1
|
Kaur N, Sahoo J, De M. Development of Nanomaterials-Based Agents for Selective Antibacterial Activity. Chembiochem 2025; 26:e202400693. [PMID: 39632741 DOI: 10.1002/cbic.202400693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 10/26/2024] [Indexed: 12/07/2024]
Abstract
Bacterial infections continue to threaten public health due to limitations in rapid and accurate diagnostic techniques. While broad-spectrum antibiotics offer empirical treatment, their overuse has fuelled the emergence of antimicrobial resistance (AMR) pathogens, posing a critical global public health challenge. In this critical scenario, nanomaterial-based antibacterial agents emerge as a promising solution to combat bacteria and inhibit their proliferation. However, selective elimination of pathogenic bacteria is paramount. This review highlights recent advancements in developing nanomaterials for selective antibacterial activity. We categorize these agents based on their mode of action, exploring how they selectively interact with bacteria and their potential antibacterial mechanisms. This review offers crucial insights for researchers exploring the potential of nanotechnology to address the growing threat of AMR.
Collapse
Affiliation(s)
- Navjot Kaur
- Department of Organic Chemistry, Indian Institute of Science, Bangalore, 560012, India
| | - Jagabandhu Sahoo
- Department of Organic Chemistry, Indian Institute of Science, Bangalore, 560012, India
| | - Mrinmoy De
- Department of Organic Chemistry, Indian Institute of Science, Bangalore, 560012, India
| |
Collapse
|
2
|
Fu K, Qu DH, Liu G. Reversible Circularly Polarized Luminescence Inversion and Emission Color Switching in Photo-Modulated Supramolecular Polymer for Multi-Modal Information Encryption. J Am Chem Soc 2024; 146:33832-33844. [PMID: 39606825 DOI: 10.1021/jacs.4c12211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Constructing circularly polarized luminescence (CPL) materials that exhibit dynamic handedness inversion and emissive color modulation for multimodal information encryption presents both a significant challenge and a compelling opportunity. Here, we have developed a pyridinethiazole acrylonitrile-cholesterol derivative (Z-PTC) that exhibits wavelength-dependent photoisomerization and photocyclization, enabling dynamic handedness inversion and emissive color modulation in supramolecular assemblies with decent CPL activity. Coordination with Ag+ ions form the Z-PTC Ag supramolecular polymer (SP1), which assembles into nanotubes displaying enhanced positive yellow-green CPL. Irradiation at 454 nm transforms SP1 into nanospheres of a mixture supramolecular polymer (SP2) of Z/E-PTC Ag, displaying inverted supramolecular chirality and emitting negative orange-yellow CPL. Reheating SP2 to 343 K restores the original nanotube structure via excellent reversible photoisomerization. Exposure to 365 nm light also induces CPL inversion from positive to negative and triggers morphological changes from SP1 to SP2. Prolonged irradiation causes further transformation into irregular supramolecular aggregate, shifting the emission color to blue and eliminating CPL. These dynamic properties of the multicolor CPL system, including reversible handedness inversion, can also be realized in the semisolid state, exhibiting promising potential for multimodal information encryption applications with enhanced security and complexity.
Collapse
Affiliation(s)
- Kuo Fu
- Shanghai Key Laboratory of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Advanced Research Institute, Tongji University, Shanghai 200092, P. R. China
| | - Da-Hui Qu
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, P. R. China
| | - Guofeng Liu
- Shanghai Key Laboratory of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Advanced Research Institute, Tongji University, Shanghai 200092, P. R. China
| |
Collapse
|
3
|
Wang ZX, Liu KQ, Jiang ZT, Meng XY, Li F, Wu KC, Li HY, Wang W. A MELET- and IFE-based UV-visible luminescent ratiometric probe for quantization of mercury(II) and nitrofurantoin in environmental sewage. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 322:124805. [PMID: 39003827 DOI: 10.1016/j.saa.2024.124805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 06/17/2024] [Accepted: 07/09/2024] [Indexed: 07/16/2024]
Abstract
A novel fluorimetric ratiometric probe of green and eco-friendily nitrogen-enriched, oxygen-doped carbon nanodots (Cnanodots) was prepared for the quantitative analysis of mercury(II) (HgII) and nitrofurantoin (Nit) in the environmental sewage. The Cnanodots exhibits dual-emission peaks respectively at 345 and 445 nm under 285 nm excitation, with excitation-independent properties. Unexpectedly, this Cnanodots displays two obvious ratiometric responses to HgII and Nit through decreasing the signal at 345 nm and remaining invariable at 445 nm. Experimental results confirm that the highly sensitive analysis of HgII and Nit are achieved respectively based on matching energy-level electron transfer and inner filter effect mechanisms. The fluorescence (FL) ratiometric intensity of [FL345nm/FL445nm] expresses a good linear relationship with the concentration of HgII in the scope of 0.01-20 μM, while the logarithm of [Log(FL0345nm-FL345nm)] on the quenching degree of the probe by Nit also shows a good linear correlation within the range of 0.01-100 μM. The detection limits were calculated to be 4.14 nM for HgII, and 7.84 nM for Nit. Moreover, recovery experiments of Cnanodots for HgII and Nit sensing in real sewage samples obtained satisfactory results, comfirming the feasibility of practical application.
Collapse
Affiliation(s)
- Zhong-Xia Wang
- School of Chemistry and Chemical Engineering, Yancheng Institute of Technology, Yancheng, Jiangsu 224051, China; State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, China.
| | - Kai-Qi Liu
- School of Chemistry and Chemical Engineering, Yancheng Institute of Technology, Yancheng, Jiangsu 224051, China
| | - Zhen-Tao Jiang
- School of Chemistry and Chemical Engineering, Yancheng Institute of Technology, Yancheng, Jiangsu 224051, China
| | - Xiang-Ying Meng
- School of Medical Laboratory, Shandong Second Medical University, Weifang, Shandong 261053, China
| | - Feng Li
- School of Chemistry and Chemical Engineering, Yancheng Institute of Technology, Yancheng, Jiangsu 224051, China
| | - Ke-Chen Wu
- Fujian Key Laboratory of Advanced Marine Materials, Minjiang University, Fuzhou, Fujian 350108, China
| | - Heng-Ye Li
- School of Chemistry and Chemical Engineering, Yancheng Institute of Technology, Yancheng, Jiangsu 224051, China
| | - Wei Wang
- School of Chemistry and Chemical Engineering, Yancheng Institute of Technology, Yancheng, Jiangsu 224051, China.
| |
Collapse
|
4
|
Ai L, Xiang W, Li ZW, Liu H, Xiao J, Song H, Yu J, Song Z, Zhu K, Pan Z, Wang H, Lu S. Hydrogen Bond-Induced Flexible and Twisted Self-Assembly of Functionalized Carbon Dots with Customized-Color Circularly Polarized Luminescence. Angew Chem Int Ed Engl 2024; 63:e202410988. [PMID: 39283269 DOI: 10.1002/anie.202410988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Indexed: 11/01/2024]
Abstract
Circularly polarized luminescence (CPL) has numerous applications in optical data storage, quantum computing, bioresponsive imaging, liquid crystal displays, and backlights in three-dimensional (3D) displays. In addition to their competitive optical properties, carbon dots (CDs) benefit from simple and low-cost preparation, facile post-modification, and excellent resistance to photo- and chemical bleaching after carbonization. Combining the superior optical performance with polarization peculiarities through hierarchical structure engineering is imperative for the development of CDs. In this study, hydrophobic interactions of aromatic ligands, which participate in the surface-ligand post-modification process on the ground-state chiral carbon core, are employed to drive the oriented assembly. Furthermore, the residual chiral amides on CDs form multiple hydrogen bonds during gradual aggregation, causing the assembled materials to form an asymmetric bending structure. Superficial ligands interfere with the optical dynamics of the exciton radiation transition and stabilize the excited state of the assembled materials to achieve a circularly polarized signal. The linkage ligands overcome the frequent aggregation-induced quenching phenomenon that present difficulties in conventional CDs, facilitate the assembly of self-supporting films, and improve chiral optical expression. The full-color and white CPL are manipulated by simply adjusting the functional groups of the ligands, which also illustrates the versatility of the post-modification strategy. Finally, large chiral flexible films and multicolor chiral light-emitting diodes based on the stable chiral powder phosphors were constructed, thereby providing feasible materials and technical support for flexible 3D displays.
Collapse
Affiliation(s)
- Lin Ai
- College of Chemistry, Pingyuan Laboratory, Zhengzhou University, 450001, Zhengzhou, China
| | - Wenjuan Xiang
- College of Chemistry, Pingyuan Laboratory, Zhengzhou University, 450001, Zhengzhou, China
| | - Zhan-Wei Li
- College of Chemistry, Pingyuan Laboratory, Zhengzhou University, 450001, Zhengzhou, China
| | - Huimin Liu
- College of Chemistry, Pingyuan Laboratory, Zhengzhou University, 450001, Zhengzhou, China
| | - Jiping Xiao
- College of Chemistry, Pingyuan Laboratory, Zhengzhou University, 450001, Zhengzhou, China
| | - Haoqiang Song
- College of Chemistry, Pingyuan Laboratory, Zhengzhou University, 450001, Zhengzhou, China
| | - Jingkun Yu
- College of Chemistry, Pingyuan Laboratory, Zhengzhou University, 450001, Zhengzhou, China
| | - Ziqi Song
- College of Chemistry, Pingyuan Laboratory, Zhengzhou University, 450001, Zhengzhou, China
| | - Kai Zhu
- College of Chemistry, Pingyuan Laboratory, Zhengzhou University, 450001, Zhengzhou, China
| | - Zhuohan Pan
- College of Chemistry, Pingyuan Laboratory, Zhengzhou University, 450001, Zhengzhou, China
| | - Haolin Wang
- College of Chemistry, Pingyuan Laboratory, Zhengzhou University, 450001, Zhengzhou, China
| | - Siyu Lu
- College of Chemistry, Pingyuan Laboratory, Zhengzhou University, 450001, Zhengzhou, China
| |
Collapse
|
5
|
Wang S, Sun X, Shi J, Zhao R, Zhang B, Lu S, Li P, Li F, Manna L, Zhang Y, Song Y. Additive-Driven Enhancement of Crystallization: Strategies and Prospects for Boosting Photoluminescence Quantum Yields in Halide Perovskite Films for Light-Emitting Diodes. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2413673. [PMID: 39506414 DOI: 10.1002/adma.202413673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 10/15/2024] [Indexed: 11/08/2024]
Abstract
Halide perovskite light-emitting diodes (PeLEDs) hold great potential for applications in displays and lighting. To enhance the external quantum efficiency (EQE) of PeLEDs, it is crucial to boost the photoluminescence quantum yield (PLQY) of the perovskite films. The use of additives has emerged as a powerful chemical strategy to control the crystallization process in solution-processed perovskite films. The different types of additives that can be used reflect the various types of chemical interactions with the perovskite materials, influencing their crystallization process in various possible ways. Understanding the relationship between these chemical interactions and their impact on the crystallization process is a key step for designing emitters with improved PLQY and devices with superior EQE. Following the logic chain of additive-perovskite interactions, impacts on crystallization, and subsequent enhancement of PLQY and EQE, this review discusses how additives play a pivotal role in influencing the crystallization process to enhance the PLQY of the perovskite films. Furthermore, this assessment addresses the open challenges and outlines future prospects for the development of PeLEDs.
Collapse
Affiliation(s)
- Shiheng Wang
- College of Chemistry, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Xianglong Sun
- College of Chemistry, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Jiantao Shi
- College of Chemistry, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Rudai Zhao
- College of Chemistry, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Baowei Zhang
- College of Chemistry, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Siyu Lu
- College of Chemistry, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Pengwei Li
- College of Chemistry, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Fengyu Li
- College of Chemistry, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Liberato Manna
- Nanochemistry Department, Istituto Italiano di Tecnologia (IIT), Genova, 16163, Italy
| | - Yiqiang Zhang
- College of Chemistry, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Yanlin Song
- Key Laboratory of Green Printing, Institute of Chemistry, Chinese Academy of Sciences (ICCAS), Beijing Engineering Research Center of Nanomaterials for Green Printing Technology, National Laboratory for Molecular Sciences (BNLMS) Beijing, Beijing, 100190, P. R. China
| |
Collapse
|
6
|
Ai L, Wang H, Wang B, Liu S, Song H, Lu S. Concentration-Switchable Assembly of Carbon Dots for Circularly Polarized Luminescent Amplification in Chiral Logic Gates and Deep-Red Light-Emitting Diodes. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2410094. [PMID: 39361264 DOI: 10.1002/adma.202410094] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 09/18/2024] [Indexed: 11/29/2024]
Abstract
Stimuli-responsive circularly polarized luminescent (CPL) materials are expected to find widespread application in advanced information technologies, such as 3D displays, multilevel encryption, and chiral optical devices. Here, using R-/S-α-phenylethylamine and 3,4,9,10-perylenetetracarboxylic dianhydride as precursors, chiral carbon dots (Ch-CDs) exhibiting bright concentration-dependent luminescence are synthesized, demonstrating reversible responses in both their morphologies and emission spectra. By adjusting Ch-CD concentration, the switchable wavelength is extended over 180 nm (539-720 nm), with the maximum quantum efficiency reaching 100%. Meanwhile, upon increasing Ch-CD concentration, the emission wavelength red-shifts, while the chirality of the assembled nanoribbons is synchronously amplified, ultimately achieving CPL at 709 nm and a maximum luminescence asymmetry factor of 2.18 × 10-2. These values represent the longest wavelength and the largest glum reported for CDs. Considering the remarkable optical properties of the synthesized Ch-CDs, multilevel chiral logic gates are designed, and their potential practical applications are demonstrated in multilevel anti-counterfeiting encryption, flexible electronic printing, and solid-state CPL. Furthermore, deep-red chiral electroluminescence light-emitting diodes (EL-LEDs) are prepared using these Ch-CDs, achieving an external quantum efficiency of 1.98%, which is the highest value reported to date for CDs in deep-red EL-LEDs, and the first report of chiral electronic devices based on CDs.
Collapse
Affiliation(s)
- Lin Ai
- College of Chemistry, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Haolin Wang
- College of Chemistry, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Boyang Wang
- College of Chemistry, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Suya Liu
- College of Chemistry, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Haoqiang Song
- College of Chemistry, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Siyu Lu
- College of Chemistry, Zhengzhou University, Zhengzhou, 450001, P. R. China
| |
Collapse
|
7
|
Wang B, Waterhouse GIN, Yang B, Lu S. Advances in Shell and Core Engineering of Carbonized Polymer Dots for Enhanced Applications. Acc Chem Res 2024; 57:2928-2939. [PMID: 39298332 DOI: 10.1021/acs.accounts.4c00516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/21/2024]
Abstract
ConspectusCarbon dots (CDs), as a novel type of fluorescent nanocarbon material, attract widespread attention in nanomedicine, optoelectronic devices, and energy conversion/storage due to their excellent optical properties, low toxicity, and high stability. They can be classified as graphene quantum dots, carbon quantum dots, and carbonized polymer dots (CPDs). Among these, CPDs exhibit tunable structures and components that allow fine-tuning of their optoelectronic properties, making them one of the most popular types of CDs in recent years. However, the structural complexity of CPDs stimulates deep exploration of the relationship between their unique structure and luminescent performance. As an organic-inorganic hybrid system, the diversity of self-limited quantum state carbon cores and polymer-hybrid shell layers makes understanding the underlying mechanisms and structure-property relationships in CPDs a very challenging task. In this context, elucidating the structural composition of CPDs and the factors that affect their optical properties is vital if the enormous potential of CPDs is to be realized. Achieving controllable structures with predefined optical properties via the adoption of specific functionalization strategies is the prized goal of current researchers in the field.In this Account, we describe the efforts made by our group in the synthesis, mechanism analysis, structural regulation, and functional applications of CPDs, with particular emphasis on the design of CPDs core-shell structures with tailored optoelectronic properties for applications in the fields of optoelectronics and energy. Specifically, through the rational selection of precursors, optimization of reaction conditions, and postmodification strategies for CPDs, we have demonstrated that it is possible to regulate both the carbon core and polymer shell layers, thereby achieving full-spectrum emission, high quantum yield, persistent luminescence, thermally activated delayed fluorescence, and laser action in CPDs. Furthermore, we have established structure-performance relationship in CPDs and proposed a universal strategy for synergistic interactions between hybrid carbon-based cores and surface micronanostructures. In addition, we unveiled a novel luminescence mechanism in cross-linked CPDs, specifically "cross-linking synergistically inducing quantum-state luminescence", which addresses the challenge of efficient circularly polarized luminescence in the liquid and solid phases of CPDs. Subsequently, strong cross-linking, dual-rigidity, and ordering preparation methods were introduced, thereby pioneering tunable laser emission from blue to near-infrared wavelengths. Additionally, we developed a new strategy of "confined composite nanocrystals of CPDs", leading to various high-performance hydrogen evolution catalysts for water electrolysis. The CPDs developed by this strategy not only possessed excellent optical properties but also enabled high efficiencies in field of energy conversion, thus maximizing the utilization of CPDs. Finally, we discuss important new trends in CPD research and development. Overall, this Account summarizes the latest advancements in CPDs in recent years, providing case-studies that enable deep understanding of structure-property-performance relationships and regulation strategies in CPDs, guiding the future expansion and application of CPDs.
Collapse
Affiliation(s)
- Boyang Wang
- College of Chemistry, Pingyuan Laboratory, Zhengzhou University, Zhengzhou 450000, China
| | | | - Bai Yang
- State Key Laboratory of Supramolecular Structure and Materials, no. 2699 Qianjin Street, Chaoyang District, 130000 Changchun, China
| | - Siyu Lu
- College of Chemistry, Pingyuan Laboratory, Zhengzhou University, Zhengzhou 450000, China
| |
Collapse
|
8
|
Zhao C, Wang Y, Jiang Y, Wu N, Wang H, Li T, Ouyang G, Liu M. Handedness-Inverted and Stimuli-Responsive Circularly Polarized Luminescent Nano/Micromaterials Through Pathway-Dependent Chiral Supramolecular Polymorphism. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2403329. [PMID: 38625749 DOI: 10.1002/adma.202403329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Indexed: 04/18/2024]
Abstract
The precise manipulation of supramolecular polymorphs has been widely applied to control the morphologies and functions of self-assemblies, but is rarely utilized for the fabrication of circularly polarized luminescence (CPL) materials with tailored properties. Here, this work reports that an amphiphilic naphthalene-histidine compound (NIHis) readily self-assembled into distinct chiral nanostructures through pathway-dependent supramolecular polymorphism, which shows opposite and multistimuli responsive CPL signals. Specifically, NIHis display assembly-induced CPL from the polymorphic keto tautomer, which become predominant during enol-keto tautomerization shifting controlled by a bulk solvent effect. Interestingly, chiral polymorphs of nanofiber and microbelt with inverted CPL signals can be prepared from the same NIHis monomer in exactly the same solvent compositions and concentrations by only changing the temperature. The tunable CPL performance of the solid microbelts is realized under multi external physical or chemical stimuli including grinding, acid fuming, and heating. In particular, an emission color and CPL on-off switch based on the microbelt polymorph by reversible heating-cooling protocol is developed. This work brings a new approach for developing smart CPL materials via supramolecular polymorphism engineering.
Collapse
Affiliation(s)
- Chenyang Zhao
- Green Catalysis Center and College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
- Beijing National Laboratory of Molecular Sciences and CAS Key Laboratory of Colloid, Interface and Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, No. 2 North First Street, Zhongguancun, Beijing, 100190, China
| | - Yuan Wang
- Beijing National Laboratory of Molecular Sciences and CAS Key Laboratory of Colloid, Interface and Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, No. 2 North First Street, Zhongguancun, Beijing, 100190, China
| | - Yuqian Jiang
- Key Laboratory of Nanosystem and Hierarchical Fabrication, Chinese Academy of Sciences, National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Ningning Wu
- Beijing National Laboratory of Molecular Sciences and CAS Key Laboratory of Colloid, Interface and Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, No. 2 North First Street, Zhongguancun, Beijing, 100190, China
| | - Hanxiao Wang
- Beijing National Laboratory of Molecular Sciences and CAS Key Laboratory of Colloid, Interface and Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, No. 2 North First Street, Zhongguancun, Beijing, 100190, China
| | - Tiejun Li
- Beijing National Laboratory of Molecular Sciences and CAS Key Laboratory of Colloid, Interface and Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, No. 2 North First Street, Zhongguancun, Beijing, 100190, China
- University of Chinese Academy of Sciences, No.19(A) Yuquan Road, Beijing, 100049, China
| | - Guanghui Ouyang
- Beijing National Laboratory of Molecular Sciences and CAS Key Laboratory of Colloid, Interface and Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, No. 2 North First Street, Zhongguancun, Beijing, 100190, China
| | - Minghua Liu
- Green Catalysis Center and College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
- Beijing National Laboratory of Molecular Sciences and CAS Key Laboratory of Colloid, Interface and Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, No. 2 North First Street, Zhongguancun, Beijing, 100190, China
- University of Chinese Academy of Sciences, No.19(A) Yuquan Road, Beijing, 100049, China
| |
Collapse
|
9
|
Wang H, Zhang B, Wang B, Bai S, Cheng L, Hu Y, Lu S. Efficient Quasi-2D Perovskite Based Blue Light-Emitting Diodes with Carbon Dots Modified Hole Transport Layer. NANO LETTERS 2024; 24:8702-8708. [PMID: 38953472 DOI: 10.1021/acs.nanolett.4c02110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
Abstract
Quasi-2D perovskites based blue light-emitting diodes (LEDs) suffer from its poor electroluminescence performance, mainly caused by the nonradiative recombination in in defect-rich low-n phases and the unbalanced hole-electron injection in the device. Here, we developed a highly efficient quasi-2D perovskite based sky-blue LEDs behaving recorded external quantum efficiency (EQE) of 21.07% by employing carbon dots (CDs) as additives in the hole transport layer (HTL). We ascribe the high EQE to the effective engineering of CDs: (1) The CDs at the interface of HTLs can suppress the formation of low-efficient n = 1 phase, resulting a high luminescence quantum yield and energy transfer efficiency of the mixed n-phase quasi-2D perovskites. (2) The CDs additives can reduce the conductivity of HTL, partially blocking the hole injection, and thus making more balanced hole-electron injection. The CDs-treated devices have excellent Spectral stability and enhanced operational stability and could be a new alternative additive in the perovskite optoelectronic devices.
Collapse
Affiliation(s)
- Hongwei Wang
- College of Chemistry, Zhengzhou University, Zhengzhou 450000, China
| | - Baowei Zhang
- College of Chemistry, Zhengzhou University, Zhengzhou 450000, China
| | - Boyang Wang
- College of Chemistry, Zhengzhou University, Zhengzhou 450000, China
| | - Sai Bai
- Institute of Fundamental and Frontier Sciences, Key Laboratory of Quantum Physics and Photonic Quantum Information of Ministry of Education, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Liwen Cheng
- College of Physical Science and Technology, Yangzhou University, Yangzhou 225002, China
| | - Yongsheng Hu
- School of Physics and Laboratory of Zhongyuan Light, Zhengzhou University, Zhengzhou 450000, China
| | - Siyu Lu
- College of Chemistry, Zhengzhou University, Zhengzhou 450000, China
| |
Collapse
|
10
|
Zhang Z, Wang D, Yan X, Yan Y, Lin L, Ren Y, Chen Y, Feng L. Efficient chiral hydrogel template based on supramolecular self-assembly driven by chiral carbon dots for circularly polarized luminescence. J Colloid Interface Sci 2024; 674:576-586. [PMID: 38945025 DOI: 10.1016/j.jcis.2024.06.208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 06/24/2024] [Accepted: 06/26/2024] [Indexed: 07/02/2024]
Abstract
Since the chiral emission of excited states is observed on carbon dots (CDs), exploration towards the design and synthesis of chiral CDs nanomaterials with circularly polarized luminescence (CPL) properties has been at a brisk pace. In this regard, the "host and guest" co-assembly strategy based on the combination of CDs and chiral templates has been of unique interest recently for its convenient operation, multicolor tunable CPL, and wide application of prepared CDs-composited materials in optoelectronic devices and information encryption. However, the existing chiral templates that match perfectly with chiral CDs exhibiting optical activity both in ground and excited states are rather scarce. In this work, we synthesize the chiral CDs that could induce the spontaneous supramolecular self-assembly of N-(9-fluorenylmethox-ycarbonyl) (Fmoc)-protected glutamic acid to form chiral hydrogels with helical nanostructure. The co-assembled hydrogels show powerful chiral template function, which not only enable chiral CDs with a luminescence dissymmetry factor (glum) up to 10-2, but also have universal chiral transfer to inserted dye molecules, realizing full-color CPL and Förster resonance energy transfer (FRET) CPL as well as the distinction between left and right circularly polarized light. This CPL-active template based on chiral CDs enriches the design scenario of chiral functionalized nanomaterials.
Collapse
Affiliation(s)
- Zhiwei Zhang
- Materials Genome Institute, Shanghai Engineering Research Center of Organ Repair, Shanghai Engineering Research Center for Integrated Circuits and Advanced Display Materials, Shanghai University, Shanghai 200444, China
| | - Dong Wang
- Materials Genome Institute, Shanghai Engineering Research Center of Organ Repair, Shanghai Engineering Research Center for Integrated Circuits and Advanced Display Materials, Shanghai University, Shanghai 200444, China
| | - Xuetao Yan
- Materials Genome Institute, Shanghai Engineering Research Center of Organ Repair, Shanghai Engineering Research Center for Integrated Circuits and Advanced Display Materials, Shanghai University, Shanghai 200444, China
| | - Yifang Yan
- Materials Genome Institute, Shanghai Engineering Research Center of Organ Repair, Shanghai Engineering Research Center for Integrated Circuits and Advanced Display Materials, Shanghai University, Shanghai 200444, China
| | - Lixing Lin
- Materials Genome Institute, Shanghai Engineering Research Center of Organ Repair, Shanghai Engineering Research Center for Integrated Circuits and Advanced Display Materials, Shanghai University, Shanghai 200444, China
| | - Yuze Ren
- Materials Genome Institute, Shanghai Engineering Research Center of Organ Repair, Shanghai Engineering Research Center for Integrated Circuits and Advanced Display Materials, Shanghai University, Shanghai 200444, China
| | - Yingying Chen
- Materials Genome Institute, Shanghai Engineering Research Center of Organ Repair, Shanghai Engineering Research Center for Integrated Circuits and Advanced Display Materials, Shanghai University, Shanghai 200444, China
| | - Lingyan Feng
- Materials Genome Institute, Shanghai Engineering Research Center of Organ Repair, Shanghai Engineering Research Center for Integrated Circuits and Advanced Display Materials, Shanghai University, Shanghai 200444, China; Joint International Research Laboratory of Biomaterials and Biotechnology in Organ Repair, Ministry of Education, 99 Shangda Road, Shanghai 200444, China.
| |
Collapse
|
11
|
Zhu H, Wang Q, Chen W, Sun K, Zhong H, Ye T, Wang Z, Zhang W, Müller-Buschbaum P, Sun XW, Wu D, Wang K. Chiral perovskite-CdSe/ZnS QDs composites with high circularly polarized luminescence performance achieved through additive-solvent engineering. J Chem Phys 2024; 160:234703. [PMID: 38884407 DOI: 10.1063/5.0200692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Accepted: 05/27/2024] [Indexed: 06/18/2024] Open
Abstract
Chiral perovskite materials are being extensively studied as one of the most promising candidates for circularly polarized luminescence (CPL)-related applications. Balancing chirality and photoluminescence (PL) properties is of great importance for enhancing the value of the dissymmetry factor (glum), and a higher glum value indicates better CPL. Chiral perovskite/quantum dot (QD) composites emerge as an effective strategy for overcoming the dilemma that achieving strong chirality and PL in chiral perovskite while at the same time achieving high glum in this composite is very crucial. Here, we choose diphenyl sulfoxide (DPSO) as an additive in the precursor solution of chiral perovskite to regulate the lattice distortion. How structural variation affects the chiral optoelectronic properties of the chiral perovskite has been further investigated. We find that chiral perovskite/CdSe-ZnS QD composites with strong CPL have been achieved, and the calculated maximum |glum| of the composites increased over one order of magnitude after solvent-additive modulation (1.55 × 10-3 for R-DMF/QDs, 1.58 × 10-2 for R-NMP-DPSO/QDs, -2.63 × 10-3 for S-DMF/QDs, and -2.65 × 10-2 for S-NMP-DPSO/QDs), even at room temperature. Our findings suggest that solvent-additive modulation can effectively regulate the lattice distortion of chiral perovskite, enhancing the value of glum for chiral perovskite/CdSe-ZnS QD composites.
Collapse
Affiliation(s)
- Hongmei Zhu
- Institute of Nanoscience and Applications, Department of Electrical and Electronic Engineering, Southern University of Science and Technology, Xueyuan Blvd. 1088, 518055 Shenzhen, China
| | - Qingqian Wang
- Institute of Nanoscience and Applications, Department of Electrical and Electronic Engineering, Southern University of Science and Technology, Xueyuan Blvd. 1088, 518055 Shenzhen, China
- Institute of Physics, Henan Academy of Sciences, Mingli Road 266-38, Zhengzhou, China
| | - Wei Chen
- Technical University of Munich, TUM School of Natural Sciences, Department of Physics, Chair for Functional Materials, James-Franck-Str. 1, 85748 Garching, Germany
- Shenzhen Key Laboratory of Ultraintense Laser and Advanced Material Technology, Center for Advanced Material Diagnostic Technology, and College of Engineering Physics, Shenzhen Technology University, Shenzhen 518118, China
| | - Kun Sun
- Technical University of Munich, TUM School of Natural Sciences, Department of Physics, Chair for Functional Materials, James-Franck-Str. 1, 85748 Garching, Germany
| | - Huaying Zhong
- Technical University of Munich, TUM School of Natural Sciences, Department of Physics, Chair for Functional Materials, James-Franck-Str. 1, 85748 Garching, Germany
| | - Taikang Ye
- Institute of Nanoscience and Applications, Department of Electrical and Electronic Engineering, Southern University of Science and Technology, Xueyuan Blvd. 1088, 518055 Shenzhen, China
| | - Zhaojin Wang
- Institute of Nanoscience and Applications, Department of Electrical and Electronic Engineering, Southern University of Science and Technology, Xueyuan Blvd. 1088, 518055 Shenzhen, China
| | - Wenda Zhang
- Institute of Nanoscience and Applications, Department of Electrical and Electronic Engineering, Southern University of Science and Technology, Xueyuan Blvd. 1088, 518055 Shenzhen, China
| | - Peter Müller-Buschbaum
- Technical University of Munich, TUM School of Natural Sciences, Department of Physics, Chair for Functional Materials, James-Franck-Str. 1, 85748 Garching, Germany
- Heinz Maier-Leibnitz Zentrum (MLZ), Technical University of Munich, Lichtenbergstr. 1, 85748 Garching, Germany
| | - Xiao Wei Sun
- Institute of Nanoscience and Applications, Department of Electrical and Electronic Engineering, Southern University of Science and Technology, Xueyuan Blvd. 1088, 518055 Shenzhen, China
| | - Dan Wu
- College of New Materials and New Energies, Shenzhen Technology University (SZTU), Lantian Road 3002, Pingshan, 518055 Shenzhen, China
| | - Kai Wang
- Institute of Nanoscience and Applications, Department of Electrical and Electronic Engineering, Southern University of Science and Technology, Xueyuan Blvd. 1088, 518055 Shenzhen, China
| |
Collapse
|
12
|
Tang B, Wei Q, Wang S, Liu H, Mou N, Liu Q, Wu Y, Portniagin AS, Kershaw SV, Gao X, Li M, Rogach AL. Ultraviolet Circularly Polarized Luminescence in Chiral Perovskite Nanoplatelet-Molecular Hybrids: Direct Binding Versus Efficient Triplet Energy Transfer. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2311639. [PMID: 38204283 DOI: 10.1002/smll.202311639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Indexed: 01/12/2024]
Abstract
The development of ultraviolet circularly polarized light (UVCPL) sources has the potential to benefit plenty of practical applications but remains a challenge due to limitations in available material systems and a limited understanding of the excited state chirality transfer. Herein, by constructing hybrid structures of the chiral perovskite CsPbBr3 nanoplatelets and organic molecules, excited state chirality transfer is achieved, either via direct binding or triplet energy transfer, leading to efficient UVCPL emission. The underlying photophysical mechanisms of these two scenarios are clarified by comprehensive optical studies. Intriguingly, UVCPL realized via the triple energy transfer, followed by the triplet-triplet annihilation upconversion processes, demonstrates a 50-fold enhanced dissymmetry factor glum. Furthermore, stereoselective photopolymerization of diacetylene monomer is demonstrated by using such efficient UVCPL. This study provides both novel insights and a practical approach for realizing UVCPL, which can also be extended to other material systems and spectral regions, such as visible and near-infrared.
Collapse
Affiliation(s)
- Bing Tang
- Department of Materials Science and Engineering, and Centre for Functional Photonics (CFP), City University of Hong Kong, 83 Tat Chee Avenue, Hong Kong SAR, 999077, P. R. China
| | - Qi Wei
- Department of Applied Physics, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, 999077, P. R. China
| | - Shixun Wang
- Department of Materials Science and Engineering, and Centre for Functional Photonics (CFP), City University of Hong Kong, 83 Tat Chee Avenue, Hong Kong SAR, 999077, P. R. China
| | - Haochen Liu
- Department of Materials Science and Engineering, and Centre for Functional Photonics (CFP), City University of Hong Kong, 83 Tat Chee Avenue, Hong Kong SAR, 999077, P. R. China
| | - Nanli Mou
- Department of Materials Science and Engineering, and Centre for Functional Photonics (CFP), City University of Hong Kong, 83 Tat Chee Avenue, Hong Kong SAR, 999077, P. R. China
| | - Qi Liu
- Department of Materials Science and Engineering, and Centre for Functional Photonics (CFP), City University of Hong Kong, 83 Tat Chee Avenue, Hong Kong SAR, 999077, P. R. China
| | - Ye Wu
- Department of Materials Science and Engineering, and Centre for Functional Photonics (CFP), City University of Hong Kong, 83 Tat Chee Avenue, Hong Kong SAR, 999077, P. R. China
| | - Arsenii S Portniagin
- Department of Materials Science and Engineering, and Centre for Functional Photonics (CFP), City University of Hong Kong, 83 Tat Chee Avenue, Hong Kong SAR, 999077, P. R. China
| | - Stephen V Kershaw
- Department of Materials Science and Engineering, and Centre for Functional Photonics (CFP), City University of Hong Kong, 83 Tat Chee Avenue, Hong Kong SAR, 999077, P. R. China
| | - Xiaoqing Gao
- Wenzhou Key Laboratory of Biophysics, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325000, P. R. China
| | - Mingjie Li
- Department of Applied Physics, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, 999077, P. R. China
| | - Andrey L Rogach
- Department of Materials Science and Engineering, and Centre for Functional Photonics (CFP), City University of Hong Kong, 83 Tat Chee Avenue, Hong Kong SAR, 999077, P. R. China
| |
Collapse
|
13
|
Zhang X, Li L, Chen Y, Valenzuela C, Liu Y, Yang Y, Feng Y, Wang L, Feng W. Mechanically Tunable Circularly Polarized Luminescence of Liquid Crystal-Templated Chiral Perovskite Quantum Dots. Angew Chem Int Ed Engl 2024; 63:e202404202. [PMID: 38525500 DOI: 10.1002/anie.202404202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 03/23/2024] [Accepted: 03/24/2024] [Indexed: 03/26/2024]
Abstract
Endowing perovskite quantum dots (PQDs) with circularly polarized luminescence (CPL) offers great promise for innovative chiroptical applications, but the existing strategies are inefficient in acquiring stimuli-responsive flexible chiral perovskite films with large, tunable dissymmetry factor (glum) and long-term stability. Here, we report a strategy for the design and synthesis of luminescent cholesteric liquid crystal elastomer (Lumin-CLCE) films with mechanically tunable CPL, which is enabled by liquid crystal-templated chiral self-assembly and in situ covalent cross-linking of judiciously designed photopolymerizable CsPbX3 (X=Cl, Br, I) PQD nanomonomers into the elastic polymer networks. The resulting Lumin-CLCE films showcase circularly polarized structural color in natural light and noticeable CPL with a maximum glum value of up to 1.5 under UV light. The manipulation of CPL intensity and rotation direction is achieved by controlling the self-assembled helicoidal nanostructure and the handedness of soft helices. A significant breakthrough lies in the achievement of a reversible, mechanically tunable perovskite-based CPL switch activated by biaxial stretching, which enables flexible, dynamic anti-counterfeiting labels capable of decrypting preset information in specific polarization states. This work can provide new insights for the development of advanced chiral perovskite materials and their emerging applications in information encryption, flexible 3D displays, and beyond.
Collapse
Affiliation(s)
- Xuan Zhang
- School of Materials Science and Engineering, Tianjin University, Tianjin, 300350, P. R. China
| | - Lin Li
- School of Materials Science and Engineering, National Institute for Advanced Materials, TKL of Metal and Molecule-Based Material Chemistry, Nankai University, Tianjin, 300350, P. R. China
| | - Yuanhao Chen
- School of Materials Science and Engineering, Tianjin University, Tianjin, 300350, P. R. China
| | - Cristian Valenzuela
- School of Materials Science and Engineering, Tianjin University, Tianjin, 300350, P. R. China
| | - Yuan Liu
- School of Materials Science and Engineering, Tianjin University, Tianjin, 300350, P. R. China
| | - Yanzhao Yang
- School of Materials Science and Engineering, Tianjin University, Tianjin, 300350, P. R. China
| | - Yufan Feng
- School of Materials Science and Engineering, Tianjin University, Tianjin, 300350, P. R. China
| | - Ling Wang
- School of Materials Science and Engineering, Tianjin University, Tianjin, 300350, P. R. China
- Binhai Industrial Research Institute, Tianjin University, Tianjin, 300452, P. R. China
| | - Wei Feng
- School of Materials Science and Engineering, Tianjin University, Tianjin, 300350, P. R. China
- Binhai Industrial Research Institute, Tianjin University, Tianjin, 300452, P. R. China
| |
Collapse
|
14
|
Kuznetsova V, Coogan Á, Botov D, Gromova Y, Ushakova EV, Gun'ko YK. Expanding the Horizons of Machine Learning in Nanomaterials to Chiral Nanostructures. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2308912. [PMID: 38241607 PMCID: PMC11167410 DOI: 10.1002/adma.202308912] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 01/10/2024] [Indexed: 01/21/2024]
Abstract
Machine learning holds significant research potential in the field of nanotechnology, enabling nanomaterial structure and property predictions, facilitating materials design and discovery, and reducing the need for time-consuming and labor-intensive experiments and simulations. In contrast to their achiral counterparts, the application of machine learning for chiral nanomaterials is still in its infancy, with a limited number of publications to date. This is despite the great potential of machine learning to advance the development of new sustainable chiral materials with high values of optical activity, circularly polarized luminescence, and enantioselectivity, as well as for the analysis of structural chirality by electron microscopy. In this review, an analysis of machine learning methods used for studying achiral nanomaterials is provided, subsequently offering guidance on adapting and extending this work to chiral nanomaterials. An overview of chiral nanomaterials within the framework of synthesis-structure-property-application relationships is presented and insights on how to leverage machine learning for the study of these highly complex relationships are provided. Some key recent publications are reviewed and discussed on the application of machine learning for chiral nanomaterials. Finally, the review captures the key achievements, ongoing challenges, and the prospective outlook for this very important research field.
Collapse
Affiliation(s)
- Vera Kuznetsova
- School of Chemistry, CRANN and AMBER Research Centres, Trinity College Dublin, College Green, Dublin, D02 PN40, Ireland
| | - Áine Coogan
- School of Chemistry, CRANN and AMBER Research Centres, Trinity College Dublin, College Green, Dublin, D02 PN40, Ireland
| | - Dmitry Botov
- Everypixel Media Innovation Group, 021 Fillmore St., PMB 15, San Francisco, CA, 94115, USA
- Neapolis University Pafos, 2 Danais Avenue, Pafos, 8042, Cyprus
| | - Yulia Gromova
- Department of Molecular and Cellular Biology, Harvard University, 52 Oxford St., Cambridge, MA, 02138, USA
| | - Elena V Ushakova
- Department of Materials Science and Engineering, and Centre for Functional Photonics (CFP), City University of Hong Kong, Hong Kong SAR, 999077, P. R. China
| | - Yurii K Gun'ko
- School of Chemistry, CRANN and AMBER Research Centres, Trinity College Dublin, College Green, Dublin, D02 PN40, Ireland
| |
Collapse
|
15
|
Zhang Z, Jin J, Lin Y, Xu H, Cheng J, Zeng H, Lin Z, Xia Z, Zou G. Multisite Fine-Tuning in Hybrid Cadmium Halides Enables Wide Range Emissions for Anti-Counterfeiting. Angew Chem Int Ed Engl 2024; 63:e202400760. [PMID: 38348737 DOI: 10.1002/anie.202400760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Indexed: 03/01/2024]
Abstract
Achieving tunable emissions spanning the spectrum, from blue to near-infrared (NIR) light, within a single component is a formidable challenge with significant implication, particularly in tailoring multicolor luminescence for anti-counterfeiting purposes. In this study, we demonstrate a broad spectrum of emissions, covering blue to red and extending into NIR light in [BPy]2CdX4 : xSb3+ (BPy=Butylpyridinium; X=Cl, Br; x=0 to 0.08) through precise multisite structural fine-tuning. Notably, the multicolor emissions from [BPy]2CdBr4 : Sb3+ manifest a distinctive pattern, transitioning from blue to yellow in tandem with the host [BPy]2CdBr4 and further extending from yellow to NIR with its homologous [BPy]2CdCl4 : Sb3+, resulting in the simultaneous presence of intersecting and independent emission colors. Detailed modulation of chemical composition enables partial luminescence switching, facilitating the creation of diverse patterns with multicolor luminescence by employing [BPy]2CdX4 : xSb3+ as phosphors. This study for the first time successfully implements several groups of tunable emission colors in a single matrix via multisite fine-tuning. Such an effective strategy not only develops the specific relationships between tunable emissions and adjustable compositions, but also introduces a cost-effective and straightforward approach to achieving unique, high-level, plentiful-color and multiple-information-storage labels for advanced anti-counterfeiting applications.
Collapse
Affiliation(s)
- Zhizhuan Zhang
- College of Chemistry, Sichuan University, Chengdu, 610065, P. R. China
| | - Jiance Jin
- The State Key Laboratory of Luminescent Materials and Devices, School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510641, P. R. China
| | - Yangpeng Lin
- College of Chemistry and Materials Science, Fujian Key Laboratory of Polymer Materials, Fujian Normal University, Fuzhou, 350007, P. R. China
| | - Haiping Xu
- College of Chemistry, Sichuan University, Chengdu, 610065, P. R. China
| | - Juan Cheng
- College of Chemistry, Sichuan University, Chengdu, 610065, P. R. China
| | - Hongmei Zeng
- College of Chemistry, Sichuan University, Chengdu, 610065, P. R. China
| | - Zhien Lin
- College of Chemistry, Sichuan University, Chengdu, 610065, P. R. China
| | - Zhiguo Xia
- The State Key Laboratory of Luminescent Materials and Devices, School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510641, P. R. China
| | - Guohong Zou
- College of Chemistry, Sichuan University, Chengdu, 610065, P. R. China
| |
Collapse
|
16
|
Liu Y, Gao X, Zhao B, Deng J. Circularly polarized luminescence in quantum dot-based materials. NANOSCALE 2024; 16:6853-6875. [PMID: 38504609 DOI: 10.1039/d4nr00644e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/21/2024]
Abstract
Quantum dots (QDs) have emerged as fantastic luminescent nanomaterials with significant potential due to their unique photoluminescence properties. With the rapid development of circularly polarized luminescence (CPL) materials, many researchers have associated QDs with the CPL property, resulting in numerous novel CPL-active QD-containing materials in recent years. The present work reviews the latest advances in CPL-active QD-based materials, which are classified based on the types of QDs, including perovskite QDs, carbon dots, and colloidal semiconductor QDs. The applications of CPL-active QD-based materials in biological, optoelectronic, and anti-counterfeiting fields are also discussed. Additionally, the current challenges and future perspectives in this field are summarized. This review article is expected to stimulate more unprecedented achievements based on CPL-active QD-based materials, thus further promoting their future practical applications.
Collapse
Affiliation(s)
- Yanze Liu
- Key Laboratory of Chemical Resource Engineering and College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Xiaobin Gao
- Key Laboratory of Chemical Resource Engineering and College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Biao Zhao
- Key Laboratory of Chemical Resource Engineering and College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Jianping Deng
- Key Laboratory of Chemical Resource Engineering and College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China.
| |
Collapse
|
17
|
Zhang H, Wang X, Ai N, Wang J. Highly luminescent and stable CsPbBr 3 perovskite nanocrystals coated with polyethersulfone for white light-emitting diode applications. LUMINESCENCE 2024; 39:e4734. [PMID: 38576335 DOI: 10.1002/bio.4734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 02/28/2024] [Accepted: 03/05/2024] [Indexed: 04/06/2024]
Abstract
Simultaneously improving the stability and photoluminescence quantum yield (PLQY) of all inorganic perovskite nanocrystals (NCs) is crucial for their practical utilization in various optoelectronic devices. Here, CsPbBr3 NCs coated with polyethersulfone (PES) were prepared via an in-situ co-precipitation method. The sulfone groups in PES bind to undercoordinated lead ion (Pb2+) on the CsPbBr3 NCs, resulting in significant reduction of surface defects, thus enhancing the PLQY from 74.2% to 88.3%. Meanwhile, the PES-coated NCs exhibit high water resistance and excellent heat and light stability, maintaining over 85% of the initial PL intensity under thermal aging (70°C, 4 h) and continuous 365 nm ultraviolet (UV) light irradiation (24 W, 8 h) conditions. By contrast, the PL intensity of the control NCs dramatically dropped to less than 40%. Finally, a diode emitting bright white light was fabricated utilizing the PES-coated CsPbBr3 NCs, which exhibits a color gamut of ~110% NTSC standard.
Collapse
Affiliation(s)
- Hao Zhang
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, P. R. China
| | - Xuemei Wang
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, P. R. China
| | - Ning Ai
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing, P. R. China
| | - Jianli Wang
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, P. R. China
| |
Collapse
|
18
|
Zhao Y, Xie J, Tian Y, Mourdikoudis S, Fiuza‐Maneiro N, Du Y, Polavarapu L, Zheng G. Colloidal Chiral Carbon Dots: An Emerging System for Chiroptical Applications. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2305797. [PMID: 38268241 PMCID: PMC10987166 DOI: 10.1002/advs.202305797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 11/09/2023] [Indexed: 01/26/2024]
Abstract
Chiral CDots (c-CDots) not only inherit those merits from CDots but also exhibit chiral effects in optical, electric, and bio-properties. Therefore, c-CDots have received significant interest from a wide range of research communities including chemistry, physics, biology, and device engineers. They have already made decent progress in terms of synthesis, together with the exploration of their optical properties and applications. In this review, the chiroptical properties and chirality origin in extinction circular dichroism (ECD) and circularly polarized luminescence (CPL) of c-CDots is briefly discussed. Then, the synthetic strategies of c-CDots is summarized, including one-pot synthesis, post-functionalization of CDots with chiral ligands, and assembly of CDots into chiral architectures with soft chiral templates. Afterward, the chiral effects on the applications of c-CDots are elaborated. Research domains such as drug delivery, bio- or chemical sensing, regulation of enzyme-like catalysis, and others are covered. Finally, the perspective on the challenges associated with the synthetic strategies, understanding the origin of chirality, and potential applications is provided. This review not only discusses the latest developments of c-CDots but also helps toward a better understanding of the structure-property relationship along with their respective applications.
Collapse
Affiliation(s)
- Yuwan Zhao
- School of Physics and MicroelectronicsZhengzhou UniversityZhengzhou450001P. R. China
| | - Juan Xie
- School of Physics and MicroelectronicsZhengzhou UniversityZhengzhou450001P. R. China
| | - Yongzhi Tian
- School of Physics and MicroelectronicsZhengzhou UniversityZhengzhou450001P. R. China
| | - Stefanos Mourdikoudis
- Separation and Conversion TechnologyFlemish Institute for Technological Research (VITO)Boeretang 200Mol2400Belgium
| | - Nadesh Fiuza‐Maneiro
- CINBIOMaterials Chemistry and Physics GroupUniversity of VigoCampus Universitario MarcosendeVigo36310Spain
| | - Yanli Du
- School of Physics and MicroelectronicsZhengzhou UniversityZhengzhou450001P. R. China
| | - Lakshminarayana Polavarapu
- CINBIOMaterials Chemistry and Physics GroupUniversity of VigoCampus Universitario MarcosendeVigo36310Spain
| | - Guangchao Zheng
- School of Physics and MicroelectronicsZhengzhou UniversityZhengzhou450001P. R. China
- Institute of Quantum Materials and PhysicsHenan Academy of SciencesZhengzhou450046P. R. China
| |
Collapse
|
19
|
Wang P, Wang B, Li N, He T, Zhang H, Zhang L, Liu SF. Alkali-Metal-Assisted Green-Solvent Synthesis for In Situ Growth of Perovskite Nanocrystals in Porous Materials. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2305880. [PMID: 38239033 DOI: 10.1002/advs.202305880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 11/09/2023] [Indexed: 03/28/2024]
Abstract
Inorganic metal halide perovskite CsPbX3 (X = I, Br, and Cl) nanocrystals (NCs) are rapidly developed due to their excellent photophysical properties and potential applications in lighting, lasers, and scintillators. However, the materials for growing perovskite NCs are insoluble or hydrolyzed in most green solvents, limiting their further development. Based on rational chemical analysis, an alkali-metal-assisted green-solvent synthesis method for in situ growth of CsPbBr3 NCs within SAPO-34 zeolite with bright luminescence is developed. Water is the only solvent used in the whole process. Surprisingly, by the synergistic effect of the channel structure of SAPO-34 and alkali-metal ions crystallization regulation, the CsPbBr3 NCs embedded in SAPO-34 assisted by Na+ emit bright blue light under ultraviolet illumination, with a 30 nm blue shift comparing to the CsPbBr3 NCs assisted by K+. Moreover, CsPbBr3 NCs can also be grown in mesoporous SiO2 SBA-15 and zeolites including ZSM-5, AlPO-5, and SOD, indicating that the method is universal for in situ growth of luminescent perovskite NCs in porous materials. This alkali-metal-assisted green-solvent synthesis provides a new strategy for developing high-quantum-yield, tunable-emission, and stable perovskite luminescent materials.
Collapse
Affiliation(s)
- Peijun Wang
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Shaanxi Engineering Lab for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710119, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Bolun Wang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, 130012, China
| | - Nan Li
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Shaanxi Engineering Lab for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Tong He
- School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Hao Zhang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Shaanxi Engineering Lab for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Lu Zhang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Shaanxi Engineering Lab for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Shengzhong Frank Liu
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Shaanxi Engineering Lab for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710119, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
20
|
Li X, Wu J, Zhu X. Multi-component determination based on high quantum yield "on-off-on" carbon quantum dots sensor. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 307:123662. [PMID: 37984116 DOI: 10.1016/j.saa.2023.123662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 11/11/2023] [Accepted: 11/14/2023] [Indexed: 11/22/2023]
Abstract
The nitrogen(N)-sulfur(S)-sodium(Na(I)) co-doped carbon quantum dots (CQDs) were synthesized via a one-step hydrothermal method, which exhibited a remarkably high fluorescence quantum yield (24.58%) and exceptional optical properties. The fluorescence "on-off-on" sensor was constructed. The fluorescence of CQDs was rapidly quenched with Fe(III) and the fluorescence recovered by ascorbic acid (Asc) partially and arginine (Arg)/histidine (His) completely. The CQDs fluorescence sensor demonstrated rapid response, exceptional sensitivity, excellent stability, remarkable selectivity, and robust anti-interference performance, which was feasible to simultaneously determine the concentrations of multiple analytes in the sample with satisfactory recovery rates. The "on-off-on" fluorescence mechanism of CQDs was investigated, revealing the significant potential of carbon nano-functionalized materials in the field of drug detection through fluorescence sensing.
Collapse
Affiliation(s)
- Xiang Li
- College of Chemistry and Chemical Engineering, College of Guangling, Yangzhou University, Yangzhou 225002, China
| | - Jun Wu
- College of Chemistry and Chemical Engineering, College of Guangling, Yangzhou University, Yangzhou 225002, China
| | - Xiashi Zhu
- College of Chemistry and Chemical Engineering, College of Guangling, Yangzhou University, Yangzhou 225002, China.
| |
Collapse
|
21
|
Fu K, Liu G. Full-Color Circularly Polarized Luminescence of Supramolecular Polymers with Handedness Inversion Regulated by Anion and Temperature. ACS NANO 2024; 18:2279-2289. [PMID: 38206175 DOI: 10.1021/acsnano.3c10151] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2024]
Abstract
Constructing full-color circularly polarized luminescence (CPL) materials with switchable handedness in the solid state is an appealing yet considerably challenging task, especially for supramolecular polymer films assembled from homochiral monomers. Herein, supramolecular polymers with full-color CPL and inverted handedness are realized through the coassembly of a homochiral cholesterol derivative (PVPCC), metal ions (Zn2+), and achiral fluorescent dyes. The obtained coassembled systems show anion-directed supramolecular chirality inversion by exchanging the anions of NO3-, ClO4-, BF4-, and Cl-. For instance, the negative CD and right-handed CPL are detected in the PVPCC/Zn(NO3)2 aggregates, which convert into positive CD and left-handed CPL after introducing Cl-, corresponding to the transformation from nanorods to nanofibers. Furthermore, the tunable CPL color and handedness inversion of the coassembly system of PVPCC/Zn(NO3)2 and achiral fluorescent dyes can be established by alternately changing the assembling temperature of 298 and 273 K. Importantly, the full-color CPL polymeric materials are then constructed by doping the PVPCC/Zn(NO3)2/dyes complexes into poly(methyl methacrylate) (PMMA) film, which maintains the handedness inversion and shows the enhanced CPL performance. The work not only deepens the understanding of chirality inversion in supramolecular chemistry but also helps to construct full-color CPL materials with switchable handedness from homochiral building blocks in materials science.
Collapse
Affiliation(s)
- Kuo Fu
- School of Chemical Science and Engineering, Advanced Research Institute, Tongji University, Shanghai 200092, P. R. China
| | - Guofeng Liu
- School of Chemical Science and Engineering, Advanced Research Institute, Tongji University, Shanghai 200092, P. R. China
| |
Collapse
|
22
|
Zhou Y, Wang Y, Song Y, Zhao S, Zhang M, Li G, Guo Q, Tong Z, Li Z, Jin S, Yao HB, Zhu M, Zhuang T. Helical-caging enables single-emitted large asymmetric full-color circularly polarized luminescence. Nat Commun 2024; 15:251. [PMID: 38177173 PMCID: PMC10767107 DOI: 10.1038/s41467-023-44643-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 12/27/2023] [Indexed: 01/06/2024] Open
Abstract
Colorful circularly polarized luminescence materials are desired for 3D displays, information security and asymmetric synthesis, in which single-emitted materials are ideal owing to self-absorption avoidance, evenly entire-visible-spectrum-covered photon emission and facile device fabrication. However, restricted by the synthesis of chiral broad-luminescent emitters, the realization and application of high-performing single-emitted full-color circularly polarized luminescence is in its infancy. Here, we disclose a single-emitted full-color circularly polarized luminescence system (spiral full-color emission generator), composed of whole-vis-spectrum emissive quantum dots and chiral liquid crystals. The system achieves a maximum luminescence dissymmetry factor of 0.8 and remains an order of 10-1 in visible region by tuning its photonic bandgap. We then expand it to a series of desired customized-color circularly polarized luminescence, build chiral devices and further demonstrate the working scenario in the photoinduced enantioselective polymerization. This work contributes to the design and synthesis of efficient chiroptical materials, device fabrication and photoinduced asymmetric synthesis.
Collapse
Affiliation(s)
- Yajie Zhou
- Department of Chemistry, University of Science and Technology of China, Hefei, 230026, PR China
| | - Yaxin Wang
- Department of Chemistry, University of Science and Technology of China, Hefei, 230026, PR China
| | - Yonghui Song
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, 230026, PR China
- Department of Applied Chemistry, University of Science and Technology of China, Hefei, 230026, PR China
| | - Shanshan Zhao
- Department of Chemistry, University of Science and Technology of China, Hefei, 230026, PR China
| | - Mingjiang Zhang
- Department of Chemistry, University of Science and Technology of China, Hefei, 230026, PR China
| | - Guangen Li
- Department of Chemistry, University of Science and Technology of China, Hefei, 230026, PR China
| | - Qi Guo
- Department of Chemistry, University of Science and Technology of China, Hefei, 230026, PR China
| | - Zhi Tong
- Department of Chemistry, University of Science and Technology of China, Hefei, 230026, PR China
| | - Zeyi Li
- Department of Chemistry, University of Science and Technology of China, Hefei, 230026, PR China
| | - Shan Jin
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Anhui University, Hefei, 230601, PR China
- Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei, 230601, PR China
- Key Laboratory of Functional Inorganic Material Chemistry of Anhui Province, Anhui University, Hefei, 230601, PR China
| | - Hong-Bin Yao
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, 230026, PR China
- Department of Applied Chemistry, University of Science and Technology of China, Hefei, 230026, PR China
| | - Manzhou Zhu
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Anhui University, Hefei, 230601, PR China
- Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei, 230601, PR China
- Key Laboratory of Functional Inorganic Material Chemistry of Anhui Province, Anhui University, Hefei, 230601, PR China
| | - Taotao Zhuang
- Department of Chemistry, University of Science and Technology of China, Hefei, 230026, PR China.
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, 230026, PR China.
| |
Collapse
|
23
|
Li X, YujuanSun, Zhu X. Preparation of Chiral Carbon Quantum Dots and its Application. J Fluoresc 2024; 34:1-13. [PMID: 37199894 DOI: 10.1007/s10895-023-03262-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 05/08/2023] [Indexed: 05/19/2023]
Abstract
Chiral carbon quantum dots (cCQDs) , as a new type of carbon nano-functional material with tunable emission wavelength, superior photostability, low toxicity, biocompatibility and chirality, are playing an increasingly important role in the fields of chemistry, biology and medicine. This paper reviews the preparation methods (one-step and two-step), optical properties (UV, fluorescence, chirality) and applications in chiral catalysis, chiral recognition, targeted imaging as well as other fields, while lists some of the issues and challenges in the research of chiral carbon quantum dots. Finally, due to its good fluorescence and other properties, it is expected that chiral carbon quantum dots will have broad commercial prospects in future applications.
Collapse
Affiliation(s)
- Xiang Li
- College of Chemistry and Chemical Engineering, College of Guangling, Yangzhou University, 225002, Yangzhou, China
| | - YujuanSun
- College of Chemistry and Chemical Engineering, College of Guangling, Yangzhou University, 225002, Yangzhou, China
| | - Xiashi Zhu
- College of Chemistry and Chemical Engineering, College of Guangling, Yangzhou University, 225002, Yangzhou, China.
| |
Collapse
|
24
|
Luan X, Fan S, Xu K, Zhang H, Feng X, Zhang W, Peng H, Li Q. An improved ligand-assisted reprecipitation method to synthesize aqueous-phase CsPbBr 3 perovskite nanocrystals and investigate their electrochemiluminescence behavior. Analyst 2023; 148:6223-6227. [PMID: 37942940 DOI: 10.1039/d3an01688a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2023]
Abstract
We propose a novel ligand-assisted reprecipitation method to synthesize aqueous-phase CsPbBr3 nanocrystals, the fluorescence intensity of which remained at 51% after 120 h. As a multifunctional additive, cesium trifluoroacetate (Cs-TFA) can improve the surface adsorption energy and induce nanocrystals to show significant anodic electrochemiluminescence (ECL) and stable cathodic ECL performances.
Collapse
Affiliation(s)
- Xiaodong Luan
- School of Electrical and Electronic Engineering, Jiangsu Ocean University, Lianyungang 222005, China
- Jiangsu Institute of Marine Resources Development, Lianyungang 222005, China
| | - Shuochen Fan
- School of Electrical and Electronic Engineering, Jiangsu Ocean University, Lianyungang 222005, China
| | - Ke Xu
- School of Science, Jiangsu Ocean University, Lianyungang 222005, China.
| | - Haipeng Zhang
- School of Electrical and Electronic Engineering, Jiangsu Ocean University, Lianyungang 222005, China
| | - Xiaoyang Feng
- School of Science, Jiangsu Ocean University, Lianyungang 222005, China.
| | - Wenteng Zhang
- School of Science, Jiangsu Ocean University, Lianyungang 222005, China.
| | - Huaping Peng
- Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, School of Pharmacy, Fujian Medical University, Fuzhou 350004, China.
| | - Qile Li
- School of Science, Jiangsu Ocean University, Lianyungang 222005, China.
| |
Collapse
|
25
|
Li S, Pei H, He S, Liang H, Guo R, Liu N, Mo Z. Chiral Carbon Dots and Chiral Carbon Dots with Circularly Polarized Luminescence: Synthesis, Mechanistic Investigation and Applications. Chem Asian J 2023; 18:e202300770. [PMID: 37819766 DOI: 10.1002/asia.202300770] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 10/07/2023] [Accepted: 10/10/2023] [Indexed: 10/13/2023]
Abstract
Chiral carbon dots (CCDs) can be widely used in various fields such as chiral recognition, chiral catalysis and biomedicine because of their unique optical properties, low toxicity and good biocompatibility. In addition, CCDs with circularly polarized luminescence (CPL) can be synthesized, thus broadening the prospects of CCDs applications. Since the research on CCDs is still in its infancy, this paper reviews the chiral origin, formation mechanism, chiral evolution, synthesis and emerging applications of CCDs, with a special focus on CCDs with CPL activity. It is hoped that it will provide some reference to solve the current problems faced by CCDs. Finally, the opportunities and challenges of the current research on CCDs are described, and their future development trends have also been prospected.
Collapse
Affiliation(s)
- Shijing Li
- Research Center of Gansu Military and Civilian Integration Advanced Structural Materials, Key Laboratory of Eco-Environment-Related Polymer Materials, Ministry of Education of China, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, 730070, China
| | - Hebing Pei
- Research Center of Gansu Military and Civilian Integration Advanced Structural Materials, Key Laboratory of Eco-Environment-Related Polymer Materials, Ministry of Education of China, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, 730070, China
| | - Simin He
- Research Center of Gansu Military and Civilian Integration Advanced Structural Materials, Key Laboratory of Eco-Environment-Related Polymer Materials, Ministry of Education of China, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, 730070, China
| | - Hao Liang
- Research Center of Gansu Military and Civilian Integration Advanced Structural Materials, Key Laboratory of Eco-Environment-Related Polymer Materials, Ministry of Education of China, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, 730070, China
| | - Ruibin Guo
- Research Center of Gansu Military and Civilian Integration Advanced Structural Materials, Key Laboratory of Eco-Environment-Related Polymer Materials, Ministry of Education of China, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, 730070, China
| | - Nijuan Liu
- Research Center of Gansu Military and Civilian Integration Advanced Structural Materials, Key Laboratory of Eco-Environment-Related Polymer Materials, Ministry of Education of China, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, 730070, China
| | - Zunli Mo
- Research Center of Gansu Military and Civilian Integration Advanced Structural Materials, Key Laboratory of Eco-Environment-Related Polymer Materials, Ministry of Education of China, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, 730070, China
| |
Collapse
|
26
|
Fu K, Liu G. Multicolor circularly polarized luminescence inversion of metal-organic supramolecular polymers. Chem Commun (Camb) 2023; 59:13751-13754. [PMID: 37916292 DOI: 10.1039/d3cc04068b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2023]
Abstract
Metal-organic supramolecular polymers (MOSPs) with multicolor circularly polarized luminescence (CPL) and handedness inversion were constructed from the coordination-driven assembly of pyridine-cyanostilbene-cholesterol and metal salts by modulating the treatment modes, solvents, and metal ions.
Collapse
Affiliation(s)
- Kuo Fu
- School of Chemical Science and Engineering, Advanced Research Institute, Tongji University, Shanghai, 200092, P. R. China.
| | - Guofeng Liu
- School of Chemical Science and Engineering, Advanced Research Institute, Tongji University, Shanghai, 200092, P. R. China.
| |
Collapse
|
27
|
Zhang M, Guo Q, Li Z, Zhou Y, Zhao S, Tong Z, Wang Y, Li G, Jin S, Zhu M, Zhuang T, Yu SH. Processable circularly polarized luminescence material enables flexible stereoscopic 3D imaging. SCIENCE ADVANCES 2023; 9:eadi9944. [PMID: 37878702 PMCID: PMC10599622 DOI: 10.1126/sciadv.adi9944] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 09/25/2023] [Indexed: 10/27/2023]
Abstract
Endowing three-dimensional (3D) displays with flexibility drives innovation in the next-generation wearable and smart electronic technology. Printing circularly polarized luminescence (CPL) materials on stretchable panels gives the chance to build desired flexible stereoscopic displays: CPL provides unusual optical rotation characteristics to achieve the considerable contrast ratio and wide viewing angle. However, the lack of printable, intense circularly polarized optical materials suitable for flexible processing hinders the implementation of flexible 3D devices. Here, we report a controllable and macroscopic production of printable CPL-active photonic paints using a designed confining helical co-assembly strategy, achieving a maximum luminescence dissymmetry factor (glum) value of 1.6. We print customized graphics and meter-long luminous coatings with these paints on a range of substates such as polypropylene, cotton fabric, and polyester fabric. We then demonstrate a flexible textile 3D display panel with two printed sets of pixel arrays based on the orthogonal CPL emission, which lays an efficient framework for future intelligent displays and clothing.
Collapse
Affiliation(s)
- Mingjiang Zhang
- Department of Chemistry, New Cornerstone Science Institute, Institute of Biomimetic Materials and Chemistry, Anhui Engineering Laboratory of Biomimetic Materials, Division of Nanomaterials and Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China
| | - Qi Guo
- Department of Chemistry, New Cornerstone Science Institute, Institute of Biomimetic Materials and Chemistry, Anhui Engineering Laboratory of Biomimetic Materials, Division of Nanomaterials and Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China
| | - Zeyi Li
- Department of Chemistry, New Cornerstone Science Institute, Institute of Biomimetic Materials and Chemistry, Anhui Engineering Laboratory of Biomimetic Materials, Division of Nanomaterials and Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China
| | - Yajie Zhou
- Department of Chemistry, New Cornerstone Science Institute, Institute of Biomimetic Materials and Chemistry, Anhui Engineering Laboratory of Biomimetic Materials, Division of Nanomaterials and Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China
| | - Shanshan Zhao
- Department of Chemistry, New Cornerstone Science Institute, Institute of Biomimetic Materials and Chemistry, Anhui Engineering Laboratory of Biomimetic Materials, Division of Nanomaterials and Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China
| | - Zhi Tong
- Department of Chemistry, New Cornerstone Science Institute, Institute of Biomimetic Materials and Chemistry, Anhui Engineering Laboratory of Biomimetic Materials, Division of Nanomaterials and Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China
| | - Yaxin Wang
- Department of Chemistry, New Cornerstone Science Institute, Institute of Biomimetic Materials and Chemistry, Anhui Engineering Laboratory of Biomimetic Materials, Division of Nanomaterials and Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China
| | - Guangen Li
- Department of Chemistry, New Cornerstone Science Institute, Institute of Biomimetic Materials and Chemistry, Anhui Engineering Laboratory of Biomimetic Materials, Division of Nanomaterials and Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China
| | - Shan Jin
- Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Department of Chemistry, and Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei 230601, China
| | - Manzhou Zhu
- Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Department of Chemistry, and Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei 230601, China
| | - Taotao Zhuang
- Department of Chemistry, New Cornerstone Science Institute, Institute of Biomimetic Materials and Chemistry, Anhui Engineering Laboratory of Biomimetic Materials, Division of Nanomaterials and Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China
| | - Shu-Hong Yu
- Department of Chemistry, New Cornerstone Science Institute, Institute of Biomimetic Materials and Chemistry, Anhui Engineering Laboratory of Biomimetic Materials, Division of Nanomaterials and Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China
- Institute of Innovative Materials (I2M), Department of Materials Science and Engineering, and Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| |
Collapse
|
28
|
Xiao YH, Ma ZZ, Yang XX, Li DS, Gu ZG, Zhang J. Inducing Circularly Polarized Luminescence by Confined Synthesis of Ultrasmall Chiral Carbon Nanodot Arrays in Pyrene-Based MOF Thin Film. ACS NANO 2023; 17:19136-19143. [PMID: 37740252 DOI: 10.1021/acsnano.3c05265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/24/2023]
Abstract
Combining the features of the host-guest system and chirality is an efficient strategy to achieve circularly polarized luminescence (CPL). Herein, well-defined chiral carbon nanodot (chirCND) arrays were confined-synthesized by low-temperature calcination of a chiral amino acid loaded metal-organic framework (MOF) to induce high CPL. An achiral porous pyrene-based MOF NU-1000 thin film as the host template was prepared by a liquid-phase epitaxial layer-by-layer fashion, and chiral amino acids as the carbon sources could be confined in the porous MOF and carbonized to homogeneous and ultrasmall chirCND arrays, resulting in a chirCNDs@NU-1000 thin film (l-CNDsx@NU-1000; x = l-cysteine (cys), l-serine, l-histidine, l-glutamic acid, and l-pyroglutamic acid). The results show the pristine chirCNDs by directly carbonizing chiral amino acids hardly endow them with a CPL property. By contrast, benefiting from the arrayed confinement and coordination interaction between chirCNDs and NU-1000, the chirality transfer on the excited state of chirCNDs@NU-1000 is enabled, leading to strong CPL performance (a high luminescence dissymmetry factor glum of l-CNDscys@NU-1000 thin film reached 1.74 × 10-2). This study of chirCNDs encapsulated in fluorescent MOF thin films provides a strategy for developing uniform chiral carbon nanoarrays and offers chiral host-guest thin-film materials for optical applications.
Collapse
Affiliation(s)
- Yi-Hong Xiao
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 350002 Fuzhou, People's Republic of China
- College of Environmental and Biological Engineering, Fujian Provincial Key Laboratory of Ecology-Toxicological Effects & Control for Emerging Contaminants, Key Laboratory of Ecological Environment and Information Atlas (Putian University) Fujian Provincial University, Putian University, Putian 351100, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Zhi-Zhou Ma
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 350002 Fuzhou, People's Republic of China
| | - Xue-Xian Yang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 350002 Fuzhou, People's Republic of China
| | - Dong-Sheng Li
- College of Materials and Chemical Engineering, Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials, China Three Gorges University, Yichang 443002, People's Republic of China
| | - Zhi-Gang Gu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 350002 Fuzhou, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Jian Zhang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 350002 Fuzhou, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| |
Collapse
|
29
|
Yan X, Zhao H, Zhang K, Zhang Z, Chen Y, Feng L. Chiral Carbon Dots: Synthesis and Applications in Circularly Polarized Luminescence, Biosensing and Biology. Chempluschem 2023; 88:e202200428. [PMID: 36680303 DOI: 10.1002/cplu.202200428] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 01/05/2023] [Indexed: 01/11/2023]
Abstract
Chiral carbon dots (CDs) are a novel luminescent zero-dimensional carbon-based nanomaterial with chirality. They not only have the advantages of good biocompatibility, multi-color-emission, easy functionalization, but also exhibits highly symmetrical chiral optical characteristics, which broadens their applicability to enantioselectivity of some chiral amino acids like cysteine and lysine, asymmetric catalysis as well as biomedicine in gene expression and antibiosis. In addition, the exploration of the excited state chirality of CDs has developed its excellent circularly polarized luminescence (CPL) properties, opening up a new application scenario like recognition of chiral light sources and anti-counterfeit printing with information encryption. This review mainly focuses on the mature synthesis approaches of chiral CDs, including chiral ligand method and supramolecular self-assembly method, then we consider emerging applications of chiral CDs in CPL, biosensing and biological effect. Finally, we concluded with a perspective on the potential challenges and future opportunities of such fascinating chiral CDs.
Collapse
Affiliation(s)
- Xuetao Yan
- Materials Genome Institute and Shanghai Engineering Research Center of Organ Repair, Shanghai University, 99 Shangda Road, Shanghai, 200444, P.R. China
- QianWeichang College, Shanghai University, 99 Shangda Road, Shanghai, 200444, P.R. China
| | - Huijuan Zhao
- Materials Genome Institute and Shanghai Engineering Research Center of Organ Repair, Shanghai University, 99 Shangda Road, Shanghai, 200444, P.R. China
- QianWeichang College, Shanghai University, 99 Shangda Road, Shanghai, 200444, P.R. China
| | - Ke Zhang
- Materials Genome Institute and Shanghai Engineering Research Center of Organ Repair, Shanghai University, 99 Shangda Road, Shanghai, 200444, P.R. China
- QianWeichang College, Shanghai University, 99 Shangda Road, Shanghai, 200444, P.R. China
| | - Zhiwei Zhang
- Materials Genome Institute and Shanghai Engineering Research Center of Organ Repair, Shanghai University, 99 Shangda Road, Shanghai, 200444, P.R. China
| | - Yingying Chen
- Materials Genome Institute and Shanghai Engineering Research Center of Organ Repair, Shanghai University, 99 Shangda Road, Shanghai, 200444, P.R. China
| | - Lingyan Feng
- Materials Genome Institute and Shanghai Engineering Research Center of Organ Repair, Shanghai University, 99 Shangda Road, Shanghai, 200444, P.R. China
| |
Collapse
|