1
|
Zhu Y, Ning C, Jin Y, Yang Q, Gong X, Hu B. Catalytic Cu 2O/Cu Site Trades off the Coupling and Etching Reactions of Carbon Intermediates for CO 2-Assisted Graphene Synthesis. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2410365. [PMID: 39866027 DOI: 10.1002/smll.202410365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2024] [Revised: 01/05/2025] [Indexed: 01/28/2025]
Abstract
In the chemical vapor deposition (CVD) synthesis of graphene, the surficial chemical state of the metal substrate has exerted key roles in all elemental reaction steps determining the growth mechanism of graphene. Herein, a CO2-participated annealing procedure is designed to construct catalytic Cu2O/Cu sites on Cu foil for the graphene CVD synthesis with CO2/CH4 as carbon sources. These Cu2O/Cu species can catalyze the CH4 decomposition and subsequent C─C coupling to form C2 intermediates for fast growth of monolayer hexagonal graphene domains with a diameter of ≈30 µm within 0.5 min. The graphene growth kinetics can be bidirectionally regulated merely with the variation of CO2 flow rate during annealing and growth stages, in association with the Cu+/Cu0 ratio, enabling simultaneous control over the size and shape of graphene domains. Density functional theory (DFT) calculations indicate that the catalytic Cu2O/Cu sites reduce the activation energy by ≈0.13 eV for the first dehydrogenation of CH4, allowing the growing rate of graphene driven by coupling of C2 intermediates faster than their etching rate by O-containing *O and *OH species. The work provides novel insights into heterostructured nano-catalyst consisting of zero valent metal and variably valent metal oxide that facilitate the controllable synthesis of graphene materials.
Collapse
Affiliation(s)
- Yifan Zhu
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 401331, China
| | - Congcong Ning
- School of Integrated Circuit Science and Engineering (Exemplary School of Microelectronics), University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Yan Jin
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 401331, China
| | - Qian Yang
- College of Materials and New Energy, Chongqing University of Science and Technology, Chongqing, 401331, China
| | - Xiangnan Gong
- Analytical and Testing Center, Chongqing University, Chongqing, 401331, China
| | - Baoshan Hu
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 401331, China
- State Key Laboratory of Advanced Chemical Power Sources, Chongqing University, Chongqing, 401331, China
| |
Collapse
|
2
|
Li J, Samad A, Yuan Y, Wang Q, Hedhili MN, Lanza M, Schwingenschlögl U, Abate I, Akinwande D, Liu Z, Tian B, Zhang X. Single-crystal hBN Monolayers from Aligned Hexagonal Islands. Nat Commun 2024; 15:8589. [PMID: 39366956 PMCID: PMC11452510 DOI: 10.1038/s41467-024-52944-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Accepted: 09/26/2024] [Indexed: 10/06/2024] Open
Abstract
Hexagonal boron nitride (hBN), as one of the few two-dimensional insulators, holds strategic importance for advancing post-silicon electronic devices and circuits. Achieving wafer-scale, high-quality monolayer hBN is essential for its integration into the semiconductor industry. However, the physical mechanisms behind the chemical vapor deposition (CVD) synthesis of hBN are not yet well understood. Investigating morphology engineering is critical for developing scalable synthetic techniques for the large-scale production of high-quality hBN. In this study, we explored the underlying mechanisms of the CVD growth process of hBN and found that the involvement of a small amount of oxygen effectively modulates the shape of the single-crystal hBN islands. By tuning the oxygen content in the CVD system, we synthesized well-aligned hexagonal hBN islands and achieved a continuous, high-quality single-crystal monolayer hBN film through the merging of these hexagonal islands on conventional single-crystal metal-foil substrates. Density functional theory was used to study the edges of hBN monolayers grown in an oxygen-assisted environment, providing insights into the formation mechanism. This study opens new pathways for controlling the island shape of 2D materials and establishes a foundation for the industrial-scale production of high-quality, large-area, single-crystal hBN.
Collapse
Affiliation(s)
- Junzhu Li
- Physical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Abdus Samad
- Physical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Yue Yuan
- Physical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Qingxiao Wang
- Imaging and Characterization Core Lab, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Mohamed Nejib Hedhili
- Imaging and Characterization Core Lab, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Mario Lanza
- Physical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Udo Schwingenschlögl
- Physical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Iwnetim Abate
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Deji Akinwande
- Microelectronics Research Center, The University of Texas at Austin, Austin, TX, 78758, USA
| | - Zheng Liu
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Bo Tian
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore.
| | - Xixiang Zhang
- Physical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia.
| |
Collapse
|
3
|
Liu M, Wang L, Yu G. Recent Research Progress of Porous Graphene and Applications in Molecular Sieve, Sensor, and Supercapacitor. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2401767. [PMID: 38847563 DOI: 10.1002/smll.202401767] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 05/23/2024] [Indexed: 10/19/2024]
Abstract
Porous graphene, including 2D and 3D porous graphene, is widely researched recently. One of the most attractive features is the proper utilization of graphene defects, which combine the advantages of both graphene and porous materials, greatly enriching the applications of porous graphene in biology, chemistry, electronics, and other fields. In this review, the defects of graphene are first discussed to provide a comprehensive understanding of porous graphene. Then, the latest advancements in the preparation of 2D and 3D porous graphene are presented. The pros and cons of these preparation methods are discussed in detail, providing a direction for the fabrication of porous graphene. Moreover, various superior properties of porous graphene are described, laying the foundation for their promising applications. Owing to its abundant morphology, wide distribution of pore size, and remarkable properties benefited from porous structure, porous graphene can not only promote molecular diffusion and electron transfer but also expose more active sites. Consequently, a serious of applications containing gas sieving, liquid separation, sensors, and supercapacitors, are presented. Finally, the challenges confronted during preparation and characterization of porous graphene are discussed, offering guidance for the future development of porous graphene in fabrication, characterization, properties, and applications.
Collapse
Affiliation(s)
- Mengya Liu
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, P. R. China
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Liping Wang
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| | - Gui Yu
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
4
|
Li S, Lin J, Chen Y, Luo Z, Cheng H, Liu F, Zhang J, Wang S. Growth Anisotropy and Morphology Evolution of Line Defects in Monolayer MoS 2 : Atomic-Level Observation, Large-Scale Statistics, and Mechanism Understanding. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2303511. [PMID: 37749964 DOI: 10.1002/smll.202303511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 08/25/2023] [Indexed: 09/27/2023]
Abstract
Understanding the growth behavior and morphology evolution of defects in 2D transition metal dichalcogenides is significant for the performance tuning of nanoelectronic devices. Here, the low-voltage aberration-corrected transmission electron microscopy with an in situ heating holder and a fast frame rate camera to investigate the sulfur vacancy lines in monolayer MoS2 is applied. Vacancy concentration-dependent growth anisotropy is discovered, displaying first lengthening and then broadening of line defects as the vacancy densifies. With the temperature increase from 20 °C to 800 °C, the defect morphology evolves from a dense triangular network to an ultralong linear structure due to the temperature-sensitive vacancy migration process. Atomistic dynamics of line defect reconstruction on the millisecond time scale are also captured. Density functional theory calculations, Monte Carlo simulation, and configurational force analysis are implemented to understand the growth and reconstruction mechanisms at relevant time and length scales. Throughout the work, high-resolution imaging is closely combined with quantitative analysis of images involving thousands of atoms so that the atomic-level structure and the large-area statistical rules are obtained simultaneously. The work provides new ideas for balancing the accuracy and universality of discoveries in the TEM study and will be helpful to the controlled sculpture of nanomaterials.
Collapse
Affiliation(s)
- Shouheng Li
- Science and Technology on Advanced Ceramic Fibers and Composites Laboratory, College of Aerospace Science and Engineering, National University of Defense Technology, Changsha, 410073, P. R. China
- Center for Nanochemistry, Beijing Science and Engineering Center for Nanocarbons, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, P. R. China
| | - Jinguo Lin
- State Key Laboratory of Nonlinear Mechanics, Institute of Mechanics, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Engineering Sciences, University of Chinese Academy of Sciences, Beijing, 100049, P.R. China
| | - Yun Chen
- Science and Technology on Advanced Ceramic Fibers and Composites Laboratory, College of Aerospace Science and Engineering, National University of Defense Technology, Changsha, 410073, P. R. China
| | - Zheng Luo
- Science and Technology on Advanced Ceramic Fibers and Composites Laboratory, College of Aerospace Science and Engineering, National University of Defense Technology, Changsha, 410073, P. R. China
| | - Haifeng Cheng
- Science and Technology on Advanced Ceramic Fibers and Composites Laboratory, College of Aerospace Science and Engineering, National University of Defense Technology, Changsha, 410073, P. R. China
| | - Feng Liu
- State Key Laboratory of Nonlinear Mechanics, Institute of Mechanics, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Engineering Sciences, University of Chinese Academy of Sciences, Beijing, 100049, P.R. China
| | - Jin Zhang
- Center for Nanochemistry, Beijing Science and Engineering Center for Nanocarbons, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, P. R. China
- School of Advanced Materials, Peking University Shenzhen Graduate School, Shenzhen, 518055, P. R. China
| | - Shanshan Wang
- Science and Technology on Advanced Ceramic Fibers and Composites Laboratory, College of Aerospace Science and Engineering, National University of Defense Technology, Changsha, 410073, P. R. China
- School of Advanced Materials, Peking University Shenzhen Graduate School, Shenzhen, 518055, P. R. China
| |
Collapse
|
5
|
Li J, Yuan Y, Lanza M, Abate I, Tian B, Zhang X. Nonepitaxial Wafer-Scale Single-Crystal 2D Materials on Insulators. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023:e2310921. [PMID: 38118051 DOI: 10.1002/adma.202310921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 12/01/2023] [Indexed: 12/22/2023]
Abstract
Next-generation nanodevices require 2D material synthesis on insulating substrates. However, growing high-quality 2D-layered materials, such as hexagonal boron nitride (hBN) and graphene, on insulators is challenging owing to the lack of suitable metal catalysts, imperfect lattice matching with substrates, and other factors. Therefore, developing a generally applicable approach for realizing high-quality 2D layers on insulators remains crucial, despite numerous strategies being explored. Herein, a universal strategy is introduced for the nonepitaxial synthesis of wafer-scale single-crystal 2D materials on arbitrary insulating substrates. The metal foil in a nonadhered metal-insulator substrate system is almost melted by a brief high-temperature treatment, thereby pressing the as-grown 2D layers to well attach onto the insulators. High-quality, large-area, single-crystal, monolayer hBN and graphene films are synthesized on various insulating substrates. This strategy provides new pathways for synthesizing various 2D materials on arbitrary insulators and offers a universal epitaxial platform for future single-crystal film production.
Collapse
Affiliation(s)
- Junzhu Li
- Physical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Yue Yuan
- Physical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Mario Lanza
- Physical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Iwnetim Abate
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Department of Chemistry, University of California, Berkeley, CA, 97420, USA
- Department of Materials Science & Engineering, University of California, Berkeley, CA, 97420, USA
| | - Bo Tian
- Physical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Xixiang Zhang
- Physical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| |
Collapse
|