1
|
Xu Z, Sun X, Wu H, Xiong Z, Zhou X, Yu H, Yin X, Sievenpiper DF, Cui TJ. Terminal-Matched Topological Photonic Substrate-Integrated Waveguides and Antennas for Microwave Systems. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2404163. [PMID: 38962944 PMCID: PMC11434011 DOI: 10.1002/advs.202404163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 06/12/2024] [Indexed: 07/05/2024]
Abstract
In engineered photonic lattices, topological photonic (TP) modes present a promising avenue for designing waveguides with suppressed backscattering. However, the integration of the TP modes in electromagnetic systems has faced longstanding challenges. The primary obstacle is the insufficient development of high-efficiency coupling technologies between the TP modes and the conventional transmission modes. This dilemma leads to significant scattering at waveguide terminals when attempting to connect the TP waveguides with other waveguides. In this study, a topological photonic substrate-integrated waveguide (TPSIW) is proposed that can seamlessly integrate into traditional microstrip line systems. It successfully addresses the matching problem and demonstrates efficient coupling of both even and odd TP modes with the quasi-transverse electromagnetic modes of microstrip lines, resulting in minimal energy losses. In addition, topological leaky states are introduced through designed slots on the TPSIW top surface. These slots enable the creation of TP leaky-wave antennas with beam steering capabilities. A wireless link based on TPSIWs are further established that enables the transmission of distinct signals toward different directions. This work is an important step toward the integration of TP modes in microwave systems, unlocking the possibilities for the development of high-performance wireless devices.
Collapse
Affiliation(s)
- Zhixia Xu
- State Key Laboratory of Millimeter Waves, Southeast University, Nanjing, 210096, China
- School of Information Science and Technology, Dalian Maritime University, Dalian, 116026, China
| | - Xiaonan Sun
- School of Information Science and Technology, Dalian Maritime University, Dalian, 116026, China
| | - Haotian Wu
- School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| | - Zengxu Xiong
- School of Information Science and Technology, Dalian Maritime University, Dalian, 116026, China
| | - Xue Zhou
- School of Information Science and Technology, Dalian Maritime University, Dalian, 116026, China
| | - Haoxi Yu
- School of Information Science and Technology, Dalian Maritime University, Dalian, 116026, China
| | - Xiaoxing Yin
- State Key Laboratory of Millimeter Waves, Southeast University, Nanjing, 210096, China
| | - Daniel F Sievenpiper
- Electrical and Computer Engineering Department, University of California San Diego, San Diego, CA, 92093, USA
| | - Tie Jun Cui
- State Key Laboratory of Millimeter Waves, Southeast University, Nanjing, 210096, China
| |
Collapse
|
2
|
Li J, Xu C, Xu Z, Xu G, Yang S, Liu K, Chen J, Li T, Qiu CW. Localized and delocalized topological modes of heat. Proc Natl Acad Sci U S A 2024; 121:e2408843121. [PMID: 39163329 PMCID: PMC11363277 DOI: 10.1073/pnas.2408843121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 07/21/2024] [Indexed: 08/22/2024] Open
Abstract
The topological physics has sparked intensive investigations into topological lattices in photonic, acoustic, and mechanical systems, powering counterintuitive effects otherwise inaccessible with usual settings. Following the success of these endeavors in classical wave dynamics, there has been a growing interest in establishing their topological counterparts in diffusion. Here, we propose an additional real-space dimension in diffusion, and the system eigenvalues are transformed from "imaginary" to "real." By judiciously tailoring the effective Hamiltonian with coupling networks, localized and delocalized topological modes are realized in heat transfer. Simulations and experiments in active thermal lattices validate the effectiveness of the proposed theoretical strategy. This approach can be applied to establish various topological lattices in diffusion systems, offering insights into engineering topologically protected edge states in dynamic diffusive scenarios.
Collapse
Affiliation(s)
- Jiaxin Li
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore117583, Singapore
| | - Chengxin Xu
- State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin150001, China
| | - Zifu Xu
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore117583, Singapore
- State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin150001, China
| | - Guoqiang Xu
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore117583, Singapore
| | - Shuihua Yang
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore117583, Singapore
| | - Kaipeng Liu
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore117583, Singapore
- State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin150001, China
| | - Jianfeng Chen
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore117583, Singapore
| | - Tianlong Li
- State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin150001, China
| | - Cheng-Wei Qiu
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore117583, Singapore
| |
Collapse
|
3
|
Gao H, Xu G, Zhou X, Yang S, Su Z, Qiu CW. Topological Anderson phases in heat transport. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2024; 87:090501. [PMID: 39121866 DOI: 10.1088/1361-6633/ad6d88] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 08/09/2024] [Indexed: 08/12/2024]
Abstract
Topological Anderson phases (TAPs) offer intriguing transitions from ordered to disordered systems in photonics and acoustics. However, achieving these transitions often involves cumbersome structural modifications to introduce disorders in parameters, leading to limitations in flexible tuning of topological properties and real-space control of TAPs. Here, we exploit disordered convective perturbations in a fixed heat transport system. Continuously tunable disorder-topology interactions are enabled in thermal dissipation through irregular convective lattices. In the presence of a weak convective disorder, the trivial diffusive system undergos TAP transition, characterized by the emergence of topologically protected corner modes. Further increasing the strength of convective perturbations, a second phase transition occurs converting from TAP to Anderson phase. Our work elucidates the pivotal role of disorders in topological heat transport and provides a novel recipe for manipulating thermal behaviors in diverse topological platforms.
Collapse
Affiliation(s)
- He Gao
- Department of Mechanical Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong Special Administrative Region of China, People's Republic of China
| | - Guoqiang Xu
- Department of Electrical and Computer Engineering, National University of Singapore, Kent Ridge, Singapore
| | - Xue Zhou
- Department of Electrical and Computer Engineering, National University of Singapore, Kent Ridge, Singapore
- School of Computer Science and Information Engineering, Chongqing Technology and Business University, Chongqing, People's Republic of China
| | - Shuihua Yang
- Department of Electrical and Computer Engineering, National University of Singapore, Kent Ridge, Singapore
| | - Zhongqing Su
- Department of Mechanical Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong Special Administrative Region of China, People's Republic of China
| | - Cheng-Wei Qiu
- Department of Electrical and Computer Engineering, National University of Singapore, Kent Ridge, Singapore
| |
Collapse
|
4
|
Liu Z, Cao PC, Xu L, Xu G, Li Y, Huang J. Higher-Order Topological In-Bulk Corner State in Pure Diffusion Systems. PHYSICAL REVIEW LETTERS 2024; 132:176302. [PMID: 38728705 DOI: 10.1103/physrevlett.132.176302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 03/26/2024] [Indexed: 05/12/2024]
Abstract
Compared with conventional topological insulator that carries topological state at its boundaries, the higher-order topological insulator exhibits lower-dimensional gapless boundary states at its corners and hinges. Leveraging the form similarity between Schrödinger equation and diffusion equation, research on higher-order topological insulators has been extended from condensed matter physics to thermal diffusion. Unfortunately, all the corner states of thermal higher-order topological insulator reside within the band gap. Another kind of corner state, which is embedded in the bulk states, has not been realized in pure diffusion systems so far. Here, we construct higher-dimensional Su-Schrieffer-Heeger models based on sphere-rod structure to elucidate these corner states, which we term "in-bulk corner states." Because of the anti-Hermitian properties of diffusive Hamiltonian, we investigate the thermal behavior of these corner states through theoretical calculation, simulation, and experiment. Furthermore, we study the different thermal behaviors of in-bulk corner state and in-gap corner state. Our results would open a different gate for diffusive topological states and provide a distinct application for efficient heat dissipation.
Collapse
Affiliation(s)
- Zhoufei Liu
- Department of Physics, State Key Laboratory of Surface Physics, and Key Laboratory of Micro and Nano Photonic Structures (MOE), Fudan University, Shanghai 200438, China
| | - Pei-Chao Cao
- State Key Laboratory of Extreme Photonics and Instrumentation, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 310027, China
- International Joint Innovation Center, Key Laboratory of Advanced Micro/Nano Electronic Devices & Smart Systems of Zhejiang, The Electromagnetics Academy of Zhejiang University, Zhejiang University, Haining 314400, China
- Shaoxing Institute of Zhejiang University, Zhejiang University, Shaoxing 312000, China
| | - Liujun Xu
- Graduate School of China Academy of Engineering Physics, Beijing 100193, China
| | - Guoqiang Xu
- Department of Electrical and Computer Engineering, National University of Singapore, Kent Ridge 117583, Republic of Singapore
| | - Ying Li
- State Key Laboratory of Extreme Photonics and Instrumentation, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 310027, China
- International Joint Innovation Center, Key Laboratory of Advanced Micro/Nano Electronic Devices & Smart Systems of Zhejiang, The Electromagnetics Academy of Zhejiang University, Zhejiang University, Haining 314400, China
- Shaoxing Institute of Zhejiang University, Zhejiang University, Shaoxing 312000, China
| | - Jiping Huang
- Department of Physics, State Key Laboratory of Surface Physics, and Key Laboratory of Micro and Nano Photonic Structures (MOE), Fudan University, Shanghai 200438, China
| |
Collapse
|
5
|
Cao PC, Ju R, Wang D, Qi M, Liu YK, Peng YG, Chen H, Zhu XF, Li Y. Observation of parity-time symmetry in diffusive systems. SCIENCE ADVANCES 2024; 10:eadn1746. [PMID: 38640240 DOI: 10.1126/sciadv.adn1746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 03/18/2024] [Indexed: 04/21/2024]
Abstract
Phase modulation has scarcely been mentioned in diffusive physical systems because the diffusion process does not carry the momentum like waves. Recently, non-Hermitian physics provides a unique perspective for understanding diffusion and shows prospects in thermal phase regulation, exemplified by the discovery of anti-parity-time (APT) symmetry in diffusive systems. However, precise control of thermal phase remains elusive hitherto and can hardly be realized, due to the phase oscillations. Here we construct the PT-symmetric diffusive systems to achieve the complete suppression of thermal phase oscillation. The real coupling of diffusive fields is readily established through a strong convective background, and the decay-rate detuning is enabled by thermal metamaterial design. We observe the phase transition of PT symmetry breaking with the symmetry-determined amplitude and phase regulation of coupled temperature fields. Our work shows the existence of PT symmetry in dissipative energy exchanges and provides unique approaches for harnessing the mass transfer of particles, wave dynamics in strongly scattering systems, and thermal conduction.
Collapse
Affiliation(s)
- Pei-Chao Cao
- School of Physics and Innovation Institute, Huazhong University of Science and Technology, Wuhan 430074, China
- State Key Laboratory of Extreme Photonics and Instrumentation, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 310027, China
- International Joint Innovation Center, The Electromagnetics Academy at Zhejiang University, Zhejiang University, Haining 314400, China
- Key Lab of Advanced Micro/Nano Electronic Devices & Smart Systems of Zhejiang, Jinhua Institute of Zhejiang University, Zhejiang University, Jinhua 321099, China
- Shaoxing Institute of Zhejiang University, Zhejiang University, Shaoxing 312000, China
| | - Ran Ju
- State Key Laboratory of Extreme Photonics and Instrumentation, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 310027, China
- International Joint Innovation Center, The Electromagnetics Academy at Zhejiang University, Zhejiang University, Haining 314400, China
- Key Lab of Advanced Micro/Nano Electronic Devices & Smart Systems of Zhejiang, Jinhua Institute of Zhejiang University, Zhejiang University, Jinhua 321099, China
- Shaoxing Institute of Zhejiang University, Zhejiang University, Shaoxing 312000, China
| | - Dong Wang
- State Key Laboratory of Extreme Photonics and Instrumentation, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 310027, China
- International Joint Innovation Center, The Electromagnetics Academy at Zhejiang University, Zhejiang University, Haining 314400, China
- Key Lab of Advanced Micro/Nano Electronic Devices & Smart Systems of Zhejiang, Jinhua Institute of Zhejiang University, Zhejiang University, Jinhua 321099, China
- Shaoxing Institute of Zhejiang University, Zhejiang University, Shaoxing 312000, China
| | - Minghong Qi
- State Key Laboratory of Extreme Photonics and Instrumentation, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 310027, China
- International Joint Innovation Center, The Electromagnetics Academy at Zhejiang University, Zhejiang University, Haining 314400, China
- Key Lab of Advanced Micro/Nano Electronic Devices & Smart Systems of Zhejiang, Jinhua Institute of Zhejiang University, Zhejiang University, Jinhua 321099, China
- Shaoxing Institute of Zhejiang University, Zhejiang University, Shaoxing 312000, China
| | - Yun-Kai Liu
- School of Physics and Innovation Institute, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Yu-Gui Peng
- School of Physics and Innovation Institute, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Hongsheng Chen
- State Key Laboratory of Extreme Photonics and Instrumentation, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 310027, China
- International Joint Innovation Center, The Electromagnetics Academy at Zhejiang University, Zhejiang University, Haining 314400, China
- Key Lab of Advanced Micro/Nano Electronic Devices & Smart Systems of Zhejiang, Jinhua Institute of Zhejiang University, Zhejiang University, Jinhua 321099, China
- Shaoxing Institute of Zhejiang University, Zhejiang University, Shaoxing 312000, China
| | - Xue-Feng Zhu
- School of Physics and Innovation Institute, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Ying Li
- State Key Laboratory of Extreme Photonics and Instrumentation, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 310027, China
- International Joint Innovation Center, The Electromagnetics Academy at Zhejiang University, Zhejiang University, Haining 314400, China
- Key Lab of Advanced Micro/Nano Electronic Devices & Smart Systems of Zhejiang, Jinhua Institute of Zhejiang University, Zhejiang University, Jinhua 321099, China
- Shaoxing Institute of Zhejiang University, Zhejiang University, Shaoxing 312000, China
| |
Collapse
|
6
|
Xu G, Zhou X, Yang S, Wu J, Qiu CW. Observation of bulk quadrupole in topological heat transport. Nat Commun 2023; 14:3252. [PMID: 37277349 DOI: 10.1038/s41467-023-39117-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 05/25/2023] [Indexed: 06/07/2023] Open
Abstract
The quantized bulk quadrupole moment has so far revealed a non-trivial boundary state with lower-dimensional topological edge states and in-gap zero-dimensional corner modes. In contrast to photonic implementations, state-of-the-art strategies for topological thermal metamaterials struggle to achieve such higher-order hierarchical features. This is due to the absence of quantized bulk quadrupole moments in thermal diffusion fundamentally prohibiting possible band topology expansions. Here, we report a recipe for generating quantized bulk quadrupole moments in fluid heat transport and observe the quadrupole topological phases in non-Hermitian thermal systems. Our experiments show that both the real- and imaginary-valued bands exhibit the hierarchical features of bulk, gapped edge and in-gap corner states-in stark contrast to the higher-order states observed only on real-valued bands in classical wave fields. Our findings open up unique possibilities for diffusive metamaterial engineering and establish a playground for multipolar topological physics.
Collapse
Affiliation(s)
- Guoqiang Xu
- Department of Electrical and Computer Engineering, National University of Singapore, Kent Ridge, Singapore, 117583, Singapore
| | - Xue Zhou
- School of Computer Science and Information Engineering, Chongqing Technology and Business University, Chongqing, 400067, China
| | - Shuihua Yang
- Department of Electrical and Computer Engineering, National University of Singapore, Kent Ridge, Singapore, 117583, Singapore
| | - Jing Wu
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research, Singapore, Singapore
- Department of Materials Science and Engineering, National University of Singapore, Singapore, Singapore
| | - Cheng-Wei Qiu
- Department of Electrical and Computer Engineering, National University of Singapore, Kent Ridge, Singapore, 117583, Singapore.
| |
Collapse
|