and network architectures are used to enhance the mechanical properties and fracture mechanics of hydrogels making them stiffer and tougher. In recent years, the mechanical properties of tough, high-performance hydrogels have been benchmarked, however, this is often incomplete as important variables like water content are largely ignored. In this review, the aim is to clarify the reported mechanical properties of state-of-the-art tough hydrogels by providing a comprehensive library of fracture and mechanical property data. First, common methods for mechanical characterization of such high-performance hydrogels are introduced. Then, various modes of energy dissipation to obtain tough hydrogels are discussed and used to categorize the individual datasets helping to asses the material's (fracture) mechanical properties. Finally, current applications are considered, tough high-performance hydrogels are compared with existing materials, and promising future opportunities are discussed.
Collapse
Affiliation(s)
- Nika Petelinšek
- Macromolecular Engineering LaboratoryDepartment of Mechanical and Process EngineeringETH ZurichSonneggstrasse 3Zurich8092Switzerland
| | - Stefan Mommer
- Macromolecular Engineering LaboratoryDepartment of Mechanical and Process EngineeringETH ZurichSonneggstrasse 3Zurich8092Switzerland
| |
Collapse
|
38
|
Dang X, Fu Y, Wang X. A temperature and pressure dual-responsive, stretchable, healable, adhesive, and biocompatible carboxymethyl cellulose-based conductive hydrogels for flexible wearable strain sensor. Biosens Bioelectron 2024; 246:115893. [PMID: 38048722 DOI: 10.1016/j.bios.2023.115893] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 11/20/2023] [Accepted: 11/27/2023] [Indexed: 12/06/2023]
Abstract
The study aimed to develop a novel temperature and pressure dual-responsive conductive hydrogel with self-healing, self-adhesive, biocompatible, and stretchable properties, for the development of multifunctional anti-counterfeiting and wearable flexible electronic materials. A conductive hydrogel based on carboxymethyl cellulose (CMC) was synthesized by simple "one pot" free radical polymerization of CMC, acrylamide (AAm) and acrylic acid (AAc). The hydrogel displayed temperature responsiveness and possessed an upper critical solution temperature (UCST) value. In addition, hydrogels also had surprising pressure responsiveness. The synthesized hydrogels were characterized by FTIR, TGA, DSC, and XRD analysis. Importantly, the obtained hydrogels exhibited exceptional mechanical properties (stress: 730 kPa, strain: 880%), fatigue resistance, stretchability, self-healing capability, self-adhesive properties, and conductivity. In addition, valuable insights were obtained into the synthesis and application of flexible anti-counterfeiting and camouflage materials by the temperature and pressure dual-responsive hydrogels. Moreover, the prepared hydrogel, with an electrically sensitive perception of external strain (GF = 2.61, response time: 80 ms), can be utilized for monitoring human movement, emotional changes, physiological signals, language, and more, rendering it suitable for novel flexible anti-counterfeiting materials and versatile wearable iontronics. Overall, this study provided novel insights into the simple and efficient synthesis and sustainable manufacturing of environmentally friendly multifunctional anti-counterfeiting materials and flexible electronic skin sensors.
Collapse
Affiliation(s)
- Xugang Dang
- Institute of Biomass and Function Materials & National Demonstration Centre for Experimental Light Chemistry Engineering Education, College of Bioresources Chemistry and Materials Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, PR China.
| | - Yuntao Fu
- Institute of Biomass and Function Materials & National Demonstration Centre for Experimental Light Chemistry Engineering Education, College of Bioresources Chemistry and Materials Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, PR China
| | - Xuechuan Wang
- Institute of Biomass and Function Materials & National Demonstration Centre for Experimental Light Chemistry Engineering Education, College of Bioresources Chemistry and Materials Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, PR China
| |
Collapse
|
39
|
Lian X, Chang R, Huang G, Peng Y, Wang K, Zhang J, Yao B, Niu H. Multicolor Fluorescent Inks Based on Lanthanide Hybrid Organogels for Anticounterfeiting and Logic Circuit Design. ACS APPLIED MATERIALS & INTERFACES 2024; 16:6133-6142. [PMID: 38272837 DOI: 10.1021/acsami.3c17793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2024]
Abstract
With the rapid development of information technology, the encrypted storage of information is becoming increasingly important for human life. The luminescent materials with a color-changed response under physical or chemical stimuli are crucial for information coding and anticounterfeiting. However, traditional fluorescent materials usually face problems such as a lack of tunable fluorescence, insufficient surface-adaptive adhesion, and strict synthesis conditions, hindering their practical applications. Herein, a series of luminescent lanthanide hybrid organogels (Ln-MOGs) were rapidly synthesized using a simple method at room temperature through the coordination between lanthanide ions and 2,6-pyridinedicarboxylic acid and 5-aminoisophthalic acid. And the multicolor fluorescent inks were also prepared based on the Ln-MOG and hyaluronic acid, with the advantages of being easy to write, color-adjustable, and water-responsive discoloration, which has been applied to paper-based anticounterfeiting technology. Inspired by the responsiveness of the fluorescent inks to water, we designed a logic system that can realize single-input logic operations (NOT and PASS1) and double-input logic operations (NAND, AND, OR, NOR, XOR). The encryption of a binary code can be actualized utilizing different luminescent response modes based on the logic circuit system. By adjusting the energy sensitization and luminescence mechanism of lanthanide ions in the gel structure, the information reading and writing ability of the fluorescent inks were verified, which has great potential in the field of multicolor pattern anticounterfeiting and information encryption.
Collapse
Affiliation(s)
- Xiao Lian
- Key Laboratory of Functional Inorganic Materials of Anhui Province, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, School of Chemistry & Chemical Engineering, Anhui University, Hefei 230601, China
| | - Rui Chang
- Key Laboratory of Functional Inorganic Materials of Anhui Province, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, School of Chemistry & Chemical Engineering, Anhui University, Hefei 230601, China
| | - Gang Huang
- Key Laboratory of Functional Inorganic Materials of Anhui Province, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, School of Chemistry & Chemical Engineering, Anhui University, Hefei 230601, China
| | - Yanqiu Peng
- Key Laboratory of Functional Inorganic Materials of Anhui Province, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, School of Chemistry & Chemical Engineering, Anhui University, Hefei 230601, China
| | - Kaixuan Wang
- School of Materials Science & Engineering, Anhui University, Hefei 230601, China
| | - Juzhou Zhang
- China National Center for Quality Supervision and Test of Agricultural-Avocation Processed Food, Anhui Provincial Institute for Food and Drug Test, Hefei 230051, China
| | - Bangben Yao
- Anhui Province Institute of Product Quality Supervision & Inspection, Hefei 230051, China
| | - Helin Niu
- Key Laboratory of Functional Inorganic Materials of Anhui Province, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, School of Chemistry & Chemical Engineering, Anhui University, Hefei 230601, China
| |
Collapse
|
40
|
Aljohani MM. Preparation of polylactic acid reinforced with cellulose nanofibers toward photochromic self-healing adhesive for anti-counterfeiting applications. Int J Biol Macromol 2024; 259:129065. [PMID: 38161030 DOI: 10.1016/j.ijbiomac.2023.129065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 11/19/2023] [Accepted: 12/25/2023] [Indexed: 01/03/2024]
Abstract
There are a number of drawbacks with photochromic adhesives, including their poor durability, high price tag, and lackluster performance. On the other hand, self-healable adhesives have shown to be durable and robust than conventional alternatives. Hydrogel adhesives that change color in response to ultraviolet light were created for usage in self-healable authenticating stamps. In this context, a combination of cellulose nanofibers (CNFs), polylactic acid (PLA) and nanoparticles of lanthanide aluminate (NLA) were prepared to generate an organic-inorganic hybrid hydrogel adhesive with self-healing properties. NLA agglomerates were avoided due to the use of CNFs as a nanofiller and dispersion agent. Colorless stamps require that NLA to be dispersed consistently in the CNFs/PLA hydrogel without clumping. This film becomes green when irradiated with ultraviolet, as indicated by luminescence spectra and CIE Lab coordinates. When illuminated at 365 nm, the paper sheets emitted light with a wavelength of 519 nm. The morphologies of prints were analyzed by different analytical methods. Diameter measurements from a transmission electron microscope (TEM) of the synthesized NLA ranged from 5 to 9 nm, whereas CNFs displayed diameters of 40-60 nm. The current NLA@CNFs/PLA hydrogel presents a reliable anti-counterfeiting solution for various authenticating products.
Collapse
Affiliation(s)
- Meshari M Aljohani
- Department of Chemistry, Faculty of Science, University of Tabuk, Tabuk 71491, Saudi Arabia.
| |
Collapse
|
41
|
Hu YX, Hao X, Wang D, Zhang ZC, Sun H, Xu XD, Xie X, Shi X, Peng H, Yang HB, Xu L. Light-Responsive Supramolecular Liquid-Crystalline Metallacycle for Orthogonal Multimode Photopatterning. Angew Chem Int Ed Engl 2024; 63:e202315061. [PMID: 37966368 DOI: 10.1002/anie.202315061] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 11/07/2023] [Accepted: 11/13/2023] [Indexed: 11/16/2023]
Abstract
The development of multimode photopatterning systems based on supramolecular coordination complexes (SCCs) is considerably attractive in supramolecular chemistry and materials science, because SCCs can serve as promising platforms for the incorporation of multiple functional building blocks. Herein, we report a light-responsive liquid-crystalline metallacycle that is constructed by coordination-driven self-assembly. By exploiting its fascinating liquid crystal features, bright emission properties, and facile photocyclization capability, a unique system with spatially-controlled fluorescence-resonance energy transfer (FRET) is built through the introduction of a photochromic spiropyran derivative, which led to the realization of the first example of a liquid-crystalline metallacycle for orthogonal photopatterning in three-modes, namely holography, fluorescence, and photochromism.
Collapse
Affiliation(s)
- Yi-Xiong Hu
- State Key Laboratory of Petroleum Molecular and Process Engineering, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, Shanghai Frontiers Science Center of Molecule Intelligent Syntheses, School of Chemistry and Molecular Engineering, East China Normal University, 3663 N. Zhongshan Road, Shanghai, 200062, P. R. China
| | - Xingtian Hao
- State Key Laboratory of Materials Processing and Die & Mould Technology, and MOE Key Laboratory of Materials Chemistry for Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Dan Wang
- State Key Laboratory of Materials Processing and Die & Mould Technology, and MOE Key Laboratory of Materials Chemistry for Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Zi-Cheng Zhang
- State Key Laboratory of Petroleum Molecular and Process Engineering, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, Shanghai Frontiers Science Center of Molecule Intelligent Syntheses, School of Chemistry and Molecular Engineering, East China Normal University, 3663 N. Zhongshan Road, Shanghai, 200062, P. R. China
| | - Haitao Sun
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai, 200062, P. R. China
| | - Xing-Dong Xu
- Key Laboratory of Special Functional Aggregated Materials of Ministry of Education, School of Chemistry and Chemical Engineering, National Engineering Research Center for Colloidal Materials, Shandong University, Jinan, Shandong, 250100, P. R. China
| | - Xiaolin Xie
- State Key Laboratory of Materials Processing and Die & Mould Technology, and MOE Key Laboratory of Materials Chemistry for Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Xueliang Shi
- State Key Laboratory of Petroleum Molecular and Process Engineering, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, Shanghai Frontiers Science Center of Molecule Intelligent Syntheses, School of Chemistry and Molecular Engineering, East China Normal University, 3663 N. Zhongshan Road, Shanghai, 200062, P. R. China
| | - Haiyan Peng
- State Key Laboratory of Materials Processing and Die & Mould Technology, and MOE Key Laboratory of Materials Chemistry for Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Hai-Bo Yang
- State Key Laboratory of Petroleum Molecular and Process Engineering, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, Shanghai Frontiers Science Center of Molecule Intelligent Syntheses, School of Chemistry and Molecular Engineering, East China Normal University, 3663 N. Zhongshan Road, Shanghai, 200062, P. R. China
| | - Lin Xu
- State Key Laboratory of Petroleum Molecular and Process Engineering, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, Shanghai Frontiers Science Center of Molecule Intelligent Syntheses, School of Chemistry and Molecular Engineering, East China Normal University, 3663 N. Zhongshan Road, Shanghai, 200062, P. R. China
| |
Collapse
|
42
|
Shen Y, Le X, Wu Y, Chen T. Stimulus-responsive polymer materials toward multi-mode and multi-level information anti-counterfeiting: recent advances and future challenges. Chem Soc Rev 2024; 53:606-623. [PMID: 38099593 DOI: 10.1039/d3cs00753g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2024]
Abstract
Information storage and security is one of the perennial hot issues in society, while the further advancements of related chemical anti-counterfeiting systems remain a formidable challenge. As emerging anti-counterfeiting materials, stimulus-responsive polymers (SRPs) have attracted extensive attention due to their unique stimulus-responsiveness and charming discoloration performance. At the same time, single-channel decryption technology with low-security levels has been unable to effectively prevent information from being stolen or mimicked. As a result, it would be of great significance to develop SRPs with multi-mode and multi-level anti-counterfeiting characteristics. This study summarizes the latest achievements in advance anti-counterfeiting strategies based on SRPs, including multi-mode anti-counterfeiting (static information) and multi-level anti-counterfeiting (dynamic information). In addition, the promising applications of such materials in anti-counterfeiting labels, identification platforms, intelligent displays, and others are briefly reviewed. Finally, the challenges and opportunities in this emerging field are discussed. This review serves as a useful resource for manipulating SRP-based anti-counterfeiting materials and creating cutting-edge information security and encryption systems.
Collapse
Affiliation(s)
- Ying Shen
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China.
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaoxia Le
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China.
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yue Wu
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China.
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tao Chen
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China.
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
- College of Material Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou 311121, China
| |
Collapse
|
43
|
Xu R, Feng M, Xie J, Sang X, Yang J, Wang J, Li Y, Khan A, Liu L, Song F. Physically Unclonable Holographic Encryption and Anticounterfeiting Based on the Light Propagation of Complex Medium and Fluorescent Labels. ACS APPLIED MATERIALS & INTERFACES 2024; 16:2888-2901. [PMID: 38165225 DOI: 10.1021/acsami.3c14571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
Physically unclonable function (PUF) methods have high security, but their wide application is limited by complex encoding, large database, advanced external characterization equipment, and complicated comparative authentication. Therefore, we creatively propose the physically unclonable holographic encryption and anticounterfeiting based on the light propagation of complex medium and fluorescent labels. As far as we know, this is the first holographic encryption and anticounterfeiting method with a fluorescence physically unclonable property. The proposed method reduces the above requirements of traditional PUF methods and significantly reduces the cost. The angle-multiplexed PUF fluorescent label is the physical secret key. The information is encrypted as computer-generated holograms (CGH). Many physical parameters in the system are used as the parameter secret keys. The Diffie-Hellman key exchange algorithm is improved to transfer parameter secret keys. A variety of complex medium hologram generation methods are proposed and compared. The effectiveness, security, and robustness of the method are studied and analyzed. Finally, a graphical user interface (GUI) is designed for the convenience of users. The advantages of this method include lower PUF encoding complexity, effective reduction of the database size, lower requirements for characterization equipment, and direct use of decrypted information without complicated comparative authentication to reduce misjudgment. It is believed that the method proposed in this paper will pave the way for the popularization and application of PUF-based anticounterfeiting and encryption methods.
Collapse
Affiliation(s)
- Rui Xu
- School of Physics, The Key Laboratory of Weak Light Nonlinear Photonics, Ministry of Education, Nankai University, Tianjin 300071, China
- Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi 030006, China
| | - Ming Feng
- School of Physics, The Key Laboratory of Weak Light Nonlinear Photonics, Ministry of Education, Nankai University, Tianjin 300071, China
- Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi 030006, China
| | - Jinyue Xie
- School of Physics, The Key Laboratory of Weak Light Nonlinear Photonics, Ministry of Education, Nankai University, Tianjin 300071, China
| | - Xu Sang
- School of Physics, The Key Laboratory of Weak Light Nonlinear Photonics, Ministry of Education, Nankai University, Tianjin 300071, China
| | - Jiaxin Yang
- School of Physics, The Key Laboratory of Weak Light Nonlinear Photonics, Ministry of Education, Nankai University, Tianjin 300071, China
| | - Jingru Wang
- School of Physics, The Key Laboratory of Weak Light Nonlinear Photonics, Ministry of Education, Nankai University, Tianjin 300071, China
| | - Yan Li
- School of Physics, The Key Laboratory of Weak Light Nonlinear Photonics, Ministry of Education, Nankai University, Tianjin 300071, China
| | - Adnan Khan
- School of Physics, The Key Laboratory of Weak Light Nonlinear Photonics, Ministry of Education, Nankai University, Tianjin 300071, China
| | - Lisa Liu
- School of Physics, The Key Laboratory of Weak Light Nonlinear Photonics, Ministry of Education, Nankai University, Tianjin 300071, China
| | - Feng Song
- School of Physics, The Key Laboratory of Weak Light Nonlinear Photonics, Ministry of Education, Nankai University, Tianjin 300071, China
- Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi 030006, China
| |
Collapse
|
44
|
Gao J, Cong X, Tang Y, Guo J. Movable type printing-inspired information storage enabled by self-healable fluorescent liquid crystal elastomers. SCIENCE CHINA MATERIALS 2024; 67:355-362. [DOI: 10.1007/s40843-023-2694-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 11/15/2023] [Indexed: 01/06/2025]
|
45
|
Ye Y, Wang W, Liu X, Chen Y, Tian S, Fu P. A Sol-Gel Transition and Self-Healing Hydrogel Triggered via Photodimerization of Coumarin. Gels 2023; 10:21. [PMID: 38247744 PMCID: PMC10815305 DOI: 10.3390/gels10010021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 12/19/2023] [Accepted: 12/22/2023] [Indexed: 01/23/2024] Open
Abstract
Reversible chemical covalency provides a path to materials that can degrade and recombine with appropriate stimuli and which can be used for tissue regeneration and repair. However, designing and preparing efficient and quickly self-healing materials has always been a challenge. The preparation strategies of photoresponsive gels attract a lot of attention due to their precise spatial and temporal control and their predetermined response to light stimulation. In this work, the linear copolymer PAC was synthesized via precipitation polymerization of acrylic acid and 7-(2-acrylate-ethoxylated)-4-methylcoumarin. The coumarin groups on the copolymer PAC side chains provide a reversible chemical cross-linking via photostimulation, which achieves reversible regulation of the gel network structure. The concentration of 18 wt% PAC solution produces gelation under irradiation with 365 nm. In contrast, PAC gel is restored to soluble copolymers under irradiation with 254 nm. Meanwhile, the mechanical and self-healing properties of the gel were also explored. It is demonstrated that the cracks of the gel can be repaired simply, quickly, and efficiently. Furthermore, the PAC copolymer shows an excellent adhesion property based on the reversible sol-gel transition. Thus, the PAC gel has considerable potential for applications in engineering and biomedical materials.
Collapse
Affiliation(s)
- Yong Ye
- School of Metallurgy and Materials Engineering, Chongqing University of Science and Technology, Chongqing 401331, China
| | - Wenkai Wang
- School of Metallurgy and Materials Engineering, Chongqing University of Science and Technology, Chongqing 401331, China
| | - Xin Liu
- School of Metallurgy and Materials Engineering, Chongqing University of Science and Technology, Chongqing 401331, China
| | - Yong Chen
- School of Metallurgy and Materials Engineering, Chongqing University of Science and Technology, Chongqing 401331, China
| | - Shenghui Tian
- School of Metallurgy and Materials Engineering, Chongqing University of Science and Technology, Chongqing 401331, China
| | - Peng Fu
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
46
|
Pratakshya P, Xu C, Dibble DJ, Mukazhanova A, Liu P, Burke AM, Kurakake R, Lopez R, Dennison PR, Sharifzadeh S, Gorodetsky AA. Octopus-inspired deception and signaling systems from an exceptionally-stable acene variant. Nat Commun 2023; 14:8528. [PMID: 38135683 PMCID: PMC10746719 DOI: 10.1038/s41467-023-40163-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 07/14/2023] [Indexed: 12/24/2023] Open
Abstract
Multifunctional platforms that can dynamically modulate their color and appearance have attracted attention for applications as varied as displays, signaling, camouflage, anti-counterfeiting, sensing, biomedical imaging, energy conservation, and robotics. Within this context, the development of camouflage systems with tunable spectroscopic and fluorescent properties that span the ultraviolet, visible, and near-infrared spectral regions has remained exceedingly challenging because of frequently competing materials and device design requirements. Herein, we draw inspiration from the unique blue rings of the Hapalochlaena lunulata octopus for the development of deception and signaling systems that resolve these critical challenges. As the active material, our actuator-type systems incorporate a readily-prepared and easily-processable nonacene-like molecule with an ambient-atmosphere stability that exceeds the state-of-the-art for comparable acenes by orders of magnitude. Devices from this active material feature a powerful and unique combination of advantages, including straightforward benchtop fabrication, competitive baseline performance metrics, robustness during cycling with the capacity for autonomous self-repair, and multiple dynamic multispectral operating modes. When considered together, the described exciting discoveries point to new scientific and technological opportunities in the areas of functional organic materials, reconfigurable soft actuators, and adaptive photonic systems.
Collapse
Affiliation(s)
- Preeta Pratakshya
- Department of Chemistry, University of California, Irvine, Irvine, CA 92697, USA
| | - Chengyi Xu
- Department of Materials Science and Engineering, University of California, Irvine, Irvine, CA, 92697, USA
| | - David J Dibble
- Department of Chemical and Biomolecular Engineering, University of California, Irvine, Irvine, CA, 92697, USA
| | - Aliya Mukazhanova
- Division of Materials Science and Engineering, Boston University, Boston, MA, 02215, USA
| | - Panyiming Liu
- Department of Materials Science and Engineering, University of California, Irvine, Irvine, CA, 92697, USA
| | - Anthony M Burke
- Department of Chemical and Biomolecular Engineering, University of California, Irvine, Irvine, CA, 92697, USA
| | - Reina Kurakake
- Department of Materials Science and Engineering, University of California, Irvine, Irvine, CA, 92697, USA
| | - Robert Lopez
- Department of Materials Science and Engineering, University of California, Irvine, Irvine, CA, 92697, USA
| | - Philip R Dennison
- Department of Chemistry, University of California, Irvine, Irvine, CA 92697, USA
| | - Sahar Sharifzadeh
- Division of Materials Science and Engineering, Boston University, Boston, MA, 02215, USA
- Department of Chemistry, Boston University, Boston, MA, 02215, USA
- Department of Physics, Boston University, Boston, MA, 02215, USA
- Department of Electrical and Computer Engineering, Boston University, Boston, MA, 02215, USA
| | - Alon A Gorodetsky
- Department of Materials Science and Engineering, University of California, Irvine, Irvine, CA, 92697, USA.
- Department of Chemical and Biomolecular Engineering, University of California, Irvine, Irvine, CA, 92697, USA.
| |
Collapse
|
47
|
Wang HQ, Tang Y, Huang ZY, Wang FZ, Qiu PF, Zhang X, Li CH, Li Q. A Dual-Responsive Liquid Crystal Elastomer for Multi-Level Encryption and Transient Information Display. Angew Chem Int Ed Engl 2023; 62:e202313728. [PMID: 37818673 DOI: 10.1002/anie.202313728] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 10/09/2023] [Accepted: 10/09/2023] [Indexed: 10/12/2023]
Abstract
Information security has gained increasing attention in the past decade, leading to the development of advanced materials for anti-counterfeiting, encryption and instantaneous information display. However, it remains challenging to achieve high information security with simple encryption procedures and low-energy stimuli. Herein, a series of strain/temperature-responsive liquid crystal elastomers (LCEs) are developed to achieve dual-modal, multi-level information encryption and real-time, rewritable transient information display. The as-prepared polydomain LCEs can change from an opaque state to a transparent state under strain or temperature stimuli, with the transition strains or temperatures highly dependent on the concentration of long-chain flexible spacers. Information encrypted by different LCE inks can be decrypted under specific strains or temperatures, leading to multi-level protection of information security. Furthermore, with the combination of the phase transition of polydomain LCEs and the photothermal effect of multi-walled carbon nanotubes (MWCNTs), we achieved a repeatable transient information display by using near-infrared (NIR) light as a pen for writing. This study provides new insight into the development of advanced encryption materials with versatility and high security for broad applications.
Collapse
Affiliation(s)
- Hong-Qin Wang
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, 210023, Nanjing, China
| | - Yuqi Tang
- Institute of Advanced Materials and School of Chemistry and Chemical Engineering, Southeast University, 211189, Nanjing, China
| | - Zi-Yang Huang
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, 210023, Nanjing, China
| | - Fang-Zhou Wang
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, 210023, Nanjing, China
| | - Peng-Fei Qiu
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, 210023, Nanjing, China
| | - Xinfang Zhang
- Materials Science Graduate Program, Kent State University, 44242, Kent, Ohio, USA
| | - Cheng-Hui Li
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, 210023, Nanjing, China
| | - Quan Li
- Institute of Advanced Materials and School of Chemistry and Chemical Engineering, Southeast University, 211189, Nanjing, China
- Materials Science Graduate Program, Kent State University, 44242, Kent, Ohio, USA
| |
Collapse
|
48
|
Li C, Liu J, Qiu X, Yang X, Huang X, Zhang X. Photoswitchable and Reversible Fluorescent Eutectogels for Conformal Information Encryption. Angew Chem Int Ed Engl 2023; 62:e202313971. [PMID: 37792427 DOI: 10.1002/anie.202313971] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 10/04/2023] [Accepted: 10/04/2023] [Indexed: 10/05/2023]
Abstract
Smart fluorescent materials that can respond to environmental stimuli are of great importance in the fields of information encryption and anti-counterfeiting. However, traditional fluorescent materials usually face problems such as lack of tunable fluorescence and insufficient surface-adaptive adhesion, hindering their practical applications. Herein, inspired by the glowing sucker octopus, we present a novel strategy to fabricate a reversible fluorescent eutectogel with high transparency, adhesive and self-healing performance for conformal information encryption and anti-counterfeiting. Using anthracene as luminescent unit, the eutectogel exhibits photoswitchable fluorescence and can therefore be reversibly written/erased with patterns by non-contact stimulation. Additionally, different from mechanically irreversible adhesion via glue, the eutectogel can adhere to various irregular substrates over a wide temperature range (-20 to 65 °C) and conformally deform more than 1000 times without peeling off. Furthermore, by exploiting surface-adaptive adhesion, high transparency and good stretchability of the eutectogel, dual encryption can be achieved under UV and stretching conditions to further improve the security level. This study should provide a promising strategy for the future development of advanced intelligent anti-counterfeiting materials.
Collapse
Affiliation(s)
- Changchun Li
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute, Sichuan University, Chengdu, 610065, China
| | - Jize Liu
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute, Sichuan University, Chengdu, 610065, China
| | - Xiaoyan Qiu
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute, Sichuan University, Chengdu, 610065, China
| | - Xin Yang
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute, Sichuan University, Chengdu, 610065, China
| | - Xin Huang
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute, Sichuan University, Chengdu, 610065, China
| | - Xinxing Zhang
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute, Sichuan University, Chengdu, 610065, China
| |
Collapse
|
49
|
Huang J, Jiang Y, Chen Q, Xie H, Zhou S. Bioinspired thermadapt shape-memory polymer with light-induced reversible fluorescence for rewritable 2D/3D-encoding information carriers. Nat Commun 2023; 14:7131. [PMID: 37932322 PMCID: PMC10628284 DOI: 10.1038/s41467-023-42795-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 10/20/2023] [Indexed: 11/08/2023] Open
Abstract
Fluorescent materials have attracted widespread attention for information encryption owing to their stimuli-responsive color-shifting. However, the 2D encoding of fluorescent images poses a risk of information leakage. Herein, inspired by the mimic octopus capable of camouflage by changing colors and shapes, we develop a thermadapt shape-memory fluorescent film (TSFF) for integrating 2D/3D encoding in one system. The TSFF is based on anthracene group with reversible photo-cross-linking and poly (ethylene-co-vinyl acetate) network with thermadapt shape-memory properties. The reversible photo-cross-linking of anthracene is accompanied by repeatable fluorescence-shifting and enables rewritable 2D encoding. Meanwhile, the thermadapt shape-memory properties not only enables the reconfiguration of the permanent shape for creating and erasing 3D patterns, i.e., rewritable 3D information, but also facilitates recoverable shape programming for 3D encoding. This rewritable 2D/3D encoding strategy can enhance information security because only designated inspectors can decode the information by providing sequential heating for shape recovery and UV exposure. Overall, TSFF capable of rewritable 2D/3D encoding will inspire the design of smart materials for high-security information carriers.
Collapse
Affiliation(s)
- Jinhui Huang
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, 610031, Chengdu, China
- Key Laboratory of Advanced Technologies of Materials Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, 610031, Chengdu, China
| | - Yue Jiang
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, 610031, Chengdu, China
- Key Laboratory of Advanced Technologies of Materials Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, 610031, Chengdu, China
| | - Qiuyu Chen
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, 610031, Chengdu, China
- Key Laboratory of Advanced Technologies of Materials Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, 610031, Chengdu, China
| | - Hui Xie
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, 610031, Chengdu, China.
- Key Laboratory of Advanced Technologies of Materials Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, 610031, Chengdu, China.
| | - Shaobing Zhou
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, 610031, Chengdu, China.
- Key Laboratory of Advanced Technologies of Materials Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, 610031, Chengdu, China.
| |
Collapse
|
50
|
Wu Y, Wang Y, Guan X, Zhang H, Guo R, Cui C, Wu D, Cheng Y, Ge Z, Zheng Y, Zhang Y. Molecular Clogging Organogels with Excellent Solvent Maintenance, Adjustable Modulus, and Advanced Mechanics for Impact Protection. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2306882. [PMID: 37639726 DOI: 10.1002/adma.202306882] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 08/24/2023] [Indexed: 08/31/2023]
Abstract
Inspired by mechanically interlocking supramolecular materials, exploiting the size difference between the bulky solvent and the cross-linked network mesh, a molecular clogging (MC) effect is developed to effectively inhibit solvent migration in organogels. A bulky solvent (branched citrate ester, BCE) with a molecular size above 1.4 nm is designed and synthesized. Series of MC-Gels are prepared by in situ polymerization of crosslinked polyurea with BCE as the gel solvent. The MC-Gels are colorless, transparent, and highly homogeneous, show significantly improved stability than gels prepared with small molecule solvents. As solvent migration is strongly inhibited by molecular clogging, the solvent content of the gels can be precisely controlled, resulting in a series of MC-Gels with continuously adjustable mechanics. In particular, the modulus of MC-Gel can be regulated from 1.3 GPa to 30 kPa, with a variation of 43 000 times. The molecular clogging effect also provides MC-Gels with unique high damping (maximum damping factor of 1.9), impact resistant mechanics (high impact toughness up to 40.68 MJ m-3 ). By applying shatter protection to items including eggs and ceramic armor plates, the potential of MC-Gels as high strength, high damping soft materials for a wide range of applications is well demonstrated.
Collapse
Affiliation(s)
- Youshen Wu
- Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, School of Chemistry, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Yilin Wang
- Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, School of Chemistry, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Xin Guan
- Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, School of Chemistry, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Hui Zhang
- Key Laboratory of Biomedical Information Engineering of the Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Rui Guo
- Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, School of Chemistry, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Chenhui Cui
- Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, School of Chemistry, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Daocheng Wu
- Key Laboratory of Biomedical Information Engineering of the Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Yilong Cheng
- Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, School of Chemistry, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Zhishen Ge
- Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, School of Chemistry, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Yuansuo Zheng
- Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, School of Chemistry, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Yanfeng Zhang
- Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, School of Chemistry, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| |
Collapse
|