1
|
Xiong W, Zhang G, Bao DL, Lu J, Gao L, Li Y, Zhang H, Ruan Z, Hao Z, Gao HJ, Chen L, Cai J. Visualizing stepwise evolution of carbon hybridization from sp 3 to sp 2 and to sp. Nat Commun 2025; 16:690. [PMID: 39814741 PMCID: PMC11735776 DOI: 10.1038/s41467-024-55719-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 12/20/2024] [Indexed: 01/18/2025] Open
Abstract
Regulating carbon hybridization states lies at the heart of engineering carbon materials with tailored properties but orchestrating the sequential transition across three states has remained elusive. Here, we visiualize stepwise evolution in carbon hybridizations from sp³ to sp² and to sp states via dehydrogenation and elimination reactions of methylcyano-functionalized molecules on surfaces. Utilizing scanning probing microscopy, we distinguish three distinct carbon-carbon bond types within polymers induced by annealing at elevated temperatures. Density-functional-theory calculations unveil the pivotal role of the electron-withdrawing cyano group in activating neighboring methylene to form C(sp3)-C(sp3) bonds, and in facilitating subsequent stepwise HCN eliminations to realize the transformation across three carbon-carbon bond types. We also demonstrate the applicability of this strategy on one-dimensional molecular wires and two-dimensional covalent organic framework on different substrates. Our work expands the scope of carbon hybridization evolution and serves as an advance in flexibly engineering carbon-material by employing cyanomethyl-substituted molecules.
Collapse
Affiliation(s)
- Wei Xiong
- Faculty of Materials Science and Engineering, Kunming University of Science and Technology, 650093, Kunming, PR China
| | - Guang Zhang
- Department of Chemistry and Tianjin Key Laboratory of Molecular Optoelectronic Science, Tianjin University, 300072, Tianjin, PR China
| | - De-Liang Bao
- Department of Physics and Astronomy, Vanderbilt University, Nashville, TN, 37235, USA
| | - Jianchen Lu
- Faculty of Materials Science and Engineering, Kunming University of Science and Technology, 650093, Kunming, PR China.
| | - Lei Gao
- Faculty of Science, Kunming University of Science and Technology, 650093, Kunming, PR China
| | - Yusen Li
- Department of Chemistry and Tianjin Key Laboratory of Molecular Optoelectronic Science, Tianjin University, 300072, Tianjin, PR China
| | - Hui Zhang
- Faculty of Materials Science and Engineering, Kunming University of Science and Technology, 650093, Kunming, PR China
| | - Zilin Ruan
- Faculty of Materials Science and Engineering, Kunming University of Science and Technology, 650093, Kunming, PR China
| | - Zhenliang Hao
- Faculty of Materials Science and Engineering, Kunming University of Science and Technology, 650093, Kunming, PR China
| | - Hong-Jun Gao
- Institute of Physics & University of Chinese Academy of Sciences, 100190, Beijing, PR China
| | - Long Chen
- Department of Chemistry and Tianjin Key Laboratory of Molecular Optoelectronic Science, Tianjin University, 300072, Tianjin, PR China.
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 130012, Changchun, PR China.
| | - Jinming Cai
- Faculty of Materials Science and Engineering, Kunming University of Science and Technology, 650093, Kunming, PR China.
- Southwest United Graduate School, 650093, Kunming, PR China.
| |
Collapse
|
2
|
Wei X, Chang X, Hao J, Liu F, Duan P, Jia C, Guo X. In Situ Detection of Interfacial Ions at the Single-Bond Level. J Am Chem Soc 2024; 146:26095-26101. [PMID: 39262277 DOI: 10.1021/jacs.4c06738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/13/2024]
Abstract
Detecting the ionic state at the solid-liquid interface is essential to reveal the various chemical and physical processes that occur at the interface. In this study, the adsorption states of the highly electronegative ions F- and OH- at the solid-liquid interface are detected by using the scanning tunneling microscopy break junction technique. With the active hydrogen atom of the amino group as a probe, the formed ionic hydrogen bonds are successfully detected, thereby enabling in situ monitoring of the ionic state at the solid-liquid interface. Through noise power spectral density analysis and theoretical simulations, we reveal the mechanism by which ionic hydrogen bonds at the interface affect the charge transport properties. In addition, we discover that the ionic state at the solid-liquid interface can be effectively manipulated by electric fields. Under high electric fields, the concentration of the anion near the electrode is higher, and the proportion of hydrogen bonds formed is greater than that under low electric fields. This study of the interfacial ionic state at the single-bond level provides guidance for the design of high-performance materials for energy conversion and environmental purification.
Collapse
Affiliation(s)
- Xiao Wei
- Center of Single-Molecule Sciences, Institute of Modern Optics, Frontiers Science Center for New Organic Matter, Tianjin Key Laboratory of Microscale Optical Information Science and Technology, College of Electronic Information and Optical Engineering, Nankai University, Tianjin 300350, P. R. China
| | - Xinyue Chang
- Center of Single-Molecule Sciences, Institute of Modern Optics, Frontiers Science Center for New Organic Matter, Tianjin Key Laboratory of Microscale Optical Information Science and Technology, College of Electronic Information and Optical Engineering, Nankai University, Tianjin 300350, P. R. China
| | - Jie Hao
- Center of Single-Molecule Sciences, Institute of Modern Optics, Frontiers Science Center for New Organic Matter, Tianjin Key Laboratory of Microscale Optical Information Science and Technology, College of Electronic Information and Optical Engineering, Nankai University, Tianjin 300350, P. R. China
| | - Fengyi Liu
- Center of Single-Molecule Sciences, Institute of Modern Optics, Frontiers Science Center for New Organic Matter, Tianjin Key Laboratory of Microscale Optical Information Science and Technology, College of Electronic Information and Optical Engineering, Nankai University, Tianjin 300350, P. R. China
| | - Ping Duan
- Center of Single-Molecule Sciences, Institute of Modern Optics, Frontiers Science Center for New Organic Matter, Tianjin Key Laboratory of Microscale Optical Information Science and Technology, College of Electronic Information and Optical Engineering, Nankai University, Tianjin 300350, P. R. China
| | - Chuancheng Jia
- Center of Single-Molecule Sciences, Institute of Modern Optics, Frontiers Science Center for New Organic Matter, Tianjin Key Laboratory of Microscale Optical Information Science and Technology, College of Electronic Information and Optical Engineering, Nankai University, Tianjin 300350, P. R. China
| | - Xuefeng Guo
- Center of Single-Molecule Sciences, Institute of Modern Optics, Frontiers Science Center for New Organic Matter, Tianjin Key Laboratory of Microscale Optical Information Science and Technology, College of Electronic Information and Optical Engineering, Nankai University, Tianjin 300350, P. R. China
- Beijing National Laboratory for Molecular Sciences, National Biomedical Imaging Center, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P. R. China
| |
Collapse
|
3
|
Ding Y, Han X, Yang Q, Jin Y, Bai G, Zhang J, Li W, Hu B. Controllable Phase Separation Engineering of Iron-Cobalt Alloy Heterojunction for Efficient Water Oxidation. J Phys Chem Lett 2024; 15:5985-5993. [PMID: 38814182 DOI: 10.1021/acs.jpclett.4c01147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2024]
Abstract
The tailor-made transition metal alloy-based heterojunctions hold a promising prospect for the electrocatalytic oxygen evolution reaction (OER). Herein, a series of iron-cobalt bimetallic alloy heterojunctions are purposely designed and constructed via a newly developed controllable phase separation engineering strategy. The results show that the phase separation process and alloy component distribution rely on the metal molar ratio (Fe/Co), indicative of the metal content dependent behavior. Theoretical calculations demonstrate that the electronic structure and charge distribution of iron-cobalt bimetallic alloy can be modulated and optimized, thus leading to the formation of an electron-rich interface layer, which likely tunes the d-band center and reduces the adsorption energy barrier toward electrocatalytic intermediates. As a result, the Fe0.25Co0.75/Co heterojunction exhibits superior OER activity with a low overpotential of 185 mV at 10 mA cm-2. Moreover, it can reach industrial-level current densities and excellent durability in high-temperature and high-concentration electrolyte (30 wt % KOH), exhibiting enormous potential for industrial applications.
Collapse
Affiliation(s)
- Yanhong Ding
- College of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, China
| | - Xiaotong Han
- College of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, China
| | - Qian Yang
- School of Metallurgy and Materials Engineering, Chongqing University of Science and Technology, Chongqing 401331, China
| | - Yan Jin
- College of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, China
- State Key Laboratory of Advanced Chemical Power Sources, Chongqing 401331, China
| | - Gang Bai
- College of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, China
| | - Jianping Zhang
- College of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, China
| | - Weihua Li
- College of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, China
| | - Baoshan Hu
- College of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, China
- State Key Laboratory of Advanced Chemical Power Sources, Chongqing 401331, China
| |
Collapse
|
4
|
Chen H, Li Y, Li X, Gao X, Chen J, Han B, Gao Q, Hu R, Zhou C, Xia K, Zhu M. Boric acid templating synthesis of highly-dense yet ultramicroporous carbons for compact capacitive energy storage. J Colloid Interface Sci 2024; 662:986-994. [PMID: 38387367 DOI: 10.1016/j.jcis.2024.02.041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 01/30/2024] [Accepted: 02/04/2024] [Indexed: 02/24/2024]
Abstract
Carbon-based supercapacitors have shown great promise for miniaturized electronics and electric vehicles, but are usually limited by their low volumetric performance, which is largely due to the inefficient utilization of carbon pores in charge storage. Herein, we develop a reliable and scalable boric acid templating technique to prepare boron and oxygen co-modified highly-dense yet ultramicroporous carbons (BUMCs). The carbons are featured with high density (up to 1.62 g cm-3), large specific surface area (up to 1050 m2 g-1), narrow pore distribution (0.4-0.6 nm) and exquisite pore surface functionalities (mainly -BC2O, -BCO2, and -COH groups). Consequently, the carbons show exceptionally compact capacitive energy storage. The optimal BUMC-0.5 delivers an outstanding volumetric capacitance of 431 F cm-3 and a high-rate capability in 1 M H2SO4. In particular, an ever-reported high volumetric energy density of 32.6 Wh L-1 can be harvested in an aqueous symmetric supercapacitor. Our results demonstrate that the -BC2O and -BCO2 groups on the ultramicropore walls can facilitate the internal SO42- ion transport, thus leading to an unprecedented high utilization efficiency of ultramicropores for charge storage. This work provides a new paradigm for construction and utilization of dense and ultramicroporous carbons for compact energy storage.
Collapse
Affiliation(s)
- Haoran Chen
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430078, China
| | - Yudie Li
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430078, China
| | - Xin Li
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430078, China
| | - Xue Gao
- School of Materials Science and Engineering, Guangdong Provincial Key Laboratory of Advanced Energy Storage Materials, South China University of Technology, Guangzhou 510640, China
| | - Jingyu Chen
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430078, China
| | - Bo Han
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430078, China
| | - Qiang Gao
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430078, China
| | - Renzong Hu
- School of Materials Science and Engineering, Guangdong Provincial Key Laboratory of Advanced Energy Storage Materials, South China University of Technology, Guangzhou 510640, China
| | - Chenggang Zhou
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430078, China.
| | - Kaisheng Xia
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430078, China.
| | - Min Zhu
- School of Materials Science and Engineering, Guangdong Provincial Key Laboratory of Advanced Energy Storage Materials, South China University of Technology, Guangzhou 510640, China.
| |
Collapse
|
5
|
Liang J, Qin S, Luo S, Pan D, Xu P, Li J. Honeycomb porous heterostructures of NiMo layered double hydroxide nanosheets anchored on CoNi metal-organic framework nano-blocks as electrodes for asymmetric supercapacitors. J Colloid Interface Sci 2024; 653:504-516. [PMID: 37729758 DOI: 10.1016/j.jcis.2023.09.086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 09/07/2023] [Accepted: 09/13/2023] [Indexed: 09/22/2023]
Abstract
Supercapacitors (SCs) have the advantages of high power density, long cycle life, and fast charging/discharging rates, but relatively low energy density limits their practical application prospects. The key to improving the energy density of supercapacitors is to develop electrode materials with excellent performance. Metal-organic frameworks (MOFs) used for electrochemical energy storage have emerged as a research hotspot due to their adjustable microstructure, porosity, and high specific surface area. To address the demands of high-performance supercapacitors, composite nanomaterials can be prepared by rationally designing MOFs. Herein, CoNi-MOF nano-blocks are grown on the carbon cloth, and ultrathin NiMo layered double hydroxides (NiMo-LDH) nanosheets are further anchored on its surfaces to form a honeycomb porous heterostructure (NiMo-LDH@CoNi-MOF). The porous heterostructures increase the electrochemically active specific surface area and shorten the charge transfer distance, possessing ultra-high capacitance of 15.6 F/cm2 at 1 mA/cm2. Furthermore, utilizing annealed activated carbon cloth (AAC) as the negative electrode, the assembled NiMo-LDH@CoNi-MOF-2//AAC asymmetric supercapacitor possesses an energy density of 1.10 mWh/cm2 at a power density of 4 mW/cm2, and a capacitance retention of 97.8 % after 10,000 cycles. This material exhibits distinctive nanostructures and favorable electrochemical characteristics, providing a unique idea for preparing supercapacitors with high energy density and power density.
Collapse
Affiliation(s)
- Jianying Liang
- State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, MOE Key Laboratory of New Processing Technology for Nonferrous Metals and Materials, and School of Resources, Environment and Materials, Guangxi University, Nanning 530004, PR China
| | - Shumin Qin
- State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, MOE Key Laboratory of New Processing Technology for Nonferrous Metals and Materials, and School of Resources, Environment and Materials, Guangxi University, Nanning 530004, PR China
| | - Shuang Luo
- Department of Materials Science & Engineering, City University of Hong Kong, Kowloon Tong 999077, Hong Kong, China
| | - Die Pan
- State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, MOE Key Laboratory of New Processing Technology for Nonferrous Metals and Materials, and School of Resources, Environment and Materials, Guangxi University, Nanning 530004, PR China
| | - Pengfei Xu
- State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, MOE Key Laboratory of New Processing Technology for Nonferrous Metals and Materials, and School of Resources, Environment and Materials, Guangxi University, Nanning 530004, PR China
| | - Jien Li
- State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, MOE Key Laboratory of New Processing Technology for Nonferrous Metals and Materials, and School of Resources, Environment and Materials, Guangxi University, Nanning 530004, PR China.
| |
Collapse
|
6
|
Lee G, Jun SE, Kim Y, Park IH, Jang HW, Park SH, Kwon KC. Multicomponent Metal Oxide- and Metal Hydroxide-Based Electrocatalysts for Alkaline Water Splitting. MATERIALS (BASEL, SWITZERLAND) 2023; 16:3280. [PMID: 37110115 PMCID: PMC10145119 DOI: 10.3390/ma16083280] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 04/10/2023] [Accepted: 04/14/2023] [Indexed: 06/19/2023]
Abstract
Developing cost-effective, highly catalytic active, and stable electrocatalysts in alkaline electrolytes is important for the development of highly efficient anion-exchange membrane water electrolysis (AEMWE). To this end, metal oxides/hydroxides have attracted wide research interest for efficient electrocatalysts in water splitting owing to their abundance and tunable electronic properties. It is very challenging to achieve an efficient overall catalytic performance based on single metal oxide/hydroxide-based electrocatalysts due to low charge mobilities and limited stability. This review is mainly focused on the advanced strategies to synthesize the multicomponent metal oxide/hydroxide-based materials that include nanostructure engineering, heterointerface engineering, single-atom catalysts, and chemical modification. The state of the art of metal oxide/hydroxide-based heterostructures with various architectures is extensively discussed. Finally, this review provides the fundamental challenges and perspectives regarding the potential future direction of multicomponent metal oxide/hydroxide-based electrocatalysts.
Collapse
Affiliation(s)
- Goeun Lee
- Smart Device Team, Interdisciplinary Materials Measurement Institute, Korea Research Institute of Standards and Science (KRISS), Daejeon 34133, Republic of Korea
- Graduate School of Analytical Science and Technology (GRAST), Chungnam National University, Daejeon 34134, Republic of Korea
| | - Sang Eon Jun
- Smart Device Team, Interdisciplinary Materials Measurement Institute, Korea Research Institute of Standards and Science (KRISS), Daejeon 34133, Republic of Korea
- Department of Materials Science and Engineering, Research Institute of Advanced Materials, Seoul National University, Seoul 08826, Republic of Korea
| | - Yujin Kim
- Smart Device Team, Interdisciplinary Materials Measurement Institute, Korea Research Institute of Standards and Science (KRISS), Daejeon 34133, Republic of Korea
| | - In-Hyeok Park
- Graduate School of Analytical Science and Technology (GRAST), Chungnam National University, Daejeon 34134, Republic of Korea
| | - Ho Won Jang
- Department of Materials Science and Engineering, Research Institute of Advanced Materials, Seoul National University, Seoul 08826, Republic of Korea
| | - Sun Hwa Park
- Smart Device Team, Interdisciplinary Materials Measurement Institute, Korea Research Institute of Standards and Science (KRISS), Daejeon 34133, Republic of Korea
| | - Ki Chang Kwon
- Smart Device Team, Interdisciplinary Materials Measurement Institute, Korea Research Institute of Standards and Science (KRISS), Daejeon 34133, Republic of Korea
| |
Collapse
|