1
|
Lee H, Ding G, Wang L, Sun L. A Chalcogenide-Derived NiFe 2O 4 as Highly Efficient and Stable Anode for Anion Exchange Membrane Water Electrolysis. Chemistry 2025; 31:e202403198. [PMID: 39573942 DOI: 10.1002/chem.202403198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 11/01/2024] [Indexed: 11/30/2024]
Abstract
Developing low-cost, highly active, and durable oxygen evolution reaction (OER) electrodes is one of the critical scientific issues for anion exchange membrane water electrolyzer (AEM-WE). Herein, we report a vacancy-rich and alkali-stable NiFe2O4-type electrode (named as NiFeOx-350-Ov), derived from the chemical-vapor deposited precursor NiFeSexSy-350, as an efficient and robust anode material. The obtained electrode affords current densities of 100 and 500 mA cm-2 at overpotentials of 245 and 270 mV, respectively, and displays excellent long-term durability sustaining 1.0 A cm-2 at least for 1000 h. When coupled with Ni4Mo/MoO2/NF as a hydrogen evolution reaction (HER) catalyst, the resulting platinum-group metal (PGM)-free single-cell AEM-WE exhibits a cell voltage of 1.71 V at the current density of 1000 mA cm-2 at 80 °C and long-term durability during a current-cycling test between 0.5 A cm-2 and 1.0 A cm-2 over 150 h at 60 °C. This work highlights a unique reconstruction strategy for preparing highly active and durable OER catalysts used in PGM-free AEM-WE.
Collapse
Affiliation(s)
- Husileng Lee
- Center of Artificial Photosynthesis for Solar Fuels and Department of Chemistry, School of Science and Research Center for Industries of the Future, Westlake University, Hangzhou, 310024, China
- Institute of Natural Sciences, Westlake Institute for Advanced Study, Hangzhou, 310024, China
| | - Guoheng Ding
- Center of Artificial Photosynthesis for Solar Fuels and Department of Chemistry, School of Science and Research Center for Industries of the Future, Westlake University, Hangzhou, 310024, China
- Institute of Natural Sciences, Westlake Institute for Advanced Study, Hangzhou, 310024, China
| | - Linqin Wang
- Center of Artificial Photosynthesis for Solar Fuels and Department of Chemistry, School of Science and Research Center for Industries of the Future, Westlake University, Hangzhou, 310024, China
- Institute of Natural Sciences, Westlake Institute for Advanced Study, Hangzhou, 310024, China
| | - Licheng Sun
- Center of Artificial Photosynthesis for Solar Fuels and Department of Chemistry, School of Science and Research Center for Industries of the Future, Westlake University, Hangzhou, 310024, China
- Institute of Natural Sciences, Westlake Institute for Advanced Study, Hangzhou, 310024, China
- Division of Solar Energy Conversion and Catalysis at Westlake University, Zhejiang Baima Lake Laboratory, Hangzhou, 310000, Zhejiang Province, China
| |
Collapse
|
2
|
Wang W, Chen Y, Qiao S, Zhao J, Zhao W, Wei Y, Tang Y, Liu C. Constructing Dual-Phase Co 9S 8-CoMo 2S 4 Heterostructure as an Efficient Trifunctional Electrocatalyst for Oxygen Reduction, Oxygen Evolution and Hydrogen Evolution Reactions. CHEMSUSCHEM 2025; 18:e202400678. [PMID: 39177178 DOI: 10.1002/cssc.202400678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 08/19/2024] [Accepted: 08/23/2024] [Indexed: 08/24/2024]
Abstract
Designing robust, efficient and inexpensive trifunctional electrocatalysts for the oxygen reduction reaction (ORR), oxygen evolution reaction (OER) and hydrogen evolution reaction (HER) is significant for rechargeable zinc-air batteries and water-splitting devices. To this end, constructing heterogenous structures based on transition metals stands out as an effective strategy. Herein, a dual-phase Co9S8-CoMo2S4 heterostructure grown on porous N, S-codoped carbon substrate (Co9S8-CoMo2S4/NSC) via a one-pot synthesis is investigated as the trifunctional ORR/OER/HER electrocatalyst. The optimized Co9S8-CoMo2S4/NSC2 exhibits that ORR has a half-wave potential of 0.86 V (vs. RHE) and the overpotentials at 10 mA cm-2 for OER and HER are 280 and 89 mV, respectively, superior to most transition-metal based trifunctional electrocatalysts reported to date. The Co9S8-CoMo2S4/NSC2-based zinc-air battery (ZAB) has a high open-circuit voltage (1.41 V), large capacity (804 mAh g-1) and highly stable cyclability (97 h at 10 mA cm-2). In addition, the prepared Co9S8-CoMo2S4/NSC2-based ZAB in series can self-drive the corresponding water-splitting device. The dual-phase Co9S8-CoMo2S4 heterostructure provides not only multi-type active sites to drive the ORR, OER and HER, but also high-speed charge transfer channels between two phases to improve the synergistic effect and reaction kinetics.
Collapse
Affiliation(s)
- Wenjie Wang
- Research Institute of HNU in Chongqing, College of Materials Science and Engineering, Hunan University, Changsha, 410082, P. R. China
| | - Yuqing Chen
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha, 410082, P. R. China
- School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, 411201, P. R. China
| | - Shanshan Qiao
- Research Institute of HNU in Chongqing, College of Materials Science and Engineering, Hunan University, Changsha, 410082, P. R. China
| | - Jing Zhao
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha, 410082, P. R. China
| | - Wenlong Zhao
- Research Institute of HNU in Chongqing, College of Materials Science and Engineering, Hunan University, Changsha, 410082, P. R. China
| | - Yike Wei
- Research Institute of HNU in Chongqing, College of Materials Science and Engineering, Hunan University, Changsha, 410082, P. R. China
| | - Yanhong Tang
- Research Institute of HNU in Chongqing, College of Materials Science and Engineering, Hunan University, Changsha, 410082, P. R. China
| | - Chengbin Liu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha, 410082, P. R. China
| |
Collapse
|
3
|
Kang WJ, Li Z, Feng Y, Shi ZZ, Hu XZ, Dong CK, Yang J, Liu H, Yin PF, Zhang R, Du XW. Coupled Stacking Faults in Silver Nanorods for CO 2 Electroreduction. NANO LETTERS 2025; 25:63-70. [PMID: 39718461 DOI: 10.1021/acs.nanolett.4c04204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2024]
Abstract
The interaction of defects has been proven effective in regulating the mechanical properties of structural materials, while its influence on the physicochemical performance of functional materials has been rarely reported. Herein, we synthesized Ag nanorods with dense stacking faults and investigated how the defect interaction affects the catalytic properties. We found that the stacking faults can couple with each other to form a unique structure of opposite atoms with extortionately high tensile strain. Experimental and theoretical analyses reveal that the opposite-atom structure facilitates the adsorption and activation of CO2 molecules, thus improving the catalytic performance of the carbon dioxide electroreduction reaction (CO2RR). As a result, Ag nanorods achieve high CO partial current density (-11.87 mA cm-2 at -0.8 V vs RHE) and high Faraday efficiency (>95%), superior to most Ag-based catalysts. Our work indicates that the defect interaction is an effective means to boost the performance of functional materials.
Collapse
Affiliation(s)
- Wen-Jing Kang
- Institute of New Energy Materials, School of Materials Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Zhe Li
- Institute of Molecular Plus, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Yi Feng
- Institute of New Energy Materials, School of Materials Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Zi-Zheng Shi
- Institute of New Energy Materials, School of Materials Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Xin-Zhuo Hu
- Institute of New Energy Materials, School of Materials Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Cun-Ku Dong
- Institute of New Energy Materials, School of Materials Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Jing Yang
- Institute of New Energy Materials, School of Materials Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Hui Liu
- Institute of New Energy Materials, School of Materials Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Peng-Fei Yin
- Institute of New Energy Materials, School of Materials Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Rui Zhang
- Institute of New Energy Materials, School of Materials Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Xi-Wen Du
- Institute of New Energy Materials, School of Materials Science and Engineering, Tianjin University, Tianjin 300072, China
| |
Collapse
|
4
|
Yan M, Zhang J, Wang C, Gao L, Liu W, Zhang J, Liu C, Lu Z, Yang L, Jiang C, Zhao Y. Synergistic engineering of heterostructure and oxygen vacancy in cobalt hydroxide/aluminum oxyhydroxide as bifunctional electrocatalysts for urea-assisted hydrogen production. J Colloid Interface Sci 2025; 677:1069-1079. [PMID: 39137609 DOI: 10.1016/j.jcis.2024.07.239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 07/27/2024] [Accepted: 07/30/2024] [Indexed: 08/15/2024]
Abstract
Designing inexpensive, high-efficiency and durable bifunctional catalysts for urea oxidation reaction (UOR) and hydrogen evolution reaction (HER) is an encouraging tactic to produce hydrogen with reduced energy expenditure. Herein, oxygen vacancy-rich cobalt hydroxide/aluminum oxyhydroxide heterostructure on nickel foam (denoted as Co(OH)2/AlOOH/NF-100) has been fabricated using one step hydrothermal process. Theoretical calculation and experimental results indicate the electrons transfer from Co(OH)2 to highly active AlOOH results in the interfacial charge redistribution and optimization of electronic structure. Abundant oxygen vacancies in the heterostructure could improve the conductivity and simultaneously serve as the active sites for catalytic reaction. Consequently, the optimal Co(OH)2/AlOOH/NF-100 demonstrates excellent electrocatalytic performance for HER (62.9 mV@10 mA cm-2) and UOR (1.36 V@10 mA cm-2) due to the synergy between heterointerface and oxygen vacancies. Additionally, the in situ electrochemical impedance spectrum (EIS) for UOR suggests that the heterostructured catalyst exhibits rapid reaction kinetics, mass transfer and current response. Importantly, the urea-assisted electrolysis composed of the Co(OH)2/AlOOH/NF-100 manifests a low cell voltage (1.48 V @ 10 mA cm-2) in 1 M KOH containing 0.5 M urea. This work presents a promising avenue to the development of HER/UOR bifunctional electrocatalysts.
Collapse
Affiliation(s)
- Minglei Yan
- College of Water Conservancy and Hydropower Engineering, Sichuan Agricultural University, Ya'an 625014, China.
| | - Junjie Zhang
- College of Water Conservancy and Hydropower Engineering, Sichuan Agricultural University, Ya'an 625014, China
| | - Cong Wang
- College of Water Conservancy and Hydropower Engineering, Sichuan Agricultural University, Ya'an 625014, China
| | - Lang Gao
- College of Water Conservancy and Hydropower Engineering, Sichuan Agricultural University, Ya'an 625014, China
| | - Wengang Liu
- College of Water Conservancy and Hydropower Engineering, Sichuan Agricultural University, Ya'an 625014, China
| | - Jiahao Zhang
- College of Water Conservancy and Hydropower Engineering, Sichuan Agricultural University, Ya'an 625014, China
| | - Chunquan Liu
- School of Materials Science and Engineering, Hunan Institute of Technology, Hengyang 421002, China
| | - Zhiwei Lu
- College of Science, Sichuan Agricultural University, Ya'an 625014, China
| | - Lijun Yang
- Key Laboratory of Mesoscopic Chemistry of MOE and Jiangsu Provincial Lab for Nanotechnology, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Chenglu Jiang
- College of Water Conservancy and Hydropower Engineering, Sichuan Agricultural University, Ya'an 625014, China
| | - Yang Zhao
- College of Water Conservancy and Hydropower Engineering, Sichuan Agricultural University, Ya'an 625014, China.
| |
Collapse
|
5
|
Han Z, Shi Y, Zhang B, Kong L. Dynamic evolution of metal-nitrogen-codoped carbon catalysts in electrocatalytic reactions. Chem Commun (Camb) 2024. [PMID: 39691082 DOI: 10.1039/d4cc04664a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2024]
Abstract
Atomic metal-nitrogen-codoped carbon (M-N-C) catalysts are highly efficient for various electrocatalytic reactions because of their high atomic utilization efficiency. However, the high surface energy of M-N-C catalysts often results in stability issues in electrochemical reactions. Therefore, understanding the stability and dynamic evolution of M-N-C catalysts is crucial for elucidating the active centers and the composition/structure-activity relationship. This review summarizes the factors affecting the durability of atomic catalysts in electrochemical reactions and discusses possible changes in catalysts during these electrochemical processes. Finally, advanced characterization techniques are described, with a focus on tracking the dynamic evolution of M-N-C catalysts during electrocatalysis. This review offers insights into the rational optimization of M-N-C electrocatalysts and provides a framework for linking their composition and structure with their catalytic activity in future research.
Collapse
Affiliation(s)
- Zixuan Han
- Institute of Molecular Plus, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, China.
| | - Yanmei Shi
- Institute of Molecular Plus, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, China.
| | - Bin Zhang
- Institute of Molecular Plus, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, China.
| | - Lingjun Kong
- Institute of Molecular Plus, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, China.
| |
Collapse
|
6
|
Zhou H, Li P, Zhong T, Teng Y, Li S, Luo X, Wang X, Yang M, Deng G. Defect Passivation of Mn 2+-Doped CsPbX 3(X=Cl,Br) Perovskite Nanocrystals as Electrocatalyst for Overall Water Splitting. Chem Asian J 2024; 19:e202400798. [PMID: 39344932 DOI: 10.1002/asia.202400798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 09/23/2024] [Accepted: 09/30/2024] [Indexed: 10/01/2024]
Abstract
Mn doping has been used to improve the physical chemistry of lead halide perovskite nanocrystals such as CsPbX3, where X is a halogen ion. In this paper, a two-phase method for Mn-doped CsPbX3 nanosheets (where X=Br, Cl), namely water-hexane system, is reported. Compared to conventional catalyst arrays, the band gap of CsPbBr3 nanocrystalline is easily tuned, the carrier diffusion distance is remote, the band edge position of the band structure is favorable for a wide range of electrocatalytic redox reactions, and the catalytic active site is maximally exposed, providing a larger electrolyte contact area. The porous hierarchical structure also accelerates the release of hydrogen bubbles. The results showed that the optimized Mn : CsPbBr3 catalyst exhibited excellent electrolytic performance of aquatic hydrogen in alkaline electrolyte (1 mol/L KOH). The overpotentials of the oxygen evolution reaction (OER) at the current densities of 10 and 100 mA cm-2 are only 114.4 and 505.4 mV, respectively, with a Tafel slope of 43 mV dec-1. At a current density of 10 mA cm-2, the excess potential required for the hydrogen evolution reaction (HER) is 158.6 mV and it exhibits excellent electrochemical stability. The Mn : CsPbBr3 nanocrystalline consists of two electrodes for hydrolysis of water, requiring only a voltage of 1.45 V. This provides implications for the optimization of electrocatalysts in alkaline electrolytes with the aim of developing next generation 2D electrocatalysts for overall water splitting.
Collapse
Affiliation(s)
- Haiyun Zhou
- College of Chemistry and Life Science, Sichuan Provincial Key Laboratory for Structural Optimization and Application of Functional Molecules, Chengdu Normal University, Chengdu, 611130, China
| | - Pingping Li
- College of Chemistry and Life Science, Sichuan Provincial Key Laboratory for Structural Optimization and Application of Functional Molecules, Chengdu Normal University, Chengdu, 611130, China
| | - Tingting Zhong
- College of Chemistry and Life Science, Sichuan Provincial Key Laboratory for Structural Optimization and Application of Functional Molecules, Chengdu Normal University, Chengdu, 611130, China
| | - Yunzhen Teng
- College of Chemistry and Life Science, Sichuan Provincial Key Laboratory for Structural Optimization and Application of Functional Molecules, Chengdu Normal University, Chengdu, 611130, China
| | - Siqi Li
- College of Chemistry and Life Science, Sichuan Provincial Key Laboratory for Structural Optimization and Application of Functional Molecules, Chengdu Normal University, Chengdu, 611130, China
| | - Xiaofeng Luo
- College of Chemistry and Life Science, Sichuan Provincial Key Laboratory for Structural Optimization and Application of Functional Molecules, Chengdu Normal University, Chengdu, 611130, China
| | - Xinning Wang
- College of Chemistry and Life Science, Sichuan Provincial Key Laboratory for Structural Optimization and Application of Functional Molecules, Chengdu Normal University, Chengdu, 611130, China
| | - Min Yang
- College of Chemistry and Life Science, Sichuan Provincial Key Laboratory for Structural Optimization and Application of Functional Molecules, Chengdu Normal University, Chengdu, 611130, China
| | - Guowei Deng
- College of Chemistry and Life Science, Sichuan Provincial Key Laboratory for Structural Optimization and Application of Functional Molecules, Chengdu Normal University, Chengdu, 611130, China
| |
Collapse
|
7
|
Cong Y, Zheng Q, Wang Y, Gao J, Sun S, Li X, Lv SW. Doping Sulfur in Layered Double Hydroxides with High Hydrophilicity to Accelerate the Charge Transfer and Reduce the Energy Barrier for Efficient Electrocatalytic Splitting Water. ACS APPLIED MATERIALS & INTERFACES 2024; 16:64816-64824. [PMID: 39535108 DOI: 10.1021/acsami.4c15055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Nowadays, water splitting has been recognized as one of the most attractive ways to produce clean hydrogen energy. Herein, a novel sulfur-doped layered double-hydroxide (namely, S-NiCo-LDH) electrocatalyst with nanocage structure is prepared. After the etching treatment with Ni ions, the spatial structure of the catalysts is opened, and the hydrophilicity is improved, which will enhance the adsorption capacity for H2O to provide convenience for hydrogen evolution reaction (HER). Interestingly, the S doping can boost the capture capability toward OH- to create conditions for the occurrence of oxygen evolution reaction (OER). More importantly, the introduction of S element can improve the density of states located near the Fermi level of NiCo-LDH, thereby accelerating the electron transfer and increase the carrier density. Meanwhile, the existence of S element can remarkably reduce the energy barriers of *O and *H formation, boosting HER and OER in an alkaline solution. As a result, the S-NiCo-LDH electrocatalyst shows excellent performance in overall water splitting, affording low overpotentials of 168 and 235 mV at 10 mA/cm2 for HER and OER, respectively. Furthermore, the S-NiCo-LDH electrocatalyst exhibits good long-term stability in both HER and the OER. In short, the current work can give a meaningful reference for future research.
Collapse
Affiliation(s)
- Yanqing Cong
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Qiuang Zheng
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Yudi Wang
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Jiayi Gao
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Sainan Sun
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Xinyue Li
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Shi-Wen Lv
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310018, China
| |
Collapse
|
8
|
Xie C, Chen W, Wang Y, Yang Y, Wang S. Dynamic evolution processes in electrocatalysis: structure evolution, characterization and regulation. Chem Soc Rev 2024; 53:10852-10877. [PMID: 39382539 DOI: 10.1039/d3cs00756a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2024]
Abstract
Reactions on electrocatalytic interfaces often involve multiple processes, including the diffusion, adsorption, and conversion of reaction species and the interaction between reactants and electrocatalysts. Generally, these processes are constantly changing rather than being in a steady state. Recently, dynamic evolution processes on electrocatalytic interfaces have attracted increasing attention owing to their significant roles in catalytic reaction kinetics. In this review, we aim to provide insights into the dynamic evolution processes in electrocatalysis to emphasize the importance of unsteady-state processes in electrocatalysis. Specifically, the dynamic structure evolution of electrocatalysts, methods for the characterization of the dynamic evolution and the strategies for the regulation of the dynamic evolution for improving electrocatalytic performance are summarized. Finally, the conclusion and outlook on the research on dynamic evolution processes in electrocatalysis are presented. It is hoped that this review will provide a deeper understanding of dynamic evolution in electrocatalysis, and studies of electrocatalytic reaction processes and kinetics on the unsteady-state microscopic spatial and temporal scales will be given more attention.
Collapse
Affiliation(s)
- Chao Xie
- College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, China.
- Institute of Interdisciplinary Studies, Hunan Normal University, Changsha 410081, China
| | - Wei Chen
- State Key Laboratory of Chem/Bio-Sensing and Chemometrics, Provincial Hunan Key Laboratory for Graphene Materials and Devices, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China.
| | - Yanyong Wang
- State Key Laboratory of Chem/Bio-Sensing and Chemometrics, Provincial Hunan Key Laboratory for Graphene Materials and Devices, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China.
| | - Yahui Yang
- College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, China.
| | - Shuangyin Wang
- State Key Laboratory of Chem/Bio-Sensing and Chemometrics, Provincial Hunan Key Laboratory for Graphene Materials and Devices, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China.
| |
Collapse
|
9
|
Han J, Sun J, Chen S, Zhang S, Qi L, Husile A, Guan J. Structure-Activity Relationships in Oxygen Electrocatalysis. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2408139. [PMID: 39344559 DOI: 10.1002/adma.202408139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 09/03/2024] [Indexed: 10/01/2024]
Abstract
Oxygen electrocatalysis, as the pivotal circle of many green energy technologies, sets off a worldwide research boom in full swing, while its large kinetic obstacles require remarkable catalysts to break through. Here, based on summarizing reaction mechanisms and in situ characterizations, the structure-activity relationships of oxygen electrocatalysts are emphatically overviewed, including the influence of geometric morphology and chemical structures on the electrocatalytic performances. Subsequently, experimental/theoretical research is combined with device applications to comprehensively summarize the cutting-edge oxygen electrocatalysts according to various material categories. Finally, future challenges are forecasted from the perspective of catalyst development and device applications, favoring researchers to promote the industrialization of oxygen electrocatalysis at an early date.
Collapse
Affiliation(s)
- Jingyi Han
- Institute of Physical Chemistry, College of Chemistry, Jilin University, 2519 Jiefang Road, Changchun, 130021, P. R. China
| | - Jingru Sun
- Institute of Physical Chemistry, College of Chemistry, Jilin University, 2519 Jiefang Road, Changchun, 130021, P. R. China
| | - Siyu Chen
- Institute of Physical Chemistry, College of Chemistry, Jilin University, 2519 Jiefang Road, Changchun, 130021, P. R. China
| | - Siying Zhang
- Institute of Physical Chemistry, College of Chemistry, Jilin University, 2519 Jiefang Road, Changchun, 130021, P. R. China
| | - Luoluo Qi
- Institute of Physical Chemistry, College of Chemistry, Jilin University, 2519 Jiefang Road, Changchun, 130021, P. R. China
| | - Anaer Husile
- Institute of Physical Chemistry, College of Chemistry, Jilin University, 2519 Jiefang Road, Changchun, 130021, P. R. China
| | - Jingqi Guan
- Institute of Physical Chemistry, College of Chemistry, Jilin University, 2519 Jiefang Road, Changchun, 130021, P. R. China
| |
Collapse
|
10
|
Wu H, Li J, Ji Q, Ariga K. Nanoarchitectonics for structural tailoring of yolk-shell architectures for electrochemical applications. SCIENCE AND TECHNOLOGY OF ADVANCED MATERIALS 2024; 25:2420664. [PMID: 39539602 PMCID: PMC11559037 DOI: 10.1080/14686996.2024.2420664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 10/09/2024] [Accepted: 10/16/2024] [Indexed: 11/16/2024]
Abstract
Developing electrochemical energy storage and conversion systems, such as capacitors, batteries, and fuel cells is crucial to address rapidly growing global energy demands and environmental concerns for a sustainable society. Significant efforts have been devoted to the structural design and engineering of various electrode materials to improve economic applicability and electrochemical performance. The yolk-shell structures represent a special kind of core-shell morphologies, which show great application potential in energy storage, controlled delivery, adsorption, nanoreactors, sensing, and catalysis. Their controllable void spaces may facilitate the exposure of more active sites for redox reactions and enhance selective adsorption. Based on different nanoarchitectonic designs and fabrication techniques, the yolk-shell structures with controllable structural nanofeatures and the homo- or hetero-compositions provide multiple synergistic effects to promote reactions on the electrode/electrolyte interfaces. This review is focused on the key structural features of yolk-shell architectures, highlighting the recent advancements in their fabrication with adjustable space and mono- or multi-metallic composites. The effects of tailorable structure and functionality of yolk-shell nanostructures on various electrochemical processes are also summarized.
Collapse
Affiliation(s)
- Huan Wu
- Herbert Gleiter Institute for Nanoscience, School of Materials Science and Engineering Nanjing University of Science and Technology, Nanjing, China
| | - Jiahao Li
- Herbert Gleiter Institute for Nanoscience, School of Materials Science and Engineering Nanjing University of Science and Technology, Nanjing, China
| | - Qingmin Ji
- Herbert Gleiter Institute for Nanoscience, School of Materials Science and Engineering Nanjing University of Science and Technology, Nanjing, China
| | - Katsuhiko Ariga
- Research Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), Tsukuba, Ibaraki, Japan
- Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba, Japan
| |
Collapse
|
11
|
Zhang Y, Liu J, Xu Y, Xie C, Wang S, Yao X. Design and regulation of defective electrocatalysts. Chem Soc Rev 2024; 53:10620-10659. [PMID: 39268976 DOI: 10.1039/d4cs00217b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/15/2024]
Abstract
Electrocatalysts are the key components of electrochemical energy storage and conversion devices. High performance electrocatalysts can effectively reduce the energy barrier of the chemical reactions, thereby improving the conversion efficiency of energy devices. The electrocatalytic reaction mainly experiences adsorption and desorption of molecules (reactants, intermediates and products) on a catalyst surface, accompanied by charge transfer processes. Therefore, surface control of electrocatalysts plays a pivotal role in catalyst design and optimization. In recent years, many studies have revealed that the rational design and regulation of a defect structure can result in rearrangement of the atomic structure on the catalyst surface, thereby efficaciously promoting the electrocatalytic performance. However, the relationship between defects and catalytic properties still remains to be understood. In this review, the types of defects, synthesis methods and characterization techniques are comprehensively summarized, and then the intrinsic relationship between defects and electrocatalytic performance is discussed. Moreover, the application and development of defects are reviewed in detail. Finally, the challenges existing in defective electrocatalysts are summarized and prospected, and the future research direction is also suggested. We hope that this review will provide some principal guidance and reference for researchers engaged in defect and catalysis research, better help researchers understand the research status and development trends in the field of defects and catalysis, and expand the application of high-performance defective electrocatalysts to the field of electrocatalytic engineering.
Collapse
Affiliation(s)
- Yiqiong Zhang
- College of Materials Science and Engineering, Changsha University of Science & Technology, Changsha, Hunan, 410114, P. R. China.
| | - Jingjing Liu
- College of Materials Science and Engineering, Changsha University of Science & Technology, Changsha, Hunan, 410114, P. R. China.
| | - Yangfan Xu
- School of Advanced Energy, Sun Yat-Sen University (Shenzhen), Shenzhen, Guangdong 518107, P. R. China.
| | - Chao Xie
- College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, P. R. China
| | - Shuangyin Wang
- State Key Laboratory of Chem/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan, 410082, P. R. China
| | - Xiangdong Yao
- School of Advanced Energy, Sun Yat-Sen University (Shenzhen), Shenzhen, Guangdong 518107, P. R. China.
| |
Collapse
|
12
|
Ning M, Wang S, Wan J, Xi Z, Chen Q, Sun Y, Li H, Ma T, Jin H. Dynamic Active Sites in Electrocatalysis. Angew Chem Int Ed Engl 2024:e202415794. [PMID: 39291302 DOI: 10.1002/anie.202415794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 09/16/2024] [Accepted: 09/17/2024] [Indexed: 09/19/2024]
Abstract
In-depth understanding of the real-time behaviors of active sites during electrocatalysis is essential for the advancement of sustainable energy conversion. Recently, the concept of dynamic active sites has been recognized as a potent approach for creating self-adaptive electrocatalysts that can address a variety of electrocatalytic reactions, outperforming traditional electrocatalysts with static active sites. Nonetheless, the comprehension of the underlying principles that guide the engineering of dynamic active sites is presently insufficient. In this review, we systematically analyze the fundamentals of dynamic active sites for electrocatalysis and consider important future directions for this emerging field. We reveal that dynamic behaviors and reversibility are two crucial factors that influence electrocatalytic performance. By reviewing recent advances in dynamic active sites, we conclude that implementing dynamic electrocatalysis through variable reaction environments, correlating the model of dynamic evolution with catalytic properties, and developing localized and ultrafast in situ/operando techniques are keys to designing high-performance dynamic electrocatalysts. This review paves the way to the development of the next-generation electrocatalyst and the universal theory for both dynamic and static active sites.
Collapse
Affiliation(s)
- Minghui Ning
- Institute of Technology for Carbon Neutrality, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, Guangdong, China
- Centre for Atomaterials and Nanomanufacturing (CAN), School of Science, RMIT University, Melbourne, VIC-3000, Australia
| | - Sangni Wang
- Institute of Technology for Carbon Neutrality, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, Guangdong, China
| | - Jun Wan
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Hubei Key Laboratory of Biomass Fibers and Eco-Dyeing & Finishing, Wuhan Textile University, Wuhan, 430200, Hubei, China
| | - Zichao Xi
- Institute of Technology for Carbon Neutrality, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, Guangdong, China
| | - Qiao Chen
- Institute of Technology for Carbon Neutrality, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, Guangdong, China
| | - Yuanmiao Sun
- Institute of Technology for Carbon Neutrality, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, Guangdong, China
| | - Hui Li
- Centre for Atomaterials and Nanomanufacturing (CAN), School of Science, RMIT University, Melbourne, VIC-3000, Australia
- ARC Industrial Transformation Research Hub for Intelligent Energy Efficiency in Future Protected Cropping (E2Crop), Melbourne, VIC-3000, Australia
| | - Tianyi Ma
- Centre for Atomaterials and Nanomanufacturing (CAN), School of Science, RMIT University, Melbourne, VIC-3000, Australia
- ARC Industrial Transformation Research Hub for Intelligent Energy Efficiency in Future Protected Cropping (E2Crop), Melbourne, VIC-3000, Australia
| | - Huanyu Jin
- Institute of Technology for Carbon Neutrality, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, Guangdong, China
| |
Collapse
|
13
|
Tao Z, Lv N, Zhao H, Luo X, Li Z, Yu J, Chen L, Liu X, Mu S. Dual active site-mediated Ir single-atom-doped RuO 2 catalysts for highly efficient and stable water splitting. Chem Sci 2024:d4sc04909h. [PMID: 39328191 PMCID: PMC11423429 DOI: 10.1039/d4sc04909h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 09/12/2024] [Indexed: 09/28/2024] Open
Abstract
The electronic structure modulation through heterogeneous single-atom doping is an effective strategy to improve electrocatalysis performance of catalysts. Here, Ir single-atom doped RuO2 (IrSA/RuO2) is constructed by substituting Ru sites with mono-disperse Ir atoms in RuO2 crystals. The IrSA/RuO2-850 catalyst shows excellent activity for the hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) in alkaline media, with overpotentials of only 37 and 234 mV respectively, at a current density of 10 mA cm-2, lower than that of commercial Pt/C (39 mV-HER) and RuO2 (295 mV-OER). Notably, no significant degradation occurs during the 1000 h HER stability test at 500 mA cm-2. Furthermore, IrSA/RuO2-850 also demonstrates superior catalytic activity and stability in acidic media. Theoretical calculations show that the interaction between Ir and RuO2 modulates the electronic structure of both Ru and Ir sites, resulting in the lowest reaction energy barriers of Ru and Ir sites for the HER and OER, respectively, which thermodynamically explains the enhancement of the catalytic activity. Besides, the introduction of Ir atoms also enhances the demetallation energy of Ru atoms and strengthens the structural stability of the crystal, leading to the improved stability of the catalyst. This work provides an effective strategy for construction of high-performing catalysts by precisely controlling the electronic structure and active sites of polymetal atoms.
Collapse
Affiliation(s)
- Zhenhua Tao
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology Wuhan 430070 China
| | - Ning Lv
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology Wuhan 430070 China
| | - Hongyu Zhao
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology Wuhan 430070 China
| | - Xu Luo
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology Wuhan 430070 China
| | - Zilan Li
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology Wuhan 430070 China
| | - Jun Yu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology Wuhan 430070 China
| | - Lei Chen
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology Wuhan 430070 China
| | - Xupo Liu
- School of Materials Science and Engineering, Henan Normal University Xinxiang Henan 453007 P. R. China
| | - Shichun Mu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology Wuhan 430070 China
| |
Collapse
|
14
|
Chen Y, Xu J, Chen Y, Wang L, Jiang S, Xie ZH, Zhang T, Munroe P, Peng S. Rapid Defect Engineering in FeCoNi/FeAl 2O 4 Hybrid for Enhanced Oxygen Evolution Catalysis: A Pathway to High-Performance Electrocatalysts. Angew Chem Int Ed Engl 2024; 63:e202405372. [PMID: 38659283 DOI: 10.1002/anie.202405372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 04/15/2024] [Accepted: 04/24/2024] [Indexed: 04/26/2024]
Abstract
Rational modulation of surface reconstruction in the oxygen evolution reaction (OER) utilizing defect engineering to form efficient catalytic activity centers is a topical interest in the field of catalysis. The introduction of point defects has been demonstrated to be an effective strategy to regulate the electronic configuration of electrocatalysts, but the influence of more complex planar defects (e.g., twins and stacking faults), on their intrinsic activity is still not fully understood. This study harnesses ultrasonic cavitation for rapid and controlled introduction of different types of defects in the FeCoNi/FeAl2O4 hybrid coating, optimizing OER catalytic activity. Theoretical calculations and experiments demonstrate that the different defects optimize the coordination environment and facilitate the activation of surface reconstruction into true catalytic activity centers at lower potentials. Moreover, it demonstrates exceptional durability, maintaining stable oxygen production at a high current density of 300 mA cm-2 for over 120 hours. This work not only presents a novel pathway for designing advanced electrocatalysts but also deepens our understanding of defect-engineered catalytic mechanisms, showcasing the potential for rapid and efficient enhancement of electrocatalytic performance.
Collapse
Affiliation(s)
- Yuhao Chen
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, China
| | - Jiang Xu
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, China
| | - Yujie Chen
- School of Mechanical Engineering, University of Adelaide, Adelaide, SA-5005, Australia
| | - Luqi Wang
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, China
| | - Shuyun Jiang
- Department of Mechanical Engineering, Southeast University, 2 Si Pai Lou, Nanjing, 210096, PR China
| | - Zong-Han Xie
- School of Mechanical Engineering, University of Adelaide, Adelaide, SA-5005, Australia
| | - Tianran Zhang
- College of Material Science and Opto-Electronic Technology, University of Chinese Academy of Science, Beijing, PR China
| | - Paul Munroe
- School of Materials Science and Engineering, University of New South Wales, NSW, 2052, Australia
| | - Shengjie Peng
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, China
| |
Collapse
|
15
|
Ahmad A, Nairan A, Feng Z, Zheng R, Bai Y, Khan U, Gao J. Unlocking the Potential of High Entropy Alloys in Electrochemical Water Splitting: A Review. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2311929. [PMID: 38396229 DOI: 10.1002/smll.202311929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 02/04/2024] [Indexed: 02/25/2024]
Abstract
The global pursuit of sustainable energy is focused on producing hydrogen through electrocatalysis driven by renewable energy. Recently, High entropy alloys (HEAs) have taken the spotlight in electrolysis due to their intriguing cocktail effect, broad design space, customizable electronic structure, and entropy stabilization effect. The tunability and complexity of HEAs allow a diverse range of active sites, optimizing adsorption strength and activity for electrochemical water splitting. This review comprehensively covers contemporary advancements in synthesis technique, design framework, and physio-chemical evaluation approaches for HEA-based electrocatalysts. Additionally, it explores design principles and strategies aimed at optimizing the catalytic activity, stability, and effectiveness of HEAs in hydrogen evolution reaction (HER), oxygen evolution reaction (OER), and overall water splitting. Through an in-depth investigation of these aspects, the complexity inherent in constituent element interactions, reaction processes, and active sites associated with HEAs is aimed to unravel. Eventually, an outlook regarding challenges and impending difficulties and an outline of the future direction of HEA in electrocatalysis is provided. The thorough knowledge offered in this review will assist in formulating and designing catalysts based on HEAs for the next generation of electrochemistry-related applications.
Collapse
Affiliation(s)
- Abrar Ahmad
- Institute of Functional Porous Materials, School of Material Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Adeela Nairan
- Institute of Functional Porous Materials, School of Material Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Zhuo Feng
- Institute of Functional Porous Materials, School of Material Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Ruiming Zheng
- Institute of Functional Porous Materials, School of Material Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Yelin Bai
- Institute of Functional Porous Materials, School of Material Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Usman Khan
- Institute of Functional Porous Materials, School of Material Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Junkuo Gao
- Institute of Functional Porous Materials, School of Material Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| |
Collapse
|
16
|
Zhang J, Xia S, Wang Y, Wu J, Wu Y. Recent advances in dynamic reconstruction of electrocatalysts for carbon dioxide reduction. iScience 2024; 27:110005. [PMID: 38846002 PMCID: PMC11154216 DOI: 10.1016/j.isci.2024.110005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2024] Open
Abstract
Electrocatalysts undergo structural evolution under operating electrochemical CO2 reduction reaction (CO2RR) conditions. This dynamic reconstruction correlates with variations in CO2RR activity, selectivity, and stability, posing challenges in catalyst design for electrochemical CO2RR. Despite increased research on the reconstruction behavior of CO2RR electrocatalysts, a comprehensive understanding of their dynamic structural evolution under reaction conditions is lacking. This review summarizes recent developments in the dynamic reconstruction of catalysts during the CO2RR process, covering fundamental principles, modulation strategies, and in situ/operando characterizations. It aims to enhance understanding of electrocatalyst dynamic reconstruction, offering guidelines for the rational design of CO2RR electrocatalysts.
Collapse
Affiliation(s)
- Jianfang Zhang
- School of Materials Science and Engineering, Hefei University of Technology, Hefei 230009, China
- Department of Chemical and Environmental Engineering, University of Cincinnati, Cincinnati, OH 45221, USA
| | - Shuai Xia
- School of Materials Science and Engineering, Hefei University of Technology, Hefei 230009, China
| | - Yan Wang
- School of Materials Science and Engineering, Hefei University of Technology, Hefei 230009, China
- Institute of Energy, Hefei Comprehensive National Science Center (Anhui Energy Laboratory), Hefei 230009, China
| | - Jingjie Wu
- Department of Chemical and Environmental Engineering, University of Cincinnati, Cincinnati, OH 45221, USA
| | - Yucheng Wu
- School of Materials Science and Engineering, Hefei University of Technology, Hefei 230009, China
- Key Laboratory of Advanced Functional Materials and Devices of Anhui Province, Hefei University of Technology, Hefei 230009, China
- China International S&T Cooperation Base for Advanced Energy and Environmental Materials & Anhui Provincial International S&T Cooperation Base for Advanced Energy Materials, Hefei University of Technology, Hefei 230009, China
| |
Collapse
|
17
|
Liu S, Wang A, Liu Y, Zhou W, Wen H, Zhang H, Sun K, Li S, Zhou J, Wang Y, Jiang J, Li B. Catalytically Active Carbon for Oxygen Reduction Reaction in Energy Conversion: Recent Advances and Future Perspectives. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2308040. [PMID: 38581142 PMCID: PMC11165562 DOI: 10.1002/advs.202308040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 02/25/2024] [Indexed: 04/08/2024]
Abstract
The shortage and unevenness of fossil energy sources are affecting the development and progress of human civilization. The technology of efficiently converting material resources into energy for utilization and storage is attracting the attention of researchers. Environmentally friendly biomass materials are a treasure to drive the development of new-generation energy sources. Electrochemical theory is used to efficiently convert the chemical energy of chemical substances into electrical energy. In recent years, significant progress has been made in the development of green and economical electrocatalysts for oxygen reduction reaction (ORR). Although many reviews have been reported around the application of biomass-derived catalytically active carbon (CAC) catalysts in ORR, these reviews have only selected a single/partial topic (including synthesis and preparation of catalysts from different sources, structural optimization, or performance enhancement methods based on CAC catalysts, and application of biomass-derived CACs) for discussion. There is no review that systematically addresses the latest progress in the synthesis, performance enhancement, and applications related to biomass-derived CAC-based oxygen reduction electrocatalysts synchronously. This review fills the gap by providing a timely and comprehensive review and summary from the following sections: the exposition of the basic catalytic principles of ORR, the summary of the chemical composition and structural properties of various types of biomass, the analysis of traditional and the latest popular biomass-derived CAC synthesis methods and optimization strategies, and the summary of the practical applications of biomass-derived CAC-based oxidative reduction electrocatalysts. This review provides a comprehensive summary of the latest advances to provide research directions and design ideas for the development of catalyst synthesis/optimization and contributes to the industrialization of biomass-derived CAC electrocatalysis and electric energy storage.
Collapse
Affiliation(s)
- Shuling Liu
- College of ChemistryZhengzhou University100 Science RoadZhengzhou450001P. R. China
| | - Ao Wang
- Institute of Chemical Industry of Forest ProductsCAFNational Engineering Lab for Biomass Chemical UtilizationKey and Open Lab on Forest Chemical EngineeringSFA16 SuojinwucunNanjing210042P. R. China
| | - Yanyan Liu
- College of ChemistryZhengzhou University100 Science RoadZhengzhou450001P. R. China
- Institute of Chemical Industry of Forest ProductsCAFNational Engineering Lab for Biomass Chemical UtilizationKey and Open Lab on Forest Chemical EngineeringSFA16 SuojinwucunNanjing210042P. R. China
- College of ScienceHenan Agricultural University95 Wenhua RoadZhengzhou450002P. R. China
| | - Wenshu Zhou
- Institute of Chemical Industry of Forest ProductsCAFNational Engineering Lab for Biomass Chemical UtilizationKey and Open Lab on Forest Chemical EngineeringSFA16 SuojinwucunNanjing210042P. R. China
| | - Hao Wen
- College of ChemistryZhengzhou University100 Science RoadZhengzhou450001P. R. China
| | - Huanhuan Zhang
- College of ChemistryZhengzhou University100 Science RoadZhengzhou450001P. R. China
| | - Kang Sun
- Institute of Chemical Industry of Forest ProductsCAFNational Engineering Lab for Biomass Chemical UtilizationKey and Open Lab on Forest Chemical EngineeringSFA16 SuojinwucunNanjing210042P. R. China
| | - Shuqi Li
- College of ScienceHenan Agricultural University95 Wenhua RoadZhengzhou450002P. R. China
| | - Jingjing Zhou
- College of ScienceHenan Agricultural University95 Wenhua RoadZhengzhou450002P. R. China
| | - Yongfeng Wang
- Center for Carbon‐based Electronics and Key Laboratory for the Physics and Chemistry of NanodevicesSchool of ElectronicsPeking UniversityBeijing100871P. R. China
| | - Jianchun Jiang
- Institute of Chemical Industry of Forest ProductsCAFNational Engineering Lab for Biomass Chemical UtilizationKey and Open Lab on Forest Chemical EngineeringSFA16 SuojinwucunNanjing210042P. R. China
| | - Baojun Li
- College of ChemistryZhengzhou University100 Science RoadZhengzhou450001P. R. China
| |
Collapse
|
18
|
Xiao Y, Guo Z, Cao J, Song P, Yang B, Xu W. Revealing operando surface defect-dependent electrocatalytic performance of Pt at the subparticle level. Proc Natl Acad Sci U S A 2024; 121:e2317205121. [PMID: 38776369 PMCID: PMC11145244 DOI: 10.1073/pnas.2317205121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 04/18/2024] [Indexed: 05/25/2024] Open
Abstract
Understanding the operando defect-tuning performance of catalysts is critical to establish an accurate structure-activity relationship of a catalyst. Here, with the tool of single-molecule super-resolution fluorescence microscopy, by imaging intermediate CO formation/oxidation during the methanol oxidation reaction process on individual defective Pt nanotubes, we reveal that the fresh Pt ends with more defects are more active and anti-CO poisoning than fresh center areas with less defects, while such difference could be reversed after catalysis-induced step-by-step creation of more defects on the Pt surface. Further experimental results reveal an operando volcano relationship between the catalytic performance (activity and anti-CO ability) and the fine-tuned defect density. Systematic DFT calculations indicate that such an operando volcano relationship could be attributed to the defect-dependent transition state free energy and the accelerated surface reconstructing of defects or Pt-atom moving driven by the adsorption of the CO intermediate. These insights deepen our understanding to the operando defect-driven catalysis at single-molecule and subparticle level, which is able to help the design of highly efficient defect-based catalysts.
Collapse
Affiliation(s)
- Yi Xiao
- State Key Laboratory of Electroanalytical Chemistry and Jilin Province Key Laboratory of Low Carbon Chemical Power, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun130022, People’s Republic of China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui230026, People’s Republic of China
| | - Zhichao Guo
- School of Physical Science and Technology, ShanghaiTech University, Shanghai201210, People’s Republic of China
| | - Jing Cao
- State Key Laboratory of Electroanalytical Chemistry and Jilin Province Key Laboratory of Low Carbon Chemical Power, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun130022, People’s Republic of China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui230026, People’s Republic of China
| | - Ping Song
- State Key Laboratory of Electroanalytical Chemistry and Jilin Province Key Laboratory of Low Carbon Chemical Power, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun130022, People’s Republic of China
| | - Bo Yang
- School of Physical Science and Technology, ShanghaiTech University, Shanghai201210, People’s Republic of China
| | - Weilin Xu
- State Key Laboratory of Electroanalytical Chemistry and Jilin Province Key Laboratory of Low Carbon Chemical Power, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun130022, People’s Republic of China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui230026, People’s Republic of China
| |
Collapse
|
19
|
Zhang L, Liu LL, Feng JJ, Wang AJ. Methanol-induced assembly and pyrolysis preparation of three-dimensional N-doped interconnected open carbon cages supported FeNb 2O 6 nanoparticles for boosting oxygen reduction reaction and Zn-air battery. J Colloid Interface Sci 2024; 661:102-112. [PMID: 38295692 DOI: 10.1016/j.jcis.2024.01.154] [Citation(s) in RCA: 33] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 01/18/2024] [Accepted: 01/22/2024] [Indexed: 02/27/2024]
Abstract
Three-dimensional (3D) hollow carbon is one of advanced nanomaterials widely applied in oxygen reduction reaction (ORR). Herein, iron niobate (FeNb2O6) nanoparticles supported on metal-organic frameworks (MOFs)-derived 3D N-doped interconnected open carbon cages (FeNb2O6/NICC) were prepared by methanol induced assembly and pyrolysis strategy. During the fabrication process, the evaporation of methanol promoted the assembly and cross linkage of ZIF-8, rather than individual particles. The assembled ZIF-8 particles worked as in-situ sacrificial templates, in turn forming hierarchically interconnected open carbon cages after high-temperature pyrolysis. The as-made FeNb2O6/NICC showed a positive onset potential of 1.09 V and a half-wave potential of 0.88 V for the ORR, outperforming commercial Pt/C under the identical conditions. Later on, the as-built Zn-air battery with the FeNb2O6/NICC presented a greater power density of 100.6 mW cm-2 and durable long-cycle stability by operating for 200 h. For preparing 3D hollow carbon materials, this synthesis does not require a tedious removal process of template, which is more convenient than traditional method with silica and polystyrene spheres as templates. This work affords an exceptional example of developing 3D N-doped interconnected hollow carbon composites for energy conversion and storage devices.
Collapse
Affiliation(s)
- Lu Zhang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Ling-Ling Liu
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Jiu-Ju Feng
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Ai-Jun Wang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China.
| |
Collapse
|
20
|
Nie W, Ren T, Zhao W, Yao B, Yuan W, Liu X, Abdullah, Zhang J, Liu Q, Zhang T, Tang S, He C, Fang Y, Li X. Electrochemical Generation of Te Vacancy Pairs in PtTe for Efficient Hydrogen Evolution. ACS APPLIED MATERIALS & INTERFACES 2024; 16:21828-21837. [PMID: 38639177 DOI: 10.1021/acsami.4c01273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/20/2024]
Abstract
Two-dimensional (2D) van der Waals materials are increasingly seen as potential catalysts due to their unique structures and unmatched properties. However, achieving precise synthesis of these remarkable materials and regulating their atomic and electronic structures at the most fundamental level to enhance their catalytic performance remain a significant challenge. In this study, we synthesized single-crystal bulk PtTe crystals via chemical vapor transport and subsequently produced atomically thin, large PtTe nanosheets (NSs) through electrochemical cathode intercalation. These NSs are characterized by a significant presence of Te vacancy pairs, leading to undercoordinated Pt atoms on their basal planes. Experimental and theoretical studies together reveal that Te vacancy pairs effectively optimize and enhance the electronic properties (such as charge distribution, density of states near the Fermi level, and d-band center) of the resultant undercoordinated Pt atoms. This optimization results in a significantly higher percentage of dangling O-H water, a decreased energy barrier for water dissociation, and an increased binding affinity of these Pt atoms to active hydrogen intermediates. Consequently, PtTe NSs featuring exposed and undercoordinated Pt atoms demonstrate outstanding electrocatalytic activity in hydrogen evolution reactions, significantly surpassing the performance of standard commercial Pt/C catalysts.
Collapse
Affiliation(s)
- Wenjie Nie
- College of Geology and Environment, Xi'an University of Science and Technology, Xi'an, Shaanxi 710054, China
| | - Taotao Ren
- College of Geology and Environment, Xi'an University of Science and Technology, Xi'an, Shaanxi 710054, China
- Department of Environmental Science and Engineering, School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Wen Zhao
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China
| | - Bingqing Yao
- Department of Materials Science and Engineering, National University of Singapore, Singapore 119077, Singapore
| | - Wenhao Yuan
- Department of Materials Science and Engineering, National University of Singapore, Singapore 119077, Singapore
| | - Xuan Liu
- Department of Environmental Science and Engineering, School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Abdullah
- Department of Environmental Science and Engineering, School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Jiaxun Zhang
- College of Geology and Environment, Xi'an University of Science and Technology, Xi'an, Shaanxi 710054, China
- Department of Environmental Science and Engineering, School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Qiyuan Liu
- Department of Environmental Science and Engineering, School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Tianqing Zhang
- Department of Environmental Science and Engineering, School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Shangfeng Tang
- Department of Environmental Science and Engineering, School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Chi He
- Department of Environmental Science and Engineering, School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Yiyun Fang
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China
| | - Xinzhe Li
- Department of Environmental Science and Engineering, School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| |
Collapse
|
21
|
Wang Y, Wang T, Arandiyan H, Song G, Sun H, Sabri Y, Zhao C, Shao Z, Kawi S. Advancing Catalysts by Stacking Fault Defects for Enhanced Hydrogen Production: A Review. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2313378. [PMID: 38340031 DOI: 10.1002/adma.202313378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 02/02/2024] [Indexed: 02/12/2024]
Abstract
Green hydrogen, derived from water splitting powered by renewable energy such as solar and wind energy, provides a zero-emission solution crucial for revolutionizing hydrogen production and decarbonizing industries. Catalysts, particularly those utilizing defect engineering involving the strategical introduction of atomic-level imperfections, play a vital role in reducing energy requirements and enabling a more sustainable transition toward a hydrogen-based economy. Stacking fault (SF) defects play an important role in enhancing the electrocatalytic processes by reshaping surface reactivity, increasing active sites, improving reactants/product diffusion, and regulating electronic structure due to their dense generation ability and profound impact on catalyst properties. This review explores SF in metal-based materials, covering synthetic methods for the intentional introduction of SF and their applications in hydrogen production, including oxygen evolution reaction, photo- and electrocatalytic hydrogen evolution reaction, overall water splitting, and various other electrocatalytic processes such as oxygen reduction reaction, nitrate reduction reaction, and carbon dioxide reduction reaction. Finally, this review addresses the challenges associated with SF-based catalysts, emphasizing the importance of a detailed understanding of the properties of SF-based catalysts to optimize their electrocatalytic performance. It provides a comprehensive overview of their various applications in electrocatalytic processes, providing valuable insights for advancing sustainable energy technologies.
Collapse
Affiliation(s)
- Yuan Wang
- Department of Chemical Engineering, The University of Melbourne, Parkville, VIC, 3010, Australia
- Department of Chemical & Biomolecular Engineering, National University of Singapore, Singapore, 117585, Singapore
| | - Tian Wang
- Department of Chemical & Biomolecular Engineering, National University of Singapore, Singapore, 117585, Singapore
| | - Hamidreza Arandiyan
- Centre for Advanced Materials and Industrial Chemistry (CAMIC), School of Science, RMIT University, Melbourne, VIC, 3000, Australia
- Laboratory of Advanced Catalysis for Sustainability, School of Chemistry, University of Sydney, Sydney, NSW, 2006, Australia
| | - Guoqiang Song
- Department of Chemical & Biomolecular Engineering, National University of Singapore, Singapore, 117585, Singapore
| | - Hongyu Sun
- DENSsolutions B.V., Informaticalaan 12, 2628 ZD, Delft, Netherlands
| | - Ylias Sabri
- Centre for Advanced Materials and Industrial Chemistry (CAMIC), School of Engineering, RMIT University, Melbourne, VIC, 3000, Australia
| | - Chuan Zhao
- School of Chemistry, The University of New South Wales, Sydney, NSW, 2052, Australia
| | - Zongping Shao
- WA School of Mines: Minerals, Energy and Chemical Engineering, Curtin University, Perth, WA, 6845, Australia
| | - Sibudjing Kawi
- Department of Chemical & Biomolecular Engineering, National University of Singapore, Singapore, 117585, Singapore
| |
Collapse
|
22
|
Cheng Y, Jin J, Yan H, Zhou G, Xu Y, Tang L, Liu X, Li H, Zhang K, Lu Z. Spaced Double Hydrogen Bonding in an Imidazole Poly Ionic Liquid Composite for Highly Efficient and Selective Photocatalytic Air Reductive H 2O 2 Synthesis. Angew Chem Int Ed Engl 2024; 63:e202400857. [PMID: 38356122 DOI: 10.1002/anie.202400857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 02/14/2024] [Accepted: 02/14/2024] [Indexed: 02/16/2024]
Abstract
Photocatalytic oxygen reductive H2O2 production is a promising approach to alternative industrial anthraquinone processes while suffering from the requirement of pure O2 feedstock for practical application. Herein, we report a spaced double hydrogen bond (IC-H-bond) through multi-component Radziszewski reaction in an imidazole poly-ionic-liquid composite (SI-PIL-TiO2) and levofloxacin hydrochloride (LEV) electron donor for highly efficient and selective photocatalytic air reductive H2O2 production. It is found that the IC-H-bond formed by spaced imino (-NH-) group of SI-PIL-TiO2 and carbonyl (-C=O) group of LEV can switch the imidazole active sites characteristic from a covered state to a fully exposed one to shield the strong adsorption of electron donor and N2 in the air, and propel an intenser positive potential and more efficient orbitals binding patterns of SI-PIL-TiO2 surface to establish competitive active sites for selectivity O2 chemisorption. Moreover, the high electron enrichment of imidazole as an active site for the 2e- oxygen reduction ensures the rapid reduction of O2. Therefore, the IC-H-bond enables a total O2 utilization and conversion efficiency of 94.8 % from direct photocatalytic air reduction, achieving a H2O2 production rate of 1518 μmol/g/h that is 16 and 23 times compared to poly-ionic-liquid composite without spaced imino groups (PIL-TiO2) and TiO2, respectively.
Collapse
Affiliation(s)
- Yu Cheng
- Institute of Environmental Health and Ecological Security, School of Emergency Management, School of the Environment and Safety Engineering, Jiangsu University, 212013, Jiangsu, Zhenjiang, PR China
| | - Jie Jin
- Institute of Environmental Health and Ecological Security, School of Emergency Management, School of the Environment and Safety Engineering, Jiangsu University, 212013, Jiangsu, Zhenjiang, PR China
| | - Huan Yan
- Institute of Environmental Health and Ecological Security, School of Emergency Management, School of the Environment and Safety Engineering, Jiangsu University, 212013, Jiangsu, Zhenjiang, PR China
| | - Guosheng Zhou
- School of Chemistry and Chemical Engineering, School of Energy and Power Engineering, Jiangsu University, 212013, Jiangsu, Zhenjiang, PR China
| | - Yangrui Xu
- Institute of Environmental Health and Ecological Security, School of Emergency Management, School of the Environment and Safety Engineering, Jiangsu University, 212013, Jiangsu, Zhenjiang, PR China
| | - Liguang Tang
- School of Chemistry and Chemical Engineering, School of Energy and Power Engineering, Jiangsu University, 212013, Jiangsu, Zhenjiang, PR China
| | - Xinlin Liu
- School of Chemistry and Chemical Engineering, School of Energy and Power Engineering, Jiangsu University, 212013, Jiangsu, Zhenjiang, PR China
| | - Hongping Li
- Institute for Energy Research, Jiangsu University, 212013, Jiangsu, Zhenjiang, PR China
| | - Kan Zhang
- School of Materials Science and Engineering, Nanjing University of Science and Technology, 210094, Jiangsu, Nanjing, PR China
| | - Ziyang Lu
- Institute of Environmental Health and Ecological Security, School of Emergency Management, School of the Environment and Safety Engineering, Jiangsu University, 212013, Jiangsu, Zhenjiang, PR China
- Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, 215009, Jiangsu, Suzhou, PR China
| |
Collapse
|
23
|
Li JR, Liu MX, Liu X, Yu XH, Li QZ, Sun Q, Sun T, Cao S, Hou CC. The Recent Progress of Oxygen Reduction Electrocatalysts Used at Fuel Cell Level. SMALL METHODS 2024; 8:e2301249. [PMID: 38012517 DOI: 10.1002/smtd.202301249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 11/12/2023] [Indexed: 11/29/2023]
Abstract
Proton exchange membrane fuel cells (PEMFCs) are gaining significant interest as an attractive substitute for traditional fuel cells, with higher energy density, lower environmental pollution, and better operation efficiency. However, the cathode reaction, i.e., the oxygen reduction reaction (ORR), is widely proved to be inefficient, and therefore an obstacle to the widespread development of PEMFCs. The requirement for affordable highly-efficient ORR catalysts is extremely urgent to be met, especially at fuel cell level. Unfortunately, most previous reports focus on the ORR performance at rotating disk electrodes (RDE) level instead of membrane electrode assembly (MEA) level, making it harder to evaluate ORR catalysts operating under real vehicle conditions. Obviously, it is extremely necessary to develop an in-depth understanding of the structure-activity relationship of highly-efficient ORR catalysts applied at MEA level. In this work, an overview of the latest advances in ORR catalysts is provided with an emphasis on their performance at MEA level, hoping to cover the novel and systemic insights for innovative and efficient ORR catalyst design and applications in PEMFCs.
Collapse
Affiliation(s)
- Jin-Rong Li
- College of Chemistry and Chemical Engineering, Institute for Sustainable Energy and Resources, Qingdao University, Qingdao, Shandong, 266071, China
| | - Ming-Xu Liu
- School of Materials Science and Engineering, Ocean University of China, Qingdao, Shandong, 266100, China
| | - Xia Liu
- College of Chemistry and Chemical Engineering, Institute for Sustainable Energy and Resources, Qingdao University, Qingdao, Shandong, 266071, China
| | - Xiang-Hui Yu
- College of Chemistry and Chemical Engineering, Institute for Sustainable Energy and Resources, Qingdao University, Qingdao, Shandong, 266071, China
| | - Qin-Zhu Li
- College of Chemistry and Chemical Engineering, Institute for Sustainable Energy and Resources, Qingdao University, Qingdao, Shandong, 266071, China
| | - Qi Sun
- College of Chemistry and Chemical Engineering, Institute for Sustainable Energy and Resources, Qingdao University, Qingdao, Shandong, 266071, China
| | - Tong Sun
- College of Chemistry and Chemical Engineering, Institute for Sustainable Energy and Resources, Qingdao University, Qingdao, Shandong, 266071, China
| | - Shuang Cao
- College of Chemistry and Chemical Engineering, Institute for Sustainable Energy and Resources, Qingdao University, Qingdao, Shandong, 266071, China
| | - Chun-Chao Hou
- School of Materials Science and Engineering, Ocean University of China, Qingdao, Shandong, 266100, China
| |
Collapse
|
24
|
Zhang W, Luo J, Tang H, Wang S, Li W, Zhang J, Zhou Y. Co-doped RuO 2 nanoparticles with enhanced catalytic activity and stability for the oxygen evolution reaction. Dalton Trans 2024; 53:1031-1039. [PMID: 38088793 DOI: 10.1039/d3dt03047d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2024]
Abstract
Efficient and durable electrocatalysts for the oxygen evolution reaction (OER) play an important role in the use of hydrogen energy. Rutile RuO2, despite being considered as an advanced electrocatalyst for the OER, performs poorly in stability due to its easy oxidative dissolution at very positive (oxidizing) potentials. Herein, we report a type of Co-doped RuO2 nanoparticle for boosting OER catalytic activity and stability in alkaline solutions. The replacement of Ru by Co atoms with a lower ionic valence and smaller electronegativity can promote the generation of O vacancies and increase the electron density around Ru, thus enhancing the adsorption of oxygen species and inhibiting the peroxidative dissolution of RuO2 during the OER process. It was found that Ru0.95Co0.05Oy exhibited excellent OER performance with overpotentials as low as 217 mV at 10 mA cm-2 and 290 mV at 100 mA cm-2 in 1 M KOH, as well as outstanding stability in continuous testing for 50 h at a current density of 100 mA cm-2, and nearly no significant degradation after the accelerated durability test of 2000 cycles.
Collapse
Affiliation(s)
- Wei Zhang
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao 266580, China.
| | - Jiabing Luo
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao 266580, China.
| | - Han Tang
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao 266580, China.
| | - Shutao Wang
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Wenle Li
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao 266580, China.
| | - Jun Zhang
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao 266580, China.
| | - Yan Zhou
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao 266580, China.
| |
Collapse
|
25
|
Wu Z, Liu Y, Wang D, Zhang Y, Gu K, He Z, Liu L, Liu H, Fan J, Chen C, Wang S. Cu@Co with Dilatation Strain for High-Performance Electrocatalytic Reduction of Low-Concentration Nitric Oxide. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023:e2309470. [PMID: 38113301 DOI: 10.1002/adma.202309470] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 12/06/2023] [Indexed: 12/21/2023]
Abstract
Electrocatalytic reduction of nitric oxide (NO) to ammonia (NH3 ) is a clean and sustainable strategy to simultaneously remove NO and synthesize NH3 . However, the conversion of low concentration NO to NH3 is still a huge challenge. In this work, the dilatation strain between Cu and Co interface over Cu@Co catalyst is built up and investigated for electroreduction of low concentration NO (volume ratio of 1%) to NH3 . The catalyst shows a high NH3 yield of 627.20 µg h-1 cm-2 and a Faradaic efficiency of 76.54%. Through the combination of spherical aberration-corrected transmission electron microscopy and geometric phase analyses, it shows that Co atoms occupy Cu lattice sites to form dilatation strain in the xy direction within Co region. Further density functional theory calculations and NO temperature-programmed desorption (NO-TPD) results show that the surface dilatation strain on Cu@Co is helpful to enhance the NO adsorption and reduce energy barrier of the rate-determining step (*NO to *NOH), thereby accelerating the catalytic reaction. To simultaneously realize NO exhaust gas removal, NH3 green synthesis, and electricity output, a Zn-NO battery with Cu@Co cathode is assembled with a power density of 3.08 mW cm-2 and an NH3 yield of 273.37 µg h-1 cm-2 .
Collapse
Affiliation(s)
- Ze Wu
- College of Materials Science and Engineering, Changsha University of Science and Technology, Changsha, Hunan, 410114, P. R. China
| | - Yujing Liu
- College of Materials Science and Engineering, Changsha University of Science and Technology, Changsha, Hunan, 410114, P. R. China
| | - Dongdong Wang
- State Key Laboratory of Chem/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, the National Supercomputer Centers in Changsha, Hunan University, Changsha, Hunan, 410082, P. R. China
| | - Yiqiong Zhang
- College of Materials Science and Engineering, Changsha University of Science and Technology, Changsha, Hunan, 410114, P. R. China
| | - Kaizhi Gu
- Institute for Advanced Study, Central South University, Changsha, 410083, P. R. China
| | - Zejin He
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui, 230029, P. R. China
| | - Limin Liu
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui, 230029, P. R. China
| | - Hanwen Liu
- WA School of Mines, Minerals, Energy and Chemical Engineering (WASM-MECE), Curtin University, Perth, WA, 6102, Australia
| | - Jincheng Fan
- College of Materials Science and Engineering, Changsha University of Science and Technology, Changsha, Hunan, 410114, P. R. China
| | - Chen Chen
- State Key Laboratory of Chem/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, the National Supercomputer Centers in Changsha, Hunan University, Changsha, Hunan, 410082, P. R. China
| | - Shuangyin Wang
- State Key Laboratory of Chem/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, the National Supercomputer Centers in Changsha, Hunan University, Changsha, Hunan, 410082, P. R. China
| |
Collapse
|
26
|
Ren JT, Chen L, Wang HY, Yuan ZY. High-entropy alloys in electrocatalysis: from fundamentals to applications. Chem Soc Rev 2023; 52:8319-8373. [PMID: 37920962 DOI: 10.1039/d3cs00557g] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2023]
Abstract
High-entropy alloys (HEAs) comprising five or more elements in near-equiatomic proportions have attracted ever increasing attention for their distinctive properties, such as exceptional strength, corrosion resistance, high hardness, and excellent ductility. The presence of multiple adjacent elements in HEAs provides unique opportunities for novel and adaptable active sites. By carefully selecting the element configuration and composition, these active sites can be optimized for specific purposes. Recently, HEAs have been shown to exhibit remarkable performance in electrocatalytic reactions. Further activity improvement of HEAs is necessary to determine their active sites, investigate the interactions between constituent elements, and understand the reaction mechanisms. Accordingly, a comprehensive review is imperative to capture the advancements in this burgeoning field. In this review, we provide a detailed account of the recent advances in synthetic methods, design principles, and characterization technologies for HEA-based electrocatalysts. Moreover, we discuss the diverse applications of HEAs in electrocatalytic energy conversion reactions, including the hydrogen evolution reaction, hydrogen oxidation reaction, oxygen reduction reaction, oxygen evolution reaction, carbon dioxide reduction reaction, nitrogen reduction reaction, and alcohol oxidation reaction. By comprehensively covering these topics, we aim to elucidate the intricacies of active sites, constituent element interactions, and reaction mechanisms associated with HEAs. Finally, we underscore the imminent challenges and emphasize the significance of both experimental and theoretical perspectives, as well as the potential applications of HEAs in catalysis. We anticipate that this review will encourage further exploration and development of HEAs in electrochemistry-related applications.
Collapse
Affiliation(s)
- Jin-Tao Ren
- National Institute for Advanced Materials, School of Materials Science and Engineering, Smart Sensing Interdisciplinary Science Center, Nankai University, Tianjin 300350, China.
| | - Lei Chen
- National Institute for Advanced Materials, School of Materials Science and Engineering, Smart Sensing Interdisciplinary Science Center, Nankai University, Tianjin 300350, China.
| | - Hao-Yu Wang
- National Institute for Advanced Materials, School of Materials Science and Engineering, Smart Sensing Interdisciplinary Science Center, Nankai University, Tianjin 300350, China.
| | - Zhong-Yong Yuan
- National Institute for Advanced Materials, School of Materials Science and Engineering, Smart Sensing Interdisciplinary Science Center, Nankai University, Tianjin 300350, China.
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Nankai University, Tianjin 300071, China
| |
Collapse
|
27
|
Lin L, Long X, Yang X, Shi P, Su L. Theoretical study of Mo 2N supported transition metal single-atom catalyst for OER/ORR bifunctional electrocatalysis. Phys Chem Chem Phys 2023; 25:24721-24732. [PMID: 37670691 DOI: 10.1039/d3cp02565a] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/07/2023]
Abstract
The rational design and development of an efficient bifunctional catalyst for the oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) is the key to developing new renewable energy storage and conversion technologies. Transition metal nitrides (TMNs) have shown excellent energy storage and electrochemistry potential due to their unique electronic structure and physicochemical properties. In this paper, based on the first-principles method of density functional theory (DFT), a series of efficient and stable bifunctional single-atom catalysts (SACs) were designed on Mo2N by introducing transition metal atoms as active sites, and the effects of different TM atoms on the catalytic performance of 2D-Mo2N (Two dimensional Mo2N) were evaluated. The calculation results show that TM@Mo2N exhibits excellent stability and good conductivity, which is conducive to electron transfer during the electrocatalytic reaction. Among these SACs, the Au@Mo2N single-atom catalyst has a very low OER overpotential (0.36 V), exhibiting high OER activity. Meanwhile, Au@Mo2N also exhibits excellent ORR performance with a low overpotential of 0.4 V, indicating that Au@Mo2N is the best OER/ORR bifunctional catalyst. This work provides a feasible solution for developing transition metal bifunctional electrocatalysts. Au@Mo2N is expected to replace traditional commercial Pt catalyst materials and become a catalyst with excellent performance in fuel cell modules.
Collapse
Affiliation(s)
- Long Lin
- Henan Key Laboratory of Materials on Deep-Earth Engineering, School of Materials Science and Engineering, Henan Polytechnic University, Jiaozuo 454000, China
- School of Materials Science and Engineering, Henan Polytechnic University, Jiaozuo 454000, Henan Province, China
| | - Xiaoqin Long
- Henan Key Laboratory of Materials on Deep-Earth Engineering, School of Materials Science and Engineering, Henan Polytechnic University, Jiaozuo 454000, China
| | - Xinyu Yang
- Henan Key Laboratory of Materials on Deep-Earth Engineering, School of Materials Science and Engineering, Henan Polytechnic University, Jiaozuo 454000, China
| | - Pei Shi
- Henan Key Laboratory of Materials on Deep-Earth Engineering, School of Materials Science and Engineering, Henan Polytechnic University, Jiaozuo 454000, China
| | - Linlin Su
- Liaoning Key Materials Laboratory for Railway, School of Materials Science and Engineering, Dalian Jiaotong University, Dalian 116028, Liaoning Province, China.
| |
Collapse
|
28
|
Kumar R, Sahoo S, Joanni E, Pandey R, Shim JJ. Vacancy designed 2D materials for electrodes in energy storage devices. Chem Commun (Camb) 2023; 59:6109-6127. [PMID: 37128726 DOI: 10.1039/d3cc00815k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Vacancies are ubiquitous in nature, usually playing an important role in determining how a material behaves, both physically and chemically. As a consequence, researchers have introduced oxygen, sulphur and other vacancies into bi-dimensional (2D) materials, with the aim of achieving high performance electrodes for electrochemical energy storage. In this article, we focused on the recent advances in vacancy engineering of 2D materials for energy storage applications (supercapacitors and secondary batteries). Vacancy defects can effectively modify the electronic characteristics of 2D materials, enhancing the charge-transfer processes/reactions. These atomic-scale defects can also serve as extra host sites for inserted protons or small cations, allowing easier ion diffusion during their operation as electrodes in supercapacitors and secondary batteries. From the viewpoint of materials science, this article summarises recent developments in the exploitation of vacancies (which are surface defects, for these materials), including various defect creation approaches and cutting-edge techniques for detection of vacancies. The crucial role of defects for improvement in the energy storage performance of 2D electrode materials in electrochemical devices has also been highlighted.
Collapse
Affiliation(s)
- Rajesh Kumar
- Department of Mechanical Engineering, Indian Institute of Technology, Kanpur 208016, Uttar Pradesh, India.
| | - Sumanta Sahoo
- School of Chemical Engineering, Yeungnam University, 280 Daehak-ro, Gyeongsan, Gyeongbuk 38541, Republic of Korea.
| | - Ednan Joanni
- Center for Information Technology Renato Archer (CTI), Campinas 13069-901, Brazil
| | - Raghvendra Pandey
- Department of Physics, ARSD College, University of Delhi, New Delhi, 110021, India
| | - Jae-Jin Shim
- School of Chemical Engineering, Yeungnam University, 280 Daehak-ro, Gyeongsan, Gyeongbuk 38541, Republic of Korea.
| |
Collapse
|