1
|
Cao J, Yuan X, Zhang Y, Wang Q, He Q, Guo S, Ren X. Ultrasensitive Flexible Strain Sensor Made with Carboxymethyl-Cellulose-Anchored Carbon Nanotubes/MXene for Machine-Learning-Assisted Handwriting Recognition. ACS APPLIED MATERIALS & INTERFACES 2024; 16:51447-51458. [PMID: 39276126 DOI: 10.1021/acsami.4c09786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/16/2024]
Abstract
The combination of wearable sensors with machine learning enables intelligent perception in human-machine interaction and healthcare, but achieving high sensitivity and a wide working range in flexible strain sensors for signal acquisition and accurate recognition remains challenging. Herein, we introduced carboxymethyl cellulose (CMC) into a carbon nanotubes (CNTs)/MXene hybrid network, forming tight anchoring among the conductive materials and, thus, bringing enhanced interaction. The silicone-rubber-encapsulated CMC-anchored CNTs/MXene (CCM) strain sensor exhibits an excellent sensitivity (maximum gauge factor up to 71 294), wide working range (200%), ultralow detection limit (0.05%), and outstanding durability (over 10 000 cycles), which is superior to most of the recently reported counterparts also based on a conductive composite film. Moreover, the sensor achieves seamless integration with human skin with the help of a poly(acrylic acid) adhesive layer, successfully obtaining stable and clear waveforms with meaningful profiles from the human body. On this basis, we proposed and realized a novel in-air handwriting recognition method via extracting multiple features of high-quality strain signals assisted by deep neural networks, achieving a high classification accuracy of 98.00 and 94.85% for Arabic numerals and letters, respectively. Our work provides an effective approach for significantly improving strain sensing performance, thereby facilitating innovative applications of flexible sensors.
Collapse
Affiliation(s)
- Junming Cao
- State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications, Beijing 100876, People's Republic of China
- School of Electronic Engineering, Beijing University of Posts and Telecommunications, Beijing 100876, People's Republic of China
| | - Xueguang Yuan
- State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications, Beijing 100876, People's Republic of China
- School of Electronic Engineering, Beijing University of Posts and Telecommunications, Beijing 100876, People's Republic of China
| | - Yangan Zhang
- State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications, Beijing 100876, People's Republic of China
- School of Electronic Engineering, Beijing University of Posts and Telecommunications, Beijing 100876, People's Republic of China
| | - Qi Wang
- State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications, Beijing 100876, People's Republic of China
- School of Electronic Engineering, Beijing University of Posts and Telecommunications, Beijing 100876, People's Republic of China
| | - Qi He
- State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications, Beijing 100876, People's Republic of China
- School of Electronic Engineering, Beijing University of Posts and Telecommunications, Beijing 100876, People's Republic of China
| | - Shaohua Guo
- State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications, Beijing 100876, People's Republic of China
- School of Electronic Engineering, Beijing University of Posts and Telecommunications, Beijing 100876, People's Republic of China
| | - Xiaomin Ren
- State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications, Beijing 100876, People's Republic of China
- School of Electronic Engineering, Beijing University of Posts and Telecommunications, Beijing 100876, People's Republic of China
| |
Collapse
|
2
|
He X, Cui Z, Zhang F, Li Y, Tu J, Cao J, Wang J, Qiao Y, Xi P, Xu T, Chen X, Zhang X. Multiscale Heterogeneities-Based Piezoresistive Interfaces with Ultralow Detection Limitation and Adaptively Switchable Pressure Detectability. ACS NANO 2024; 18:8296-8306. [PMID: 38452476 DOI: 10.1021/acsnano.3c12513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/09/2024]
Abstract
Mechanical compliance and electrical enhancement are crucial for pressure sensors to promote performances when perceiving external stimuli. Here we propose a bioinspired multiscale heterogeneity-based interface to adaptively regulate its structure layout and switch to desirable piezoresistive behaviors with ultralow detection limitation. In such a multiscale heterogeneities system, the micro-/nanoscale spiny Ag-MnO2 heterostructure contributes to an ultralow detection limitation of 0.008 Pa and can perceive minor pressure increments under preloads with high resolution (0.0083%). The macroscale heterogeneous orientation of the cellular backbone enables anisotropic deformation, allowing the sensor to switch to rational sensitivity and working range (e.g., 580 kPa-1 for 0-20 kPa/54 kPa-1 for 60-140 kPa) as required. The sensor's stepwise activation progresses from the micro-/nanoscale heterostructure to the macroscale heterogeneous orientation, which can adaptively match diverse sensing tasks in complex applications scenarios. This multiscale heterogeneous and switchable design holds immense potential in the development of intelligent electromechanical devices, including wearable sensors, soft robotics, and smart actuators.
Collapse
Affiliation(s)
- Xuecheng He
- The Institute for Advanced Study (IAS), Shenzhen University, Shenzhen 518060, P. R. China
- Research Center for Bioengineering and Sensing Technology, University of Science and Technology Beijing, Beijing 100083, P. R. China
- Innovative Centre for Flexible Devices (iFLEX), School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore
| | - Zequn Cui
- Innovative Centre for Flexible Devices (iFLEX), School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore
| | - Feilong Zhang
- Innovative Centre for Flexible Devices (iFLEX), School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore
| | - Yanzhen Li
- Innovative Centre for Flexible Devices (iFLEX), School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore
| | - Jiaqi Tu
- Innovative Centre for Flexible Devices (iFLEX), School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore
| | - Jinwei Cao
- Innovative Centre for Flexible Devices (iFLEX), School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore
| | - Jianwu Wang
- Innovative Centre for Flexible Devices (iFLEX), School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore
| | - Yuchun Qiao
- Research Center for Bioengineering and Sensing Technology, University of Science and Technology Beijing, Beijing 100083, P. R. China
| | - Pengxu Xi
- Research Center for Bioengineering and Sensing Technology, University of Science and Technology Beijing, Beijing 100083, P. R. China
| | - Tailin Xu
- The Institute for Advanced Study (IAS), Shenzhen University, Shenzhen 518060, P. R. China
| | - Xiaodong Chen
- Innovative Centre for Flexible Devices (iFLEX), School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore
| | - Xueji Zhang
- The Institute for Advanced Study (IAS), Shenzhen University, Shenzhen 518060, P. R. China
| |
Collapse
|
3
|
Li M, Han X, Zhang C, Zhang Y, Guo D, Xie G. Self-Reinforced Piezoelectric Response of an Electroluminescent Film for the Dual-Channel Signal Monitoring of Damaged Areas. ACS APPLIED MATERIALS & INTERFACES 2024; 16:3786-3794. [PMID: 38215212 DOI: 10.1021/acsami.3c15881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2024]
Abstract
Organic piezoelectric nanogenerators (PENGs) show promise for monitoring damage in mechanical equipment. However, weak interfacial bonding between the reinforcing phase and the fluorinated material limits the feedback signal from the damaged area. In this study, we developed a PENG film capable of real-time identification of the damage location and extent. By incorporating core-shell barium titanate (BTO@PVDF-HFP) nanoparticles, we achieved enhanced piezoelectric characteristics, flexibility, and processability. The composite film exhibited an expanded output voltage range, reaching 41.8 V with an increase in frequency, load, and damage depth. Additionally, the film demonstrated self-powered electroluminescence (EL) during the wear process, thanks to its inherent ferroelectric properties and the presence of luminescent ZnS:Cu particles. Unlike conventional PENG electroluminescent devices, the PENG film exhibited luminescence at the damage location over a wide temperature range. Our findings offer a novel approach for realizing modular and miniaturized real-time damage mapping systems in the field of safety engineering.
Collapse
Affiliation(s)
- Mengyu Li
- State Key Laboratory of Tribology in Advanced Equipment, Tsinghua University, Beijing 100084, China
- Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China
| | - Xin Han
- State Key Laboratory of Tribology in Advanced Equipment, Tsinghua University, Beijing 100084, China
- Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China
| | - Chuanlin Zhang
- Superlubricity Engineering Research Center, Jihua Laboratory, Foshan 528000, China
| | - Yu Zhang
- State Key Laboratory of Tribology in Advanced Equipment, Tsinghua University, Beijing 100084, China
- Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China
| | - Dan Guo
- State Key Laboratory of Tribology in Advanced Equipment, Tsinghua University, Beijing 100084, China
- Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China
| | - Guoxin Xie
- State Key Laboratory of Tribology in Advanced Equipment, Tsinghua University, Beijing 100084, China
- Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China
| |
Collapse
|