1
|
Li S, Tang Y, Fan Q, Li Z, Zhang X, Wang J, Guo J, Li Q. When quantum dots meet blue phase liquid crystal elastomers: visualized full-color and mechanically-switchable circularly polarized luminescence. LIGHT, SCIENCE & APPLICATIONS 2024; 13:140. [PMID: 38876989 PMCID: PMC11178798 DOI: 10.1038/s41377-024-01479-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 04/11/2024] [Accepted: 05/12/2024] [Indexed: 06/16/2024]
Abstract
Polymer-based circularly polarized luminescence (CPL) materials with the advantage of diversified structure, easy fabrication, high thermal stability, and tunable properties have garnered considerable attention. However, adequate and precise tuning over CPL in polymer-based materials remains challenging due to the difficulty in regulating chiral structures. Herein, visualized full-color CPL is achieved by doping red, green, and blue quantum dots (QDs) into reconfigurable blue phase liquid crystal elastomers (BPLCEs). In contrast to the CPL signal observed in cholesteric liquid crystal elastomers (CLCEs), the chiral 3D cubic superstructure of BPLCEs induces an opposite CPL signal. Notably, this effect is entirely independent of photonic bandgaps (PBGs) and results in a high glum value, even without matching between PBGs and the emission bands of QDs. Meanwhile, the lattice structure of the BPLCEs can be reversibly switched via mechanical stretching force, inducing on-off switching of the CPL signals, and these variations can be further fixed using dynamic disulfide bonds in the BPLCEs. Moreover, the smart polymer-based CPL systems using the BPLCEs for anti-counterfeiting and information encryption have been demonstrated, suggesting the great potential of the BPLCEs-based CPL active materials.
Collapse
Affiliation(s)
- Shan Li
- Key Laboratory of Carbon Fibers and Functional Polymers, Ministry of Education, and College of Materials Science and Engineering, Beijing University of Chemical Technology, 100029, Beijing, China
| | - Yuqi Tang
- Institute of Advanced Materials and School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, China
| | - Qingyan Fan
- Key Laboratory of Carbon Fibers and Functional Polymers, Ministry of Education, and College of Materials Science and Engineering, Beijing University of Chemical Technology, 100029, Beijing, China
| | - Ziyuan Li
- Key Laboratory of Carbon Fibers and Functional Polymers, Ministry of Education, and College of Materials Science and Engineering, Beijing University of Chemical Technology, 100029, Beijing, China
| | - Xinfang Zhang
- Materials Science Graduate Program, Kent State University, Kent, OH, 44242, USA
| | - Jingxia Wang
- CAS Key Laboratory of Bio-Inspired Materials and Interfacial Sciences, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, 100190, Beijing, China
| | - Jinbao Guo
- Key Laboratory of Carbon Fibers and Functional Polymers, Ministry of Education, and College of Materials Science and Engineering, Beijing University of Chemical Technology, 100029, Beijing, China.
| | - Quan Li
- Institute of Advanced Materials and School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, China.
- Materials Science Graduate Program, Kent State University, Kent, OH, 44242, USA.
| |
Collapse
|
2
|
Chen Y, Zheng C, Yang W, Li J, Jin F, Shi L, Wang J, Jiang L. Super-Wide Temperature Lasers Spanning from -180 to 240 °C Based on Fully-Polymerized Blue Phase Superstructures. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2308439. [PMID: 38270274 DOI: 10.1002/adma.202308439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 01/04/2024] [Indexed: 01/26/2024]
Abstract
Blue phase liquid crystal (BPLC) lasers have potential applications in displays, sensors, and anti-counterfeiting fields owing to their outstanding optical properties. However, there remain challenges on lasing below 0 °C, which significantly limits the potential application of BPLC lasers in low-temperature environments. In this work, BPLC lasing below 0 °C is realized for the first time in a super-wide temperature range of -180-240 °C using a well-designed fully-polymerized BPLC system with a narrow line width of 0.0881 nm and a low lasing threshold of 37 nJ pulse-1. This fully-polymerized BPLC both effectively avoids low-temperature random crystallization and has excellent compatibility with dye molecules that significantly widen the lasing temperature range below 0 °C. Besides, the variations of laser peak and threshold are also revealed below 0 °C, that is, redshifted laser wavelength and increased threshold value with decreasing temperature, which contribute to a blue-shifted laser signal and a U-shaped lasing threshold in -180-240 °C. These unique laser behaviors can be ascribed to the temperature-dependent anisotropically microstructural deformation of the BP lattice. This work not only opens a door to the development of low-temperature BPLC lasers but also sets out important insights in the design of novel organic optical devices.
Collapse
Affiliation(s)
- Yujie Chen
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Sciences, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- Center of Material Sciences and Optoelectronics Engineering, School of Future Technologies, University of Chinese Academy of Sciences, Beijing, 101407, China
| | - Chenglin Zheng
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Sciences, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- Center of Material Sciences and Optoelectronics Engineering, School of Future Technologies, University of Chinese Academy of Sciences, Beijing, 101407, China
| | - Wenjie Yang
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Sciences, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- Center of Material Sciences and Optoelectronics Engineering, School of Future Technologies, University of Chinese Academy of Sciences, Beijing, 101407, China
| | - Jing Li
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Sciences, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Feng Jin
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Sciences, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Lei Shi
- State Key Laboratory of Surface Physics, Key Laboratory of Micro- and Nano-Photonic Structures (Ministry of Education) and Department of Physics, Fudan University, Shanghai, 200433, China
| | - Jingxia Wang
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Sciences, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- Center of Material Sciences and Optoelectronics Engineering, School of Future Technologies, University of Chinese Academy of Sciences, Beijing, 101407, China
| | - Lei Jiang
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Sciences, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- Center of Material Sciences and Optoelectronics Engineering, School of Future Technologies, University of Chinese Academy of Sciences, Beijing, 101407, China
| |
Collapse
|
3
|
Yang X, Tang SJ, Meng JW, Zhang PJ, Chen YL, Xiao YF. Phase-Transition Microcavity Laser. NANO LETTERS 2023; 23:3048-3053. [PMID: 36946699 DOI: 10.1021/acs.nanolett.3c00510] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Liquid-crystal microcavity lasers have attracted considerable attention because of their extraordinary tunability and sensitive response to external stimuli, and because they operate generally within a specific phase. Here, we demonstrate a liquid-crystal microcavity laser operated in the phase transition in which the reorientation of liquid-crystal molecules occurs from aligned to disordered states. A significant wavelength shift of the microlaser is observed, resulting from the dramatic changes in the refractive index of liquid-crystal microdroplets during the phase transition. This phase-transition microcavity laser is then exploited for sensitive thermal sensing, enabling a two-order-of-magnitude enhancement in sensitivity compared with the nematic-phase microlaser operated far from the transition point. Experimentally, we demonstrate an exceptional sensitivity of -40 nm/K and an ultrahigh resolution of 320 μK. The phase-transition microcavity laser features compactness, softness, and tunability, showing great potential for high-performance sensors, optical modulators, and soft matter photonics.
Collapse
Affiliation(s)
- Xi Yang
- Frontiers Science Center for Nano-Optoelectronics and State Key Laboratory for Mesoscopic Physics, School of Physics, Peking University, Beijing 100871, China
| | - Shui-Jing Tang
- Frontiers Science Center for Nano-Optoelectronics and State Key Laboratory for Mesoscopic Physics, School of Physics, Peking University, Beijing 100871, China
| | - Jia-Wei Meng
- Frontiers Science Center for Nano-Optoelectronics and State Key Laboratory for Mesoscopic Physics, School of Physics, Peking University, Beijing 100871, China
| | - Pei-Ji Zhang
- Frontiers Science Center for Nano-Optoelectronics and State Key Laboratory for Mesoscopic Physics, School of Physics, Peking University, Beijing 100871, China
| | - You-Ling Chen
- State Key Laboratory on Integrated Optoelectronics, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
| | - Yun-Feng Xiao
- Frontiers Science Center for Nano-Optoelectronics and State Key Laboratory for Mesoscopic Physics, School of Physics, Peking University, Beijing 100871, China
- Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006, China
- Peking University Yangtze Delta Institute of Optoelectronics, Nantong 226010, China
- National Biomedical Imaging Center, Peking University, Beijing 100871, China
| |
Collapse
|
4
|
Wang H, Zhou H, He W, Yang Z, Cao H, Wang D, Li Y. Research Progress on Blue-Phase Liquid Crystals for Pattern Replication Applications. MATERIALS (BASEL, SWITZERLAND) 2022; 16:194. [PMID: 36614533 PMCID: PMC9821960 DOI: 10.3390/ma16010194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 12/20/2022] [Accepted: 12/21/2022] [Indexed: 06/17/2023]
Abstract
Blue-Phase Liquid Crystals (BPLCs) are considered to be excellent 3D photonic crystals and have attracted a great deal of attention due to their great potential for advanced applications in a wide range of fields including self-assembling tunable photonic crystals and fast-response displays. BPLCs exhibit promise in patterned applications due to their sub-millisecond response time, three-dimensional cubic structure, macroscopic optical isotropy and high contrast ratio. The diversity of patterned applications developed based on BPLCs has attracted much attention. This paper focuses on the latest advances in blue-phase (BP) materials, including applications in patterned microscopy, electric field driving, handwriting driving, optical writing and inkjet printing. The paper concludes with future challenges and opportunities for BP materials, providing important insights into the subsequent development of BP.
Collapse
Affiliation(s)
| | | | - Wanli He
- Correspondence: ; Tel.: +010-62333759
| | | | | | | | | |
Collapse
|