1
|
Tian X, Li W, Li F, Cai M, Si Y, Tang H, Li H, Zhang H. Direct Photopatterning of Zeolitic Imidazolate Frameworks via Photoinduced Fluorination. Angew Chem Int Ed Engl 2025; 64:e202500476. [PMID: 39959928 DOI: 10.1002/anie.202500476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Accepted: 02/17/2025] [Indexed: 02/27/2025]
Abstract
Precise and effective patterning strategies are essential for integrating metal-organic frameworks (MOFs) into microelectronics, photonics, sensors, and other solid-state devices. Direct lithography of MOFs with light and other irradiation sources has emerged as a promising patterning strategy. However, existing direct lithography methods often rely on the irradiation-induced amorphization of the MOFs structures and the breaking of strong covalent bonds in their organic linkers. High-energy sources (such as X-rays or electron beams) and large irradiation doses - conditions unfavorable for scalable patterning - are thus required. Here, we report a photoinduced fluorination chemistry for patterning various zeolitic imidazolate frameworks (ZIFs) under mild UV irradiation. Using UV doses as low as 10 mJ cm-2, light-sensitive fluorine-containing molecules covalently bond to ZIFs and enhance their stability in water. This creates a water-stability contrast between ZIFs in exposed and unexposed regions, enabling scalable direct photolithography of ZIFs with high resolution (2 μm) on 4-inch wafers and flexible substrates. The patterned ZIFs preserve their original crystallinity and porous properties while gaining increased hydrophobicity. This allows for the demonstration of a water-responsive fluorescent MOFs array with implications in sensing and multicolor information encryption.
Collapse
Affiliation(s)
- Xiaoli Tian
- Center for Bioanalytical Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Wenjun Li
- Center for Bioanalytical Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Fu Li
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, China
| | - Mingfeng Cai
- Center for Bioanalytical Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Yilong Si
- Center for Bioanalytical Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Hao Tang
- Center for Bioanalytical Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Haifang Li
- Center for Bioanalytical Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Hao Zhang
- Center for Bioanalytical Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
2
|
Li W, Ma T, Tang P, Luo Y, Zhang H, Zhao J, Ameloot R, Tu M. Nanoscale Resist-Free Patterning of Halogenated Zeolitic Imidazolate Frameworks by Extreme UV Lithography. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2415804. [PMID: 40040608 PMCID: PMC12021036 DOI: 10.1002/advs.202415804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 02/17/2025] [Indexed: 03/06/2025]
Abstract
Advancements in patterning techniques for metal-organic frameworks (MOFs) are crucial for their integration into microelectronics. However, achieving precise nanoscale control of MOF structures remains challenging. In this work, a resist-free method for patterning MOFs is demonstrated using extreme ultraviolet (EUV) lithography with a resolution of 40 nm. The role of halogen atoms in the linker and the effect of humidity are analyzed through in situ and near-ambient pressure synchrotron X-ray photoelectron spectroscopy. In addition to facilitating the integration of MOFs, the results offer valuable insights for developing the highly sought-after positive-tone EUV photoresists.
Collapse
Affiliation(s)
- Weina Li
- State Key Laboratory of Transducer TechnologyShanghai Institute of Microsystem and Information TechnologyChinese Academy of SciencesShanghai200050China
- Center of Materials Science and Optoelectronics EngineeringUniversity of Chinese Academy of SciencesBeijing100049China
- 2020 X‐LabShanghai Institute of Microsystem and Information TechnologyChinese Academy of SciencesShanghai200050China
- School of Graduate StudyUniversity of Chinese Academy of SciencesBeijing100049China
| | - Tianlei Ma
- State Key Laboratory of Transducer TechnologyShanghai Institute of Microsystem and Information TechnologyChinese Academy of SciencesShanghai200050China
- Center of Materials Science and Optoelectronics EngineeringUniversity of Chinese Academy of SciencesBeijing100049China
- 2020 X‐LabShanghai Institute of Microsystem and Information TechnologyChinese Academy of SciencesShanghai200050China
| | - Pengyi Tang
- State Key Laboratory of Transducer TechnologyShanghai Institute of Microsystem and Information TechnologyChinese Academy of SciencesShanghai200050China
- Center of Materials Science and Optoelectronics EngineeringUniversity of Chinese Academy of SciencesBeijing100049China
- 2020 X‐LabShanghai Institute of Microsystem and Information TechnologyChinese Academy of SciencesShanghai200050China
- School of Graduate StudyUniversity of Chinese Academy of SciencesBeijing100049China
| | - Yunhong Luo
- ShanghaiTech UniversitySchool of physical science and technologyShanghai201210China
| | - Hui Zhang
- Shanghai Synchrotron Radiation FacilityShanghai Advanced Research InstituteChinese Academy of SciencesShanghai201204China
- National Key Laboratory of Materials for Integrated CircuitsShanghai Institute of Microsystem and Information TechnologyChinese Academy of SciencesShanghai200050China
| | - Jun Zhao
- Shanghai Synchrotron Radiation FacilityShanghai Advanced Research InstituteChinese Academy of SciencesShanghai201204China
| | - Rob Ameloot
- Centre for Membrane SeparationsAdsorptionCatalysis and SpectroscopyKU LeuvenLeuven3001Belgium
| | - Min Tu
- State Key Laboratory of Transducer TechnologyShanghai Institute of Microsystem and Information TechnologyChinese Academy of SciencesShanghai200050China
- Center of Materials Science and Optoelectronics EngineeringUniversity of Chinese Academy of SciencesBeijing100049China
- 2020 X‐LabShanghai Institute of Microsystem and Information TechnologyChinese Academy of SciencesShanghai200050China
- School of Graduate StudyUniversity of Chinese Academy of SciencesBeijing100049China
| |
Collapse
|
3
|
Xu Z, Chandresh A, Mauri A, Esmaeilpour M, Monnier V, Odobel F, Heinke L, Wenzel W, Kozlowska M, Diring S, Haldar R, Wöll C. Regulated Charge Transfer in Donor-Acceptor Metal-Organic Frameworks for Highly-Sensitive Photodetectors. Angew Chem Int Ed Engl 2024; 63:e202414526. [PMID: 39531348 DOI: 10.1002/anie.202414526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 10/20/2024] [Accepted: 10/25/2024] [Indexed: 11/16/2024]
Abstract
In photo-induced charge separation, organic thin films with donor and acceptor chromophores are vital for uses such as artificial photosynthesis and photodetection. The main challenges include optimizing charge separation efficiency and identifying the ideal acceptor/donor ratio. Achieving this is difficult due to the variability in molecular configurations within these typically amorphous organic aggregates. Metal-organic frameworks (MOFs) provide a structured solution by enabling systematic design of donor/acceptor blends with adjustable ratios within a crystalline lattice. We demonstrate this approach by incorporating donor and acceptor naphthalenediimide (NDI) chromophores as linkers in a highly oriented, monolithic MOF thin film. By adjusting the NDI acceptor linker concentration during the layer-by-layer assembly of surface-anchored MOF thin films (SURMOFs), we significantly enhanced charge separation efficiency. Surprisingly, the optimum acceptor concentration was only 3 %, achieving a forty-fold increase in photodetection efficiency compared to baseline NDI donor-based SURMOFs. This unexpected behaviour was clarified through theoretical analysis enabled by the well-defined crystalline structure of the SURMOFs. Using density functional theory and kinetic Monte Carlo simulations, we identified two opposing effects from acceptors: the positive effect of suppressing undesirable charge carrier recombination is offset at high concentrations by a reduction in charge-carrier mobility.
Collapse
Affiliation(s)
- Zhiyun Xu
- College of Chemistry and Chemical Engineering, Central South University, 410083, Changsha, China
- Institute of Functional Interfaces (IFG), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| | - Abhinav Chandresh
- Institute of Functional Interfaces (IFG), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| | - Anna Mauri
- Institute of Nanotechnology (INT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| | - Meysam Esmaeilpour
- Institute of Nanotechnology (INT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| | - Vincent Monnier
- Nantes Université, CNRS CEISAM, UMR 6230, F-44000, Nantes, France
| | - Fabrice Odobel
- Nantes Université, CNRS CEISAM, UMR 6230, F-44000, Nantes, France
| | - Lars Heinke
- Institute of Functional Interfaces (IFG), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| | - Wolfgang Wenzel
- Institute of Nanotechnology (INT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| | - Mariana Kozlowska
- Institute of Nanotechnology (INT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| | - Stéphane Diring
- Nantes Université, CNRS CEISAM, UMR 6230, F-44000, Nantes, France
| | - Ritesh Haldar
- Tata Institute of Fundamental Research Hyderabad, Gopanpally, Hyderabad, 500046, Telangana, India
| | - Christof Wöll
- Institute of Functional Interfaces (IFG), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| |
Collapse
|
4
|
Li Z, Li S, Zhu M, Liu Q, Zhang Y, Wang Y, Wu L, Jiang X. Interfacial Microenvironment-Regulated Coordinate Structures Dictate the Metal-Organic Framework Facet Orientation toward Efficient CO 2 Cycloaddition. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024. [PMID: 39562176 DOI: 10.1021/acs.langmuir.4c03234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2024]
Abstract
The preparation of high-quality highly oriented metal-organic framework (MOF) thin films is desirable for developing advanced functional devices. However, the pathways for controlling the oriented growth of MOFs are largely unknown, and determining their microcosmic evolution at the complex solid-liquid interface remains a challenge. Herein, we investigate the critical early growth stage of typical HKUST-1 on the COOH-functionalized Au substrate utilizing a combination of in situ surface-enhanced infrared spectroscopy, X-ray photoelectron spectroscopy, and photoinduced force microscopy. Detailed molecular level information indicates that it is not only the COOH-terminated SAM itself but also the distinct interfacial structures of the first metal coordinate layer and second ligand coordinate layer, which can be regulated in aprotic and protic solvents, that dominate the initial growth behavior of MOF and thus lead to the [111], [100], and polycrystal facet-oriented growth of HKUST-1. Moreover, the prepared HKUST-1 films exhibit a crystal facet-dependent catalytic rate in the chemical fixation of CO2 into cyclic carbonate. Our observations provide a reasonable guide for designing MOF-based anisotropic functional equipment.
Collapse
Affiliation(s)
- Zihao Li
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- University of Science and Technology of China, Hefei 230026, China
| | - Shanshan Li
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- University of Science and Technology of China, Hefei 230026, China
| | - Manyu Zhu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- University of Science and Technology of China, Hefei 230026, China
| | - Qixin Liu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- University of Science and Technology of China, Hefei 230026, China
| | - Yuqi Zhang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- University of Science and Technology of China, Hefei 230026, China
| | - Yiran Wang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- University of Science and Technology of China, Hefei 230026, China
| | - Lie Wu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- Research Center for Analytical Science, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Xiue Jiang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- University of Science and Technology of China, Hefei 230026, China
- Research Center for Analytical Science, College of Chemistry, Nankai University, Tianjin 300071, China
| |
Collapse
|
5
|
Brandner LA, Marmiroli B, Linares-Moreau M, Barella M, Abbasgholi-Na B, Velásquez-Hernández MDJ, Flint KL, Dal Zilio S, Acuna GP, Wolinski H, Amenitsch H, Doonan CJ, Falcaro P. Ordered Transfer from 3D-Oriented MOF Superstructures to Polymeric Films: Microfabrication, Enhanced Chemical Stability, and Anisotropic Fluorescent Patterns. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2404384. [PMID: 38943469 DOI: 10.1002/adma.202404384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 06/14/2024] [Indexed: 07/01/2024]
Abstract
Films and patterns of 3D-oriented metal-organic frameworks (MOFs) afford well-ordered pore structures extending across centimeter-scale areas. These macroscopic domains of aligned pores are pivotal to enhance diffusion along specific pathways and orient functional guests. The anisotropic properties emerging from this alignment are beneficial for applications in ion conductivity and photonics. However, the structure of 3D-oriented MOF films and patterns can rapidly degrade under humid and acidic conditions. Thus, more durable 3D-ordered porous systems are desired for practical applications. Here, oriented porous polymer films and patterns are prepared by using heteroepitaxially oriented N3-functionalized MOF films as precursor materials. The film fabrication protocol utilizes an azide-alkyne cycloaddition on the Cu2(AzBPDC)2DABCO MOF. The micropatterning protocol exploits the X-ray sensitivity of azide groups in Cu2(AzBPDC)2DABCO, enabling selective degradation in the irradiated areas. The masked regions of the MOF film retain their N3-functionality, allowing for subsequent cross-linking through azide-alkyne coupling. Subsequent acidic treatment removes the Cu ions from the MOF, yielding porous polymer micro-patterns. The polymer has high chemical stability and shows an anisotropic fluorescent response. The use of 3D-oriented MOF systems as precursors for the fabrication of oriented porous polymers will facilitate the progress of optical components for photonic applications.
Collapse
Affiliation(s)
- Lea A Brandner
- Institute of Physical and Theoretical Chemistry, Graz University of Technology, Graz, 8010, Austria
| | - Benedetta Marmiroli
- Institute of Inorganic Chemistry, Graz University of Technology, Graz, 8010, Austria
| | - Mercedes Linares-Moreau
- Institute of Physical and Theoretical Chemistry, Graz University of Technology, Graz, 8010, Austria
| | - Mariano Barella
- Department of Physics, Faculty of Science and Medicine, University of Fribourg, Chemin du Musée 3, PER 08, Fribourg, CH-1700, Switzerland
| | - Behnaz Abbasgholi-Na
- CNR-IOM - Istituto Officina dei Materiali, SS 14, Basovizza, Trieste, 34149, Italy
| | | | - Kate L Flint
- Department of Chemistry, School of Physics, Chemistry and Earth Sciences, The University of Adelaide, Adelaide, SA, 5005, Australia
| | - Simone Dal Zilio
- CNR-IOM - Istituto Officina dei Materiali, SS 14, Basovizza, Trieste, 34149, Italy
| | - Guillermo P Acuna
- Department of Physics, Faculty of Science and Medicine, University of Fribourg, Chemin du Musée 3, PER 08, Fribourg, CH-1700, Switzerland
| | - Heimo Wolinski
- Institute of Molecular Biosciences, Field of Excellence BioHealth, University of Graz, Graz, 8010, Austria
| | - Heinz Amenitsch
- Institute of Inorganic Chemistry, Graz University of Technology, Graz, 8010, Austria
| | - Christian J Doonan
- Department of Chemistry, School of Physics, Chemistry and Earth Sciences, The University of Adelaide, Adelaide, SA, 5005, Australia
| | - Paolo Falcaro
- Institute of Physical and Theoretical Chemistry, Graz University of Technology, Graz, 8010, Austria
| |
Collapse
|
6
|
Carbonell C, Linares-Moreau M, Borisov SM, Falcaro P. Multimaterial Digital-Light Processing of Metal-Organic Framework (MOF) Composites: A Versatile Tool for the Rapid Microfabrication of MOF-Based Devices. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2408770. [PMID: 39252650 DOI: 10.1002/adma.202408770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 08/20/2024] [Indexed: 09/11/2024]
Abstract
Patterning Metal-Organic Frameworks (MOFs) is essential for their use in sensing, electronics, photonics, and encryption technologies. However, current lithography methods are limited in their ability to pattern more than two MOFs, hindering the potential for creating advanced multifunctional surfaces. Additionally, balancing design flexibility, simplicity, and cost often results in compromises. This study addresses these challenges by combining Digital-Light Processing (DLP) with a capillary-assisted stop-flow system to enable multimaterial MOF patterning. It demonstrates the desktop fabrication of multiplexed arbitrary micropatterns across cm-scale areas while preserving the MOF's pore accessibility. The ink, consisting of a MOF crystal suspension in a low volatile solvent, a mixture of high molecular weight oligomers, and a photoinitiator, is confined by capillarity in the DLP projection area and quickly exchanged using syringe pumps. The versatility of this method is demonstrated by the direct printing of a ZIF-8-based luminescent oxygen sensor, a 5-component dynamic information concealment method, and a PCN-224-based colorimetric sensor for amines, covering disparate pore and analyte sizes. The multi-MOF capabilities, simplicity, and accessibility of this strategy pave the way for the facile exploration of MOF materials across a wide range of applications, with the potential to significantly accelerate the design-to-application cycle of MOF-based devices.
Collapse
Affiliation(s)
- Carlos Carbonell
- Institute of Physical and Theoretical Chemistry, Graz University of Technology, Graz, 8010, Austria
- Institute of Microelectronics of Barcelona (IMB-CNM-CSIC), Barcelona, 08193, Spain
| | - Mercedes Linares-Moreau
- Institute of Physical and Theoretical Chemistry, Graz University of Technology, Graz, 8010, Austria
| | - Sergey M Borisov
- Institute of Analytical Chemistry and Food Chemistry, Graz University of Technology, Graz, 8010, Austria
| | - Paolo Falcaro
- Institute of Physical and Theoretical Chemistry, Graz University of Technology, Graz, 8010, Austria
| |
Collapse
|
7
|
Sun QJ, Guo WT, Liu SZ, Tang XG, Roy VA, Zhao XH. Rise of Metal-Organic Frameworks: From Synthesis to E-Skin and Artificial Intelligence. ACS APPLIED MATERIALS & INTERFACES 2024; 16:45830-45860. [PMID: 39178336 DOI: 10.1021/acsami.4c07732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/25/2024]
Abstract
Metal-organic frameworks (MOFs) have attained broad research attention in the areas of sensors, resistive memories, and optoelectronic synapses on the merits of their intriguing physical and chemical properties. In this review, recent progress on the synthesis of MOFs and their electronic applications is introduced and discussed. Initially, the crystal structures and properties of MOFs encompassing optical, electrical, and chemical properties are discussed in brief. Subsequently, advanced synthesis methods for MOFs are introduced, categorized into hydrothermal approach, microwave synthesis, mechanochemical synthesis, and electrochemical deposition. After that, the various roles of MOFs in widespread applications, including sensing, information storage, optoelectronic synapses, machine learning, and artificial intelligence, are discussed, highlighting their versatility and the innovative solutions they provide to long-standing challenges. Finally, an outlook on remaining challenges and a future perspective for MOFs are proposed.
Collapse
Affiliation(s)
- Qi-Jun Sun
- School of Physics and Optoelectric Engineering & Guangdong Provincial Key Laboratory of Sensing Physics and System Integration Applications, Guangdong University of Technology, Guangzhou 510006, P. R. China
| | - Wen-Tao Guo
- School of Physics and Optoelectric Engineering & Guangdong Provincial Key Laboratory of Sensing Physics and System Integration Applications, Guangdong University of Technology, Guangzhou 510006, P. R. China
| | - Shu-Zheng Liu
- School of Physics and Optoelectric Engineering & Guangdong Provincial Key Laboratory of Sensing Physics and System Integration Applications, Guangdong University of Technology, Guangzhou 510006, P. R. China
| | - Xin-Gui Tang
- School of Physics and Optoelectric Engineering & Guangdong Provincial Key Laboratory of Sensing Physics and System Integration Applications, Guangdong University of Technology, Guangzhou 510006, P. R. China
| | - Vellaisamy Al Roy
- School of Science and Technology, Hong Kong Metropolitan University, Hong Kong 999077, P. R. China
| | - Xin-Hua Zhao
- School of Intelligent Manufacturing and Electrical Engineering, Guangzhou Institute of Science and Technology, Guangzhou 510540, P. R. China
- Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, P. R. China
| |
Collapse
|
8
|
Koseki Y, Okada K, Hashimoto S, Hirouchi S, Fukatsu A, Takahashi M. Improved optical quality of heteroepitaxially grown metal-organic framework thin films by modulating the crystal growth. NANOSCALE 2024; 16:14101-14107. [PMID: 39007332 DOI: 10.1039/d4nr01885k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Fabricating high-quality thin films of metal-organic frameworks (MOFs) is important for integrating MOFs in various applications. Specifically, optical/electrical devices require MOF thin films that are crystallographically oriented, with closely packed crystals and smooth surfaces. Although the heteroepitaxial growth approach of MOFs on metal hydroxides has been demonstrated to control the orientation of the three crystallographic axes, the fabrication of MOF thin films with both three-dimensional crystallographic orientation and smooth surfaces remains a challenge. In this study, we report the fabrication of high-quality thin films of MOFs with closely packed MOF crystals, smooth surfaces, optical transparency, and crystal alignment by modulating the crystal growth of MOFs using the heteroepitaxial growth approach. High-quality thin films of Cu-paddlewheel-based pillar-layered MOFs are fabricated on oriented Cu(OH)2 thin films via epitaxial growth using acetate ions as modulators to control the crystal morphology. Increasing the modulator concentration results in a uniform crystal shape with a relatively long one-dimensional pore direction and uniform heterogeneous nucleation over the entire film. The MOF thin films fabricated using the modulator exhibit high optical transparency. High-quality MOF thin films with dense and flat surfaces will pave the way for integrating MOFs into sophisticated optical and electrical devices.
Collapse
Affiliation(s)
- Yuka Koseki
- Department of Materials Science, Graduate School of Engineering, Osaka Metropolitan University, Sakai, Osaka, 599-8531, Japan.
| | - Kenji Okada
- Department of Materials Science, Graduate School of Engineering, Osaka Metropolitan University, Sakai, Osaka, 599-8531, Japan.
| | - Shotaro Hashimoto
- Department of Materials Science, Graduate School of Engineering, Osaka Prefecture University, Sakai, Osaka, 599-8531, Japan
| | - Shun Hirouchi
- Department of Materials Science, Graduate School of Engineering, Osaka Prefecture University, Sakai, Osaka, 599-8531, Japan
| | - Arisa Fukatsu
- Department of Materials Science, Graduate School of Engineering, Osaka Metropolitan University, Sakai, Osaka, 599-8531, Japan.
| | - Masahide Takahashi
- Department of Materials Science, Graduate School of Engineering, Osaka Metropolitan University, Sakai, Osaka, 599-8531, Japan.
| |
Collapse
|
9
|
Zhu Z, Li F, Li J, Chen Q, Li W, Tang Z, Xu W, Shen W, Tao TH, Sun L, Fu Y, Tu M. Direct Optical Patterning of Metal-Organic Frameworks via Photoacid-Induced Etching. ACS NANO 2024. [PMID: 38988308 DOI: 10.1021/acsnano.4c04213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/12/2024]
Abstract
Metal-organic frameworks (MOFs) are a class of porous materials constructed from organic linkers and inorganic building blocks. Coordinative competition labilizes some MOFs under harsh chemical conditions because of their weak bonding. However, instability is not always a negative property of a material. In this study, we demonstrated the use of the acidic lability of MOFs for direct optical patterning. The controllable acid release from the photoacid generator at the exposed area causes bond cleavage between the linkers and metal ions/clusters, leading to solubility changes and pattern formation after development. This process avoids redundant steps and possible contamination in traditional photolithography, while maintaining the original properties of patterned MOFs. The preserved porosity and crystallinity promoted the development of MOFs for gas sensors and solid displays.
Collapse
Affiliation(s)
- Zhaohui Zhu
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China
- 2020 X-Lab, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China
- College of Chemistry and Materials Science, Shanghai Normal University, Shanghai 200030, China
| | - Fu Li
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China
- 2020 X-Lab, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China
| | - Jinwen Li
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China
- 2020 X-Lab, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China
- College of Chemistry and Materials Science, Shanghai Normal University, Shanghai 200030, China
| | - Qiran Chen
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China
- 2020 X-Lab, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China
| | - Weina Li
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China
- 2020 X-Lab, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China
- School of Graduate Study, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhenyuan Tang
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China
- 2020 X-Lab, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China
- School of Graduate Study, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wenxing Xu
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China
- College of Chemistry and Materials Science, Shanghai Normal University, Shanghai 200030, China
| | - Wei Shen
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China
- College of Chemistry and Materials Science, Shanghai Normal University, Shanghai 200030, China
| | - Tiger H Tao
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China
- 2020 X-Lab, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China
- School of Graduate Study, University of Chinese Academy of Sciences, Beijing 100049, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
- Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
- Guangdong Institute of Intelligence Science and Technology, Hengqin, Zhuhai 519031, Guangdong, China
- Tianqiao and Chrissy Chen Institute for Translational Research, Shanghai 201107, China
- Neuroxess Co., Ltd. (Jiangxi), Nanchang330029, Jiangxi, China
| | - Liuyang Sun
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China
- 2020 X-Lab, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China
- School of Graduate Study, University of Chinese Academy of Sciences, Beijing 100049, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yanyan Fu
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China
- School of Graduate Study, University of Chinese Academy of Sciences, Beijing 100049, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Min Tu
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China
- 2020 X-Lab, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China
- School of Graduate Study, University of Chinese Academy of Sciences, Beijing 100049, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
10
|
Chen G, Hu C, Dai W, Luo Z, Zang H, Sun S, Zhen S, Zhan L, Huang C, Li Y. Coreactant-Free Zirconium Metal-Organic Framework with Dual Emission for Ratiometric Electrochemiluminescence Detection of HIV DNA. Anal Chem 2024; 96:10102-10110. [PMID: 38831537 DOI: 10.1021/acs.analchem.4c02187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
Owing to the limitations of dual-signal luminescent materials and coreactants, constructing a ratiometric electrochemiluminescence (ECL) biosensor based on a single luminophore is a huge challenge. This work developed an excellent zirconium metal-organic framework (MOF) Zr-TBAPY as a single ECL luminophore, which simultaneously exhibited cathodic and anodic ECL without any additional coreactants. First, Zr-TBAPY was successfully prepared by a solvothermal method with 1,3,6,8-tetra(4-carboxyphenyl)pyrene (TBAPY) as the organic ligand and Zr4+ cluster as the metal node. The exploration of ECL mechanisms confirmed that the cathodic ECL of Zr-TBAPY originated from the pathway of reactive oxygen species (ROS) as the cathodic coreactant, which is generated by dissolved oxygen (O2), while the anodic ECL stemmed from the pathway of generated Zr-TBAPY radical itself as the anodic coreactant. Besides, N,N-diethylethylenediamine (DEDA) was developed as a regulator to ECL signals, which quenched the cathodic ECL and enhanced the anodic ECL, and the specific mechanisms of its dual action were also investigated. DEDA can act as the anodic coreactant while consuming the cathodic coreactant ROS. Therefore, the coreactant-free ratiometric ECL biosensor was skillfully constructed by combining the regulatory role of DEDA with the signal amplification reaction of catalytic hairpin assembly (CHA). The ECL biosensor realized the ultrasensitive ratio detection of HIV DNA. The linear range was 1 fM to 100 pM, and the limit of detection (LOD) was as low as 550 aM. The outstanding characteristic of Zr-TBAPY provided new thoughts for the development of ECL materials and developed a new way of fabricating the coreactant-free and single-luminophore ratiometric ECL platform.
Collapse
Affiliation(s)
- Gaoxu Chen
- College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| | - Congyi Hu
- Key Laboratory of Luminescent and Real-Time Analytical System (Southwest University), Chongqing Science and Technology Bureau, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, P. R. China
| | - Wenjie Dai
- College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| | - Zilan Luo
- College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| | - Hao Zang
- College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| | - Shiyi Sun
- Key Laboratory of Luminescent and Real-Time Analytical System (Southwest University), Chongqing Science and Technology Bureau, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, P. R. China
| | - Shujun Zhen
- College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| | - Lei Zhan
- Key Laboratory of Luminescent and Real-Time Analytical System (Southwest University), Chongqing Science and Technology Bureau, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, P. R. China
| | - Chengzhi Huang
- Key Laboratory of Luminescent and Real-Time Analytical System (Southwest University), Chongqing Science and Technology Bureau, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, P. R. China
| | - Yuanfang Li
- College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| |
Collapse
|
11
|
Tian X, Li F, Tang Z, Wang S, Weng K, Liu D, Lu S, Liu W, Fu Z, Li W, Qiu H, Tu M, Zhang H, Li J. Crosslinking-induced patterning of MOFs by direct photo- and electron-beam lithography. Nat Commun 2024; 15:2920. [PMID: 38575569 PMCID: PMC10995132 DOI: 10.1038/s41467-024-47293-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 03/23/2024] [Indexed: 04/06/2024] Open
Abstract
Metal-organic frameworks (MOFs) with diverse chemistry, structures, and properties have emerged as appealing materials for miniaturized solid-state devices. The incorporation of MOF films in these devices, such as the integrated microelectronics and nanophotonics, requires robust patterning methods. However, existing MOF patterning methods suffer from some combinations of limited material adaptability, compromised patterning resolution and scalability, and degraded properties. Here we report a universal, crosslinking-induced patterning approach for various MOFs, termed as CLIP-MOF. Via resist-free, direct photo- and electron-beam (e-beam) lithography, the ligand crosslinking chemistry leads to drastically reduced solubility of colloidal MOFs, permitting selective removal of unexposed MOF films with developer solvents. This enables scalable, micro-/nanoscale (≈70 nm resolution), and multimaterial patterning of MOFs on large-area, rigid or flexible substrates. Patterned MOF films preserve their crystallinity, porosity, and other properties tailored for targeted applications, such as diffractive gas sensors and electrochromic pixels. The combined features of CLIP-MOF create more possibilities in the system-level integration of MOFs in various electronic, photonic, and biomedical devices.
Collapse
Affiliation(s)
- Xiaoli Tian
- Department of Chemistry, Center for Bioanalytical Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Tsinghua University, Beijing, 100084, China
| | - Fu Li
- Department of Chemistry, Center for Bioanalytical Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Tsinghua University, Beijing, 100084, China
- Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, China
| | - Zhenyuan Tang
- Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, China
| | - Song Wang
- Department of Chemistry, Center for Bioanalytical Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Tsinghua University, Beijing, 100084, China
| | - Kangkang Weng
- Department of Chemistry, Center for Bioanalytical Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Tsinghua University, Beijing, 100084, China
| | - Dan Liu
- Department of Chemistry, Center for Bioanalytical Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Tsinghua University, Beijing, 100084, China
| | - Shaoyong Lu
- Department of Chemistry, Center for Bioanalytical Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Tsinghua University, Beijing, 100084, China
| | - Wangyu Liu
- Department of Chemistry, Center for Bioanalytical Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Tsinghua University, Beijing, 100084, China
| | - Zhong Fu
- Department of Chemistry, Center for Bioanalytical Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Tsinghua University, Beijing, 100084, China
| | - Wenjun Li
- Department of Chemistry, Center for Bioanalytical Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Tsinghua University, Beijing, 100084, China
| | - Hengwei Qiu
- Department of Chemistry, Center for Bioanalytical Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Tsinghua University, Beijing, 100084, China
| | - Min Tu
- Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, China
| | - Hao Zhang
- Department of Chemistry, Center for Bioanalytical Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Tsinghua University, Beijing, 100084, China.
| | - Jinghong Li
- Department of Chemistry, Center for Bioanalytical Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Tsinghua University, Beijing, 100084, China
- Beijing Institute of Life Science and Technology, Beijing, 102206, China
- Center for Bioanalytical Chemistry, Hefei National Laboratory of Physical Science at Microscale, University of Science and Technology of China, Hefei, 230026, China
| |
Collapse
|
12
|
Sun X, Gu YF, Zhang XM, Shen Y, Wang DH, Zhang SM, Yu MH, Chang Z. A linker selective retention strategy to construct hierarchical porous metal-organic frameworks with high catalytic activity for oxidative desulfurization. Dalton Trans 2024; 53:6157-6161. [PMID: 38488126 DOI: 10.1039/d4dt00154k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
In order to improve the oxidative desulfurization (ODS) performance of MOF materials, an effective way is to convert a microporous MOF into a hierarchical porous MOF (HP-MOF) by utilizing the linker selective retention strategy. Herein, UiO-66 with the introduction of an unstable linker ligand (dihydro-1,2,4,5-tetrazine-3,6-dicarboxylate, dhtz) can selectively remove dhtz ligands to form HP-MOF (HP-UiO-66-dhtz) through heat treatment at high temperature. While maintaining the original structure of UiO-66, HP-UiO-66-dhtz features mesopores and abundant Lewis acid sites, showing excellent ODS performance for diphenylthiophene (DBT).
Collapse
Affiliation(s)
- Xiaowen Sun
- School of Materials Science and Engineering, Nankai University, Tianjin 300350, China.
| | - Yun-Feng Gu
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, China
| | - Xiao-Min Zhang
- College of Chemistry, Nankai University, Tianjin 300071, China
| | - Yan Shen
- School of Materials Science and Engineering, Nankai University, Tianjin 300350, China.
| | - Dan-Hong Wang
- School of Materials Science and Engineering, Nankai University, Tianjin 300350, China.
| | - Shu-Ming Zhang
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, China
| | - Mei-Hui Yu
- School of Materials Science and Engineering, Nankai University, Tianjin 300350, China.
| | - Ze Chang
- School of Materials Science and Engineering, Nankai University, Tianjin 300350, China.
| |
Collapse
|
13
|
Rubio-Giménez V, Carraro F, Hofer S, Fratschko M, Stassin T, Rodríguez-Hermida S, Schrode B, Barba L, Resel R, Falcaro P, Ameloot R. Polymorphism and orientation control of copper-dicarboxylate metal-organic framework thin films through vapour- and liquid-phase growth. CrystEngComm 2024; 26:1071-1076. [PMID: 38384732 PMCID: PMC10877460 DOI: 10.1039/d3ce01296d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 02/02/2024] [Indexed: 02/23/2024]
Abstract
Precise control over the crystalline phase and crystallographic orientation within thin films of metal-organic frameworks (MOFs) is highly desirable. Here, we report a comparison of the liquid- and vapour-phase film deposition of two copper-dicarboxylate MOFs starting from an oriented metal hydroxide precursor. X-ray diffraction revealed that the vapour- or liquid-phase reaction of the linker with this precursor results in different crystalline phases, morphologies, and orientations. Pole figure analysis showed that solution-based growth of the MOFs follows the axial texture of the metal hydroxide precursor, resulting in heteroepitaxy. In contrast, the vapour-phase method results in non-epitaxial growth with uniplanar texture only.
Collapse
Affiliation(s)
- Víctor Rubio-Giménez
- Centre for Membrane Separations, Adsorption, Catalysis and Spectroscopy (cMACS), KU Leuven Celestijnenlaan 200F 3001 Leuven Belgium
| | - Francesco Carraro
- Institute of Physical and Theoretical Chemistry, Graz University of Technology Stremayrgasse 9/Z2 8010 Graz Austria
| | - Sebastian Hofer
- Institute of Solid State Physics, Graz University of Technology Petersgasse 16 8010 Graz Austria
| | - Mario Fratschko
- Institute of Solid State Physics, Graz University of Technology Petersgasse 16 8010 Graz Austria
| | - Timothée Stassin
- Centre for Membrane Separations, Adsorption, Catalysis and Spectroscopy (cMACS), KU Leuven Celestijnenlaan 200F 3001 Leuven Belgium
| | - Sabina Rodríguez-Hermida
- Centre for Membrane Separations, Adsorption, Catalysis and Spectroscopy (cMACS), KU Leuven Celestijnenlaan 200F 3001 Leuven Belgium
| | - Benedikt Schrode
- Institute of Solid State Physics, Graz University of Technology Petersgasse 16 8010 Graz Austria
| | - Luisa Barba
- Istituto di Cristallografia - Sincrotrone Elettra, Consiglio Nazionale delle Ricerche Area Science Park 34142 Basovizza Italy
| | - Roland Resel
- Institute of Solid State Physics, Graz University of Technology Petersgasse 16 8010 Graz Austria
| | - Paolo Falcaro
- Institute of Physical and Theoretical Chemistry, Graz University of Technology Stremayrgasse 9/Z2 8010 Graz Austria
| | - Rob Ameloot
- Centre for Membrane Separations, Adsorption, Catalysis and Spectroscopy (cMACS), KU Leuven Celestijnenlaan 200F 3001 Leuven Belgium
| |
Collapse
|
14
|
Linares-Moreau M, Brandner LA, Velásquez-Hernández MDJ, Fonseca J, Benseghir Y, Chin JM, Maspoch D, Doonan C, Falcaro P. Fabrication of Oriented Polycrystalline MOF Superstructures. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2309645. [PMID: 38018327 DOI: 10.1002/adma.202309645] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 10/19/2023] [Indexed: 11/30/2023]
Abstract
The field of metal-organic frameworks (MOFs) has progressed beyond the design and exploration of powdery and single-crystalline materials. A current challenge is the fabrication of organized superstructures that can harness the directional properties of the individual constituent MOF crystals. To date, the progress in the fabrication methods of polycrystalline MOF superstructures has led to close-packed structures with defined crystalline orientation. By controlling the crystalline orientation, the MOF pore channels of the constituent crystals can be aligned along specific directions: these systems possess anisotropic properties including enhanced diffusion along specific directions, preferential orientation of guest species, and protection of functional guests. In this perspective, we discuss the current status of MOF research in the fabrication of oriented polycrystalline superstructures focusing on the specific crystalline directions of orientation. Three methods are examined in detail: the assembly from colloidal MOF solutions, the use of external fields for the alignment of MOF particles, and the heteroepitaxial ceramic-to-MOF growth. This perspective aims at promoting the progress of this field of research and inspiring the development of new protocols for the preparation of MOF systems with oriented pore channels, to enable advanced MOF-based devices with anisotropic properties.
Collapse
Affiliation(s)
- Mercedes Linares-Moreau
- Institute of Physical and Theoretical Chemistry, Graz University of Technology, Graz, 8010, Austria
| | - Lea A Brandner
- Institute of Physical and Theoretical Chemistry, Graz University of Technology, Graz, 8010, Austria
| | | | - Javier Fonseca
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and The Barcelona Institute of Science and Technology, Campus UAB, Bellaterra, Barcelona, 08193, Spain
| | - Youven Benseghir
- Faculty of Chemistry, Institute of Functional Materials and Catalysis, University of Vienna, Währingerstr. 42, Vienna, A-1090, Austria
| | - Jia Min Chin
- Faculty of Chemistry, Institute of Functional Materials and Catalysis, University of Vienna, Währingerstr. 42, Vienna, A-1090, Austria
| | - Daniel Maspoch
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and The Barcelona Institute of Science and Technology, Campus UAB, Bellaterra, Barcelona, 08193, Spain
- Departament de Química, Facultat de Ciències, Universitat Autònoma de Barcelona (UAB), Cerdanyola del Vallès, Barcelona, 08193, Spain
- ICREA, Pg. Lluís Companys 23, Barcelona, 08010, Spain
| | - Christian Doonan
- Department of Chemistry, The University of Adelaide, Adelaide, South Australia, 5005, Australia
| | - Paolo Falcaro
- Institute of Physical and Theoretical Chemistry, Graz University of Technology, Graz, 8010, Austria
| |
Collapse
|
15
|
Brandner LA, Linares-Moreau M, Zhou G, Amenitsch H, Dal Zilio S, Huang Z, Doonan C, Falcaro P. Water sensitivity of heteroepitaxial Cu-MOF films: dissolution and re-crystallization of 3D-oriented MOF superstructures. Chem Sci 2023; 14:12056-12067. [PMID: 37969597 PMCID: PMC10631222 DOI: 10.1039/d3sc04135b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 10/12/2023] [Indexed: 11/17/2023] Open
Abstract
3D-oriented metal-organic framework (MOF) films and patterns have recently emerged as promising platforms for sensing and photonic applications. These oriented polycrystalline materials are typically prepared by heteroepitaxial growth from aligned inorganic nanostructures and display anisotropic functional properties, such as guest molecule alignment and polarized fluorescence. However, to identify suitable conditions for the integration of these 3D-oriented MOF superstructures into functional devices, the effect of water (gaseous and liquid) on different frameworks should be determined. We note that the hydrolytic stability of these heteroepitaxially grown MOF films is currently unexplored. In this work, we present an in-depth analysis of the structural evolution of aligned 2D and 3D Cu-based MOFs grown from Cu(OH)2 coatings. Specifically, 3D-oriented Cu2L2 and Cu2L2DABCO films (L = 1,4-benzenedicarboxylate, BDC; biphenyl-4,4-dicarboxylate, BPDC; DABCO = 1,4-diazabicyclo[2.2.2]octane) were exposed to 50% relative humidity (RH), 80% RH and liquid water. The combined use of X-ray diffraction, infrared spectroscopy, and scanning electron microscopy shows that the sensitivity towards humid environments critically depends on the presence of the DABCO pillar ligand. While oriented films of 2D MOF layers stay intact upon exposure to all levels of humidity, hydrolysis of Cu2L2DABCO is observed. In addition, we report that in environments with high water content, 3D-oriented Cu2(BDC)2DABCO recrystallizes as 3D-oriented Cu2(BDC)2. The heteroepitaxial MOF-to-MOF transformation mechanism was studied with in situ synchrotron experiments, time-resolved AFM measurements, and electron diffraction. These findings provide valuable information on the stability of oriented MOF films for their application in functional devices and highlight the potential for the fabrication of 3D-oriented superstructures via MOF-to-MOF transformations.
Collapse
Affiliation(s)
- Lea A Brandner
- Institute of Physical and Theoretical Chemistry, Graz University of Technology 8010 Graz Austria
| | - Mercedes Linares-Moreau
- Institute of Physical and Theoretical Chemistry, Graz University of Technology 8010 Graz Austria
| | - Guojun Zhou
- Department of Materials and Environmental Chemistry, Stockholm University Stockholm SE-106 91 Sweden
| | - Heinz Amenitsch
- Institute of Inorganic Chemistry, Graz University of Technology 8010 Graz Austria
| | - Simone Dal Zilio
- CNR-IOM - Istituto Officina dei Materiali SS 14, km 163.5, Basovizza Trieste 34149 Italy
| | - Zhehao Huang
- Department of Materials and Environmental Chemistry, Stockholm University Stockholm SE-106 91 Sweden
| | - Christian Doonan
- Department of Chemistry, The University of Adelaide Adelaide South Australia 5005 Australia
| | - Paolo Falcaro
- Institute of Physical and Theoretical Chemistry, Graz University of Technology 8010 Graz Austria
| |
Collapse
|