1
|
Jin L, Wei Y, Feng L, Wang Y, Liu S, Zhang J, Ma R, Shao X, Zhang X, Kong D, Zhao Z, Zhang W, Liu J, Zhang J. Insight into the unique role of silver single-atom in atomic-thickness ZnIn 2S 4/g-C 3N 4 Van der Waals heterojunction for photocatalytic hydrogen evolution. J Colloid Interface Sci 2025; 678:742-753. [PMID: 39307062 DOI: 10.1016/j.jcis.2024.09.153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 09/08/2024] [Accepted: 09/15/2024] [Indexed: 10/27/2024]
Abstract
The construction of ultra-close 2D atomic-thickness Van der Waals heterojunctions with high-speed charge transfer still faces challenges. Here, we synthesized single-layer ZnIn2S4 and g-C3N4, and introduced silver single atoms to regulate Van der Waals heterojunctions at the atomic level to optimize charge transfer and catalytic activity. At the atomic scale, the impact of detailed structural differences between the two characteristic surfaces of ZnIn2S4 ([Zn-S4] and [In-S4]) on catalytic performance has been first proposed. Experiments combined with the DFT study demonstrate that single atom Ag not only acts as a charge transfer bridge but also regulates the energy band and intrinsic catalytic activity. Benefiting from the enhanced electron delocalization, the synthesized catalyst ZIS/Ag@CN exhibits excellent photocatalytic performance, with a hydrogen production rate of 5.50 mmol·g-1·h-1, which is much higher than the reported Ag-based single-atom catalysts so far. This work provides a new understanding of atomic-level heterojunction interface regulation and modification.
Collapse
Affiliation(s)
- Lin Jin
- Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry, Ministry of Education, Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, China
| | - Yajuan Wei
- Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry, Ministry of Education, Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, China.
| | - Lanlan Feng
- Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry, Ministry of Education, Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, China
| | - Yuwen Wang
- Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry, Ministry of Education, Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, China
| | - Shuang Liu
- Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry, Ministry of Education, Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, China
| | - Junwei Zhang
- Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry, Ministry of Education, Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, China
| | - Ruoxuan Ma
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Renewable Energy Conversion and Storage Center, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Xueying Shao
- Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry, Ministry of Education, Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, China
| | - Xuan Zhang
- Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry, Ministry of Education, Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, China
| | - Demeng Kong
- Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry, Ministry of Education, Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, China
| | - Zibo Zhao
- Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry, Ministry of Education, Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, China
| | - Wei Zhang
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Renewable Energy Conversion and Storage Center, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Jia Liu
- Tianjin Key Laboratory of Molecular Optoelectronics Science, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, China.
| | - Jingbo Zhang
- Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry, Ministry of Education, Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, China.
| |
Collapse
|
2
|
Wang X, Wang H, Wan X, Wei Q, Zeng Y, Tang D. Smartphone-based point-of-care photoelectrochemical immunoassay coupling with ascorbic acid-triggered photocurrent-polarity conversion switching. Biosens Bioelectron 2025; 267:116749. [PMID: 39243445 DOI: 10.1016/j.bios.2024.116749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 08/28/2024] [Accepted: 09/04/2024] [Indexed: 09/09/2024]
Abstract
Photocurrent-polarity conversion strategies are typically realized by constructing complex photovoltaic electrodes or changing the relevant conditions, but most involve poor photogenerated carrier transfer efficiency and cumbersome experimental steps. To this end, a photoelectrochemical (PEC) biosensor by utilizing ascorbic acid (AA)-induced photocurrent-polarity-switching was proposed for the detection of carcinoembryonic antigen (CEA). Under light excitation, the electron donor AA was oxidized by the photogenerated holes of photoactive material Co-NC/CdS, resulting in the conversion of cathodic photocurrent to the anodic direction. In the presence of the target CEA, alkaline phosphatase (ALP) was introduced into the microplates by the sandwiched immunoreaction, which then catalyzed the production of AA from ascorbic acid-2-phosphate (AAP). Finally, the catalytic product AA was transferred onto Co-NC/CdS-modified screen-printed carbon electrode, thus activating photocurrent-polarity-switching platform. The anodic photocurrent values gradually increased with increasing CEA concentration in the range of 0.02-80 ng mL-1 and reached a limit of detection (LOD) of 8.47 pg mL-1 (S/N = 3). In addition, the results of actual sample detection prove the reliability of the constructed PEC biosensor. Importantly, this work relies on a mobile smartphone wireless Bluetooth device coupled with the PEC biosensor for immediate detection, providing another idea for detecting CEA in clinical diagnosis.
Collapse
Affiliation(s)
- Xin Wang
- Key Laboratory for Analytical Science of Food Safety and Biology (MOE & Fujian Province), Department of Chemistry, Fuzhou University, Fuzhou, 350108, PR China
| | - Haiyang Wang
- Key Laboratory for Analytical Science of Food Safety and Biology (MOE & Fujian Province), Department of Chemistry, Fuzhou University, Fuzhou, 350108, PR China
| | - Xinyu Wan
- Key Laboratory for Analytical Science of Food Safety and Biology (MOE & Fujian Province), Department of Chemistry, Fuzhou University, Fuzhou, 350108, PR China
| | - Qiaohua Wei
- Key Laboratory for Analytical Science of Food Safety and Biology (MOE & Fujian Province), Department of Chemistry, Fuzhou University, Fuzhou, 350108, PR China.
| | - Yongyi Zeng
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, 350025, PR China.
| | - Dianping Tang
- Key Laboratory for Analytical Science of Food Safety and Biology (MOE & Fujian Province), Department of Chemistry, Fuzhou University, Fuzhou, 350108, PR China.
| |
Collapse
|
3
|
Gu M, Zhang J, Kurganskii IV, Poryvaev AS, Fedin MV, Cheng B, Yu J, Zhang L. Unveiling Charge Carrier Dynamics at Organic-Inorganic S-Scheme Heterojunction Interfaces: Insights From Advanced EPR. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024:e2414803. [PMID: 39676493 DOI: 10.1002/adma.202414803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 11/21/2024] [Indexed: 12/17/2024]
Abstract
Understanding charge carrier transfer at heterojunction interfaces is critical for advancing solar energy conversion technologies. This study utilizes continuous wave (CW), pulse, and time-resolved (TR) electron paramagnetic resonance (EPR) spectroscopy to explore the radical species formed at the TAPA (tris(4-aminophenyl)amine)-PDA (Terephthaldicarboxaldehyde)/ZnIn2S4 (TP/ZIS) heterojunction interface. CW and pulse EPR identify stable radical defects localized near the interface, accessible to water molecules. Time-resolved EPR reveals a photoinduced electron transfer from TP to ZIS, leading to the generation of spin-correlated radical pairs under light irradiation, signifying efficient charge carrier separation and spatial transfer within the S-scheme heterojunction. This electron transfer mechanism, confirmed through in situ X-ray photoelectron spectroscopy and femtosecond transient absorption spectroscopy, suppresses undesirable carrier recombination, extending charge carrier lifetimes. These findings provide novel insights into the transport direction of charge carriers at the S-scheme heterojunction interface, offering valuable guidance for designing highly efficient and stable organic-inorganic heterojunction photocatalysts for solar energy applications.
Collapse
Affiliation(s)
- Miaoli Gu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, P. R. China
| | - Jianjun Zhang
- Laboratory of Solar Fuel, Faculty of Materials Science and Chemistry, China University of Geosciences, 68 Jincheng Street, Wuhan, 430078, P. R. China
| | | | - Artem S Poryvaev
- International Tomography Center SB RAS, Novosibirsk, 630090, Russia
| | - Matvey V Fedin
- International Tomography Center SB RAS, Novosibirsk, 630090, Russia
- Novosibirsk State University, Novosibirsk, 630090, Russia
| | - Bei Cheng
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, P. R. China
| | - Jiaguo Yu
- Laboratory of Solar Fuel, Faculty of Materials Science and Chemistry, China University of Geosciences, 68 Jincheng Street, Wuhan, 430078, P. R. China
| | - Liuyang Zhang
- Laboratory of Solar Fuel, Faculty of Materials Science and Chemistry, China University of Geosciences, 68 Jincheng Street, Wuhan, 430078, P. R. China
| |
Collapse
|
4
|
Willner BJ, Aitchison CM, Podjaski F, Lu W, Tian J, Durrant JR, McCulloch I. Correlation between the Molecular Properties of Semiconducting Polymers of Intrinsic Microporosity and Their Photocatalytic Hydrogen Production. J Am Chem Soc 2024; 146:30813-30823. [PMID: 39475215 PMCID: PMC11565637 DOI: 10.1021/jacs.4c08549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 10/18/2024] [Accepted: 10/21/2024] [Indexed: 11/14/2024]
Abstract
Increasing the interface area between organic semiconductor photocatalysts and electrolyte by fabricating nanoparticles has proven to be an effective strategy to increase photocatalytic hydrogen production activity. However, it remains unclear if increasing the internal interface by the introduction of porosity has as clear benefits for activity. To better inform future photocatalyst design, a series of polymers of intrinsic microporosity (PIMs) with the same conjugated backbone were synthesized as a platform to independently modulate the variables of porosity and relative hydrophilicity through the use of hydrophilic alcohol moieties protected by silyl ether protecting groups. When tested in the presence of ascorbic acid and photodeposited Pt, a strong correlation between the wettable porosity and photocatalytic activity was found, with the more wettable analogue of two polymers of almost the same surface area delivering 7.3 times greater activity, while controlling for other variables. Transient absorption spectroscopic (TAS) investigation showed efficient intrinsic charge generation within 10 ps in two of the porous polymers, even without the presence of ascorbic acid or Pt. Detectable hole polarons were found to be immediately extracted by added ascorbic acid, suggesting the generation of reactive charges at regions readily accessible to electrolyte in the porous structures. This study directs organic semiconductor photocatalysts design toward more hydrophilic functionality for addressing exciton and charge recombination bottlenecks and clearly demonstrates the advantages of wettable porosity as a design principle.
Collapse
Affiliation(s)
- Benjamin J. Willner
- Department
of Chemistry, Chemistry Research Laboratory, Oxford University, 12
Mansfield Road, Oxford OX1 3TA, U.K.
| | - Catherine M. Aitchison
- Department
of Chemistry, Chemistry Research Laboratory, Oxford University, 12
Mansfield Road, Oxford OX1 3TA, U.K.
| | - Filip Podjaski
- Department
of Chemistry and Centre for Processable Electronics, Imperial College London, 80 Wood Lane, London W12
0BZ, U.K.
| | - Wanpeng Lu
- Department
of Chemistry, Chemistry Research Laboratory, Oxford University, 12
Mansfield Road, Oxford OX1 3TA, U.K.
| | - Junfu Tian
- Department
of Chemistry, Chemistry Research Laboratory, Oxford University, 12
Mansfield Road, Oxford OX1 3TA, U.K.
| | - James R. Durrant
- Department
of Chemistry and Centre for Processable Electronics, Imperial College London, 80 Wood Lane, London W12
0BZ, U.K.
| | - Iain McCulloch
- Department
of Chemistry, Chemistry Research Laboratory, Oxford University, 12
Mansfield Road, Oxford OX1 3TA, U.K.
- Andlinger
Center for Energy and the Environment and Department of Electrical
and Computer Engineering, Princeton University, Princeton, New Jersey 08544, United States
| |
Collapse
|
5
|
Yu M, Chen W, Lin Q, Li L, Liu Z, Bi J, Yu Y. Electrostatic Confinement-Induced Excited Charge Transfer in Ionic Covalent Organic Framework Promoting CO 2 Reduction. Angew Chem Int Ed Engl 2024:e202418422. [PMID: 39492798 DOI: 10.1002/anie.202418422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 11/04/2024] [Accepted: 11/04/2024] [Indexed: 11/05/2024]
Abstract
We demonstrate an electrostatic confinement-induced charge transfer pathway in a supramolecular photocatalyst comprising of an ionic covalent organic framework (COF) and cationic metal complexes. The dynamic electrostatic interactions not only attract cations around the COF to accept photogenerated electrons, but also allow for a retention of homogeneous catalytic characters of complexes, making a subtle balance. Accordingly, the electrostatic confinement effect facilitates the forward electron transfer from a photoexcited COF to cationic Co complex, realizing a remarkable photocatalytic CO2 reduction performance. Its catalytic efficiency is far superior to the supramolecular counterparts with Van-der-Waals or hydrogen bonding interactions. This work presents an insight for enhancing charge transfer in supramolecular systems, and provides an effective approach for construction of highly efficient photocatalysts.
Collapse
Affiliation(s)
- Mingfei Yu
- Key Laboratory of Eco-materials Advanced Technology, College of Materials Science and Engineering, Fuzhou University, Fuzhou, 350108, P. R. China
| | - Wei Chen
- Key Laboratory of Eco-materials Advanced Technology, College of Materials Science and Engineering, Fuzhou University, Fuzhou, 350108, P. R. China
| | - Qingqing Lin
- Key Laboratory of Eco-materials Advanced Technology, College of Materials Science and Engineering, Fuzhou University, Fuzhou, 350108, P. R. China
| | - Liuyi Li
- Key Laboratory of Eco-materials Advanced Technology, College of Materials Science and Engineering, Fuzhou University, Fuzhou, 350108, P. R. China
| | - Zheyuan Liu
- Key Laboratory of Eco-materials Advanced Technology, College of Materials Science and Engineering, Fuzhou University, Fuzhou, 350108, P. R. China
| | - Jinhong Bi
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Environment and Safety Engineering, Fuzhou University, Fuzhou, 350108, P. R. China
| | - Yan Yu
- Key Laboratory of Eco-materials Advanced Technology, College of Materials Science and Engineering, Fuzhou University, Fuzhou, 350108, P. R. China
| |
Collapse
|
6
|
McQueen E, Sakakibara N, Kamogawa K, Zwijnenburg MA, Tamaki Y, Ishitani O, Sprick RS. Visible-light-responsive hybrid photocatalysts for quantitative conversion of CO 2 to highly concentrated formate solutions. Chem Sci 2024:d4sc05289g. [PMID: 39416289 PMCID: PMC11474659 DOI: 10.1039/d4sc05289g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 10/05/2024] [Indexed: 10/19/2024] Open
Abstract
Photocatalysts can use visible light to convert CO2 into useful products. However, to date photocatalysts for CO2 conversion are limited by insufficient long-term stability and low CO2 conversion rates. Here we report hybrid photocatalysts consisting of conjugated polymers and a ruthenium(ii)-ruthenium(ii) supramolecular photocatalyst which overcome these challenges. The use of conjugated polymers allows for easy fine-tuning of structural and optoelectronic properties through the choice of monomers, and after loading with silver nanoparticles and the ruthenium-based binuclear metal complex, the resulting hybrid systems displayed remarkably enhanced activity for visible light-driven CO2 conversion to formate. In particular, the hybrid photocatalyst system based on poly(dibenzo[b,d]thiophene sulfone) drove the very active, durable and selective photocatalytic CO2 conversion to formate under visible light irradiation. The turnover number was found to be very high (TON = 349 000) with a similarly high turnover frequency (TOF) of 6.5 s-1, exceeding the CO2 fixation activity of ribulose-1,5-bisphosphate carboxylase/oxygenase in natural photosynthesis (TOF = 3.3 s-1), and an apparent quantum yield of 11.2% at 440 nm. Remarkably, quantitative conversion of CO2 (737 μmol, 16.5 mL) to formate was achieved using only 8 mg of the hybrid photocatalyst containing 80 nmol of the supramolecular photocatalyst at standard temperature and pressure. The system sustained photocatalytic activity even after further replenishment of CO2, yielding a very high concentration of formate in the reaction solution up to 0.40 M without significant photocatalyst degradation within the timeframe studied. A range of experiments together with density functional theory calculations allowed us to understand the activity in more detail.
Collapse
Affiliation(s)
- Ewan McQueen
- Department of Pure and Applied Chemistry, University of Strathclyde Thomas Graham Building, 295 Cathedral Street Glasgow G1 1XL UK
| | - Noritaka Sakakibara
- Department of Chemistry, School of Science, Tokyo Institute of Technology 2-12-1-NE-2 Ookayama, Meguro Tokyo 152-8550 Japan
| | - Kei Kamogawa
- Department of Chemistry, School of Science, Tokyo Institute of Technology 2-12-1-NE-2 Ookayama, Meguro Tokyo 152-8550 Japan
| | - Martijn A Zwijnenburg
- Department of Chemistry, University College London 20 Gordon Street London WC1H 0AJ UK
| | - Yusuke Tamaki
- Department of Chemistry, School of Science, Tokyo Institute of Technology 2-12-1-NE-2 Ookayama, Meguro Tokyo 152-8550 Japan
| | - Osamu Ishitani
- Department of Chemistry, Graduate School of Advanced Science and Engineering, Hiroshima University 1-3-1 Kagamiyama, Higashi-Hiroshima Hiroshima 739 8526 Japan
| | - Reiner Sebastian Sprick
- Department of Pure and Applied Chemistry, University of Strathclyde Thomas Graham Building, 295 Cathedral Street Glasgow G1 1XL UK
| |
Collapse
|
7
|
Wan J, Wang Y, Liu J, Song R, Liu L, Li Y, Li J, Low J, Fu F, Xiong Y. Full-Space Electric Field in Mo-Decorated Zn 2In 2S 5 Polarization Photocatalyst for Oriented Charge Flow and Efficient Hydrogen Production. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2405060. [PMID: 38760947 DOI: 10.1002/adma.202405060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 05/10/2024] [Indexed: 05/20/2024]
Abstract
Integration of photocatalytic hydrogen (H2) evolution with oxidative organic synthesis presents a highly attractive strategy for the simultaneous production of clean H2 fuel and high-value chemicals. However, the sluggish dynamics of photogenerated charge carriers across the photocatalysts result in low photoconversion efficiency, hindering the wide applications of such a technology. Herein, this work overcomes this limitation by inducing the full-space electric field via charge polarization engineering on a Mo cluster-decorated Zn2In2S5 (Mo-Zn2In2S5) photocatalyst. Specifically, this full-space electric field arises from a cascade of the bulk electric field (BEF) and local surface electric field (LSEF), triggering the oriented migration of photogenerated electrons from [Zn-S] regions to [In-S] regions and eventually to Mo cluster sites, ensuring efficient separation of bulk and surface charge carriers. Moreover, the surface Mo clusters induce a tip enhancement effect to optimize charge transfer behavior by augmenting electrons and proton concentration around the active sites on the basal plane of Zn2In2S5. Notably, the optimized Mo1.5-Zn2In2S5 catalyst achieves exceptional H2 and benzaldehyde production rates of 34.35 and 45.31 mmol gcat -1 h-1, respectively, outperforming pristine ZnIn2S4 by 3.83- and 4.15-fold. These findings mark a significant stride in steering charge flow for enhanced photocatalytic performance.
Collapse
Affiliation(s)
- Jun Wan
- College of Chemistry & Chemical Engineering, Research Institute of Comprehensive Energy Industrial Technology, Shaanxi Key Laboratory of Chemical Reaction Engineering, Yan'an University, Yan'an, Shaanxi, 716000, China
- Hefei National Research Center for Physical Sciences at the Microscale, USTC Center for Micro- and Nanoscale Research and Fabrication, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Yu Wang
- College of Chemistry & Chemical Engineering, Research Institute of Comprehensive Energy Industrial Technology, Shaanxi Key Laboratory of Chemical Reaction Engineering, Yan'an University, Yan'an, Shaanxi, 716000, China
| | - Jiaqing Liu
- College of Chemistry & Chemical Engineering, Research Institute of Comprehensive Energy Industrial Technology, Shaanxi Key Laboratory of Chemical Reaction Engineering, Yan'an University, Yan'an, Shaanxi, 716000, China
| | - Ru Song
- College of Chemistry & Chemical Engineering, Research Institute of Comprehensive Energy Industrial Technology, Shaanxi Key Laboratory of Chemical Reaction Engineering, Yan'an University, Yan'an, Shaanxi, 716000, China
| | - Lin Liu
- College of Chemistry & Chemical Engineering, Research Institute of Comprehensive Energy Industrial Technology, Shaanxi Key Laboratory of Chemical Reaction Engineering, Yan'an University, Yan'an, Shaanxi, 716000, China
| | - Yaping Li
- Hefei National Research Center for Physical Sciences at the Microscale, USTC Center for Micro- and Nanoscale Research and Fabrication, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Jiayi Li
- Hefei National Research Center for Physical Sciences at the Microscale, USTC Center for Micro- and Nanoscale Research and Fabrication, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Jingxiang Low
- Hefei National Research Center for Physical Sciences at the Microscale, USTC Center for Micro- and Nanoscale Research and Fabrication, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Feng Fu
- College of Chemistry & Chemical Engineering, Research Institute of Comprehensive Energy Industrial Technology, Shaanxi Key Laboratory of Chemical Reaction Engineering, Yan'an University, Yan'an, Shaanxi, 716000, China
| | - Yujie Xiong
- Hefei National Research Center for Physical Sciences at the Microscale, USTC Center for Micro- and Nanoscale Research and Fabrication, University of Science and Technology of China, Hefei, Anhui, 230026, China
| |
Collapse
|
8
|
Yin Y, Xiang P, Zhou Y, Meng H, Xiao X, Shao Y, Zhang X, Zhou J, Li Q, Guo C, Ma X, Zhang L, Zhang L, Zhang Q, Jiang B. Creation of Interfacial S 4-Sn-N 2 Electron Pathways for Efficient Light-Driven Hydrogen Evolution. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2310664. [PMID: 38342707 DOI: 10.1002/smll.202310664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 01/28/2024] [Indexed: 02/13/2024]
Abstract
Establishing effective charge transfer channels between two semiconductors is key to improving photocatalytic activity. However, controlling hetero-structures in situ and designing binding modes pose significant challenges. Herein, hydrolytic SnCl2·2H2O is selected as the metal source and loaded in situ onto a layered carbon nitriden supramolecular precursor. A composite photocatalyst, S4-Sn-N2, with electron pathways of SnS2 and tubular carbon nitriden (TCN) is prepared through pyrolysis and vulcanization processes. The contact interface of SnS2-TCN is increased significantly, promoting the formation of S4-Sn-N2 micro-structure in a Z-scheme charge transfer channel. This structure accelerates the separation and transport of photogenerated carriers, maintains the stronger redox ability, and improves the stability of SnS2 in this series of heterojunctions. Therefore, the catalyst demonstrated exceptional photocatalytic hydrogen production efficiency, achieving a reaction rate of 86.4 µmol h-1, which is 3.15 times greater than that of bare TCN.
Collapse
Affiliation(s)
- Yihang Yin
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, School of Chemistry and Materials Science, Heilongjiang University, Harbin, 150080, China
| | - Peng Xiang
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, School of Chemistry and Materials Science, Heilongjiang University, Harbin, 150080, China
| | - Yujie Zhou
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Huiyuan Meng
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, School of Chemistry and Materials Science, Heilongjiang University, Harbin, 150080, China
- School of Safety Engineering, Heilongjiang University of Science and Technology, Harbin, Heilongjiang, China
| | - Xudong Xiao
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, School of Chemistry and Materials Science, Heilongjiang University, Harbin, 150080, China
| | - Yugui Shao
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, School of Chemistry and Materials Science, Heilongjiang University, Harbin, 150080, China
| | - Xinxin Zhang
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, School of Chemistry and Materials Science, Heilongjiang University, Harbin, 150080, China
| | - Jing Zhou
- Zhejiang Institute of Photoelectronics & Zhejiang Institute for Advanced Light Source, Zhejiang Normal University, Jinhua, Zhejiang, 321004, China
| | - Qi Li
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, School of Chemistry and Materials Science, Heilongjiang University, Harbin, 150080, China
| | - Chuanyu Guo
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, School of Chemistry and Materials Science, Heilongjiang University, Harbin, 150080, China
| | - Xuena Ma
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, School of Chemistry and Materials Science, Heilongjiang University, Harbin, 150080, China
| | - Luoming Zhang
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, School of Chemistry and Materials Science, Heilongjiang University, Harbin, 150080, China
| | - Liping Zhang
- Faculty of Materials Science, Shenzhen MSU-BIT University, Shenzhen, 518172, China
| | - Qun Zhang
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui, 230026, China
- Hefei National Laboratory, University of Science and Technology of China, Hefei, Anhui, 230088, China
| | - Baojiang Jiang
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, School of Chemistry and Materials Science, Heilongjiang University, Harbin, 150080, China
| |
Collapse
|
9
|
An S, Jeong K, Hassan SZ, Ham G, Kang S, Lee J, Ma H, Kwon J, Jeong SY, Yang J, Woo HY, Cho H, Cha H, Son CY, Chung DS. Hydrophilic Photocrosslinkers as a Universal Solution to Endow Water Affinity to a Polymer Photocatalyst for an Enhanced Hydrogen Evolution Rate. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2309786. [PMID: 38760898 PMCID: PMC11267343 DOI: 10.1002/advs.202309786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 04/30/2024] [Indexed: 05/20/2024]
Abstract
A universal approach for enhancing water affinity in polymer photocatalysts by covalently attaching hydrophilic photocrosslinkers to polymer chains is presented. A series of bisdiazirine photocrosslinkers, each comprising bisdiazirine photophores linked by various aliphatic (CL-R) or ethylene glycol-based bridge chains (CL-TEG), is designed to prevent crosslinked polymer photocatalysts from degradation through a safe and efficient photocrosslinking reaction at a wavelength of 365 nm. When employing the hydrophilic CL-TEG as a photocrosslinker with polymer photocatalysts (F8BT), the hydrogen evolution reaction (HER) rate is considerably enhanced by 2.5-fold compared to that obtained using non-crosslinked F8BT photocatalysts, whereas CL-R-based photocatalysts yield HER rates comparable to those of non-crosslinked counterparts. Photophysical analyses including time-resolved photoluminescence and transient absorption measurements reveal that adding CL-TEG accelerates exciton separation, forming long-lived charge carriers. Additionally, the in-depth study using molecular dynamics simulations elucidates the dual role of CL-TEG: it enhances water penetration into the polymer matrix and stabilizes charge carriers after exciton generation against undesirable recombination. Therefore, the strategy highlights endowing a high-permittivity environment within polymer photocatalyst in a controlled manner is crucial for enhancing photocatalytic redox reactivity. Furthermore, this study shows that this hydrophilic crosslinker approach has a broad applicability in general polymer semiconductors and their nanoparticulate photocatalysts.
Collapse
Affiliation(s)
- Sanghyeok An
- Department of Chemical EngineeringPohang University of Science and Technology (POSTECH)Pohang37673Republic of Korea
| | - Kyeong‐Jun Jeong
- Department of ChemistryPohang University of Science and Technology (POSTECH)Pohang37673Republic of Korea
| | - Syed Zahid Hassan
- Department of Chemical EngineeringPohang University of Science and Technology (POSTECH)Pohang37673Republic of Korea
| | - Gayoung Ham
- Department of Energy Convergence and Climate ChangeKyungpook National UniversityDaegu41566Republic of Korea
| | - Seonghyeon Kang
- Department of ChemistryPohang University of Science and Technology (POSTECH)Pohang37673Republic of Korea
| | - Juhyeok Lee
- Department of Chemical EngineeringPohang University of Science and Technology (POSTECH)Pohang37673Republic of Korea
| | - Hyeonjong Ma
- Department of Energy Science and EngineeringDaegu Gyeongbuk Institute of Science and Technology (DGIST)Daegu42988Republic of Korea
| | - Jieun Kwon
- Department of Chemical EngineeringPohang University of Science and Technology (POSTECH)Pohang37673Republic of Korea
| | - Sang Young Jeong
- Department of ChemistryKorea UniversitySeoul02841Republic of Korea
| | - Jiwoong Yang
- Department of Energy Science and EngineeringDaegu Gyeongbuk Institute of Science and Technology (DGIST)Daegu42988Republic of Korea
| | - Han Young Woo
- Department of ChemistryKorea UniversitySeoul02841Republic of Korea
| | - Han‐Hee Cho
- Department of Materials Science and EngineeringUlsan National Institute of Science and Technology (UNIST)Ulsan44919Republic of Korea
| | - Hyojung Cha
- Department of Energy Convergence and Climate ChangeKyungpook National UniversityDaegu41566Republic of Korea
- Department of Hydrogen & Renewable EnergyKyungpook National UniversityDaegu41566Republic of Korea
| | - Chang Yun Son
- Department of ChemistryPohang University of Science and Technology (POSTECH)Pohang37673Republic of Korea
| | - Dae Sung Chung
- Department of Chemical EngineeringPohang University of Science and Technology (POSTECH)Pohang37673Republic of Korea
| |
Collapse
|
10
|
Chen J, Xie Y, Yu H, Li Z, Zhou W. Twinned crystal Cd 0.9Zn 0.1S/MoO 3 nanorod S-scheme heterojunctions as promising photocatalysts for efficient hydrogen evolution. Dalton Trans 2024; 53:8781-8790. [PMID: 38712881 DOI: 10.1039/d4dt00585f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Leveraging solar energy through photocatalytic hydrogen production from water stands out as one of the most promising approaches to address the energy and environmental challenges. The choice of catalyst profoundly influences the outcomes of photocatalytic reactions, and constructing heterojunctions has emerged as a widely applied strategy to overcome the limitations associated with single-phase photocatalysts. MoO3, renowned for its high chemical stability, encounters issues such as low photocatalytic efficiency and fast recombination of photogenerated electrons and holes. To tackle these challenges, the morphology of MoO3 has been controlled to form nanorods, simultaneously suppressing the aggregation of the catalyst and increasing the number of surface-active sites. Moreover, to facilitate the separation of photogenerated charge carriers, Cd0.9Zn0.1S nanoparticles with a twin crystal structure are deposited on the surface of MoO3, establishing an S-scheme heterojunction. Experimental findings demonstrate that the synergistic effects arising from the well-defined morphology and interface interactions extend the absorption range to visible light response, improve charge transfer activity, and prolong the lifetime of charge carriers. Consequently, Cd0.9Zn0.1S/MoO3 S-scheme heterojunctions exhibit outstanding photocatalytic hydrogen production performance (3909.79 μmol g-1 h-1) under visible light irradiation, surpassing that of MoO3 by nearly nine fold.
Collapse
Affiliation(s)
- Jie Chen
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, School of Chemistry and Materials Science, Heilongjiang University, Harbin, 150080, PR China.
| | - Ying Xie
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, School of Chemistry and Materials Science, Heilongjiang University, Harbin, 150080, PR China.
| | - Haitao Yu
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, School of Chemistry and Materials Science, Heilongjiang University, Harbin, 150080, PR China.
| | - Zhenzi Li
- Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong 250353, PR China.
| | - Wei Zhou
- Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong 250353, PR China.
| |
Collapse
|
11
|
Aitchison CM, Zhang Y, Lu W, McCulloch I. Photocatalytic CO 2 reduction by topologically matched polymer-polymer heterojunction nanosheets. Faraday Discuss 2024; 250:251-262. [PMID: 37965718 DOI: 10.1039/d3fd00143a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2023]
Abstract
Conversion of solar energy into chemical fuel can be achieved through a number of routes but direct conversion, via photocatalysis, is potentially the simplest and cheapest route to the transformation of low-value substances, water and CO2, to useful chemical fuels or feedstocks such as hydrogen, formate, methanol, and syngas. 2D polymers, including carbon nitrides and COFs, have emerged as one of the most promising classes of organic photocatalysts for solar fuels production due to their energetic tunability, charge transport properties and robustness. They are, however, difficult to process and so there have been limited studies into the formation of heterojunction materials incorporating these components. In this work we use our novel templating approach to combine topologically matched imine-based donor polymers with acceptor polymers formed through Knoevenagel condensation. An efficient heterojunction interface was formed by matching the isostructural nodes and linkers that make up the D1 and A1 semiconductors and this was reflected in the increased photocatalytic activity of the heterojunction material T1. Tuning of the templating synthesis route to give heterojunctions with optimised donor : acceptor ratios, as well as the photocatalytic conditions, resulted in CO production rates that were between 1.5 and 10 times higher than those of the individual polymers. A further set of polymers A5 and D5 were developed with more optimised structures for CO2 reduction including increased overpotential for the reduction reaction and the presence of co-catalyst chelating groups. These had increased activity compared to the group 1 family and again showed higher activity for CO production by the templated heterojunction, T5, than either individual component or a physical mixture of the donor and acceptor.
Collapse
Affiliation(s)
- Catherine M Aitchison
- Department of Chemistry, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, UK.
| | - Yu Zhang
- Department of Chemistry, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, UK.
| | - Wanpeng Lu
- Department of Chemistry, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, UK.
| | - Iain McCulloch
- Department of Chemistry, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, UK.
| |
Collapse
|
12
|
Aitchison CM, McCulloch I. Organic Photovoltaic Materials for Solar Fuel Applications: A Perfect Match? CHEMISTRY OF MATERIALS : A PUBLICATION OF THE AMERICAN CHEMICAL SOCIETY 2024; 36:1781-1792. [PMID: 38435046 PMCID: PMC10902810 DOI: 10.1021/acs.chemmater.3c02286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 02/01/2024] [Accepted: 02/01/2024] [Indexed: 03/05/2024]
Abstract
This work discusses the use of donor and acceptor materials from organic photovoltaics in solar fuel applications. These two routes to solar energy conversion have many shared materials design parameters, and in recent years there has been increasing overlap of the molecules and polymers used in each. Here, we examine whether this is a good approach, where knowledge can be translated, and where further consideration to molecular design is required.
Collapse
Affiliation(s)
- Catherine M. Aitchison
- Department of Chemistry, University
of Oxford, 12 Mansfield Road, Oxford OX1 3TA, United
Kingdom
| | - Iain McCulloch
- Department of Chemistry, University
of Oxford, 12 Mansfield Road, Oxford OX1 3TA, United
Kingdom
| |
Collapse
|
13
|
Zhao W, Tan R, Yang Y, Yang H, Wang J, Yin X, Wu D, Zhang T. Galvanic-Replacement-Assisted Synthesis of Nanostructured Silver-Surface for SERS Characterization of Two-Dimensional Polymers. SENSORS (BASEL, SWITZERLAND) 2024; 24:474. [PMID: 38257565 PMCID: PMC10819046 DOI: 10.3390/s24020474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/05/2024] [Accepted: 01/09/2024] [Indexed: 01/24/2024]
Abstract
Surface-enhanced Raman scattering (SERS) spectroscopy is a powerful technology in trace analysis. However, the wide applications of SERS in practice are limited by the expensive substrate materials and the complicated preparation processes. Here we report a simple and economical galvanic-replacement-assisted synthesis route to prepare Ag nanoparticles on Cu(0) foil (nanoAg@Cu), which can be directly used as SERS substrate. The fabrication process is fast (ca. 10 min) and easily scaled up to centimeters or even larger. In addition, the morphology of the nanoAg@Cu (with Ag particles size from 30 nm to 160 nm) can be adjusted by various additives (e.g., amino-containing ligands). Finally, we show that the as-prepared nanoAg@Cu can be used for SERS characterization of two-dimensional polymers, and ca. 298 times relative enhancement of Raman intensity is achieved. This work offers a simple and economical strategy for the scalable fabrication of silver-based SERS substrate in thin film analysis.
Collapse
Affiliation(s)
- Wenkai Zhao
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Runxiang Tan
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
- Key Laboratory of Leather Chemistry and Engineering of the Education Ministry, Sichuan University, Chengdu 610065, China
| | - Yanping Yang
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Haoyong Yang
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jianing Wang
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Xiaodong Yin
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Daheng Wu
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Tao Zhang
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| |
Collapse
|
14
|
Zhong Y, Dong W, Ren S, Li L. Oligo(phenylenevinylene)-Based Covalent Organic Frameworks with Kagome Lattice for Boosting Photocatalytic Hydrogen Evolution. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2308251. [PMID: 37781857 DOI: 10.1002/adma.202308251] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 09/21/2023] [Indexed: 10/03/2023]
Abstract
Covalent organic frameworks (COFs) have shown great advantages as photocatalysts for hydrogen evolution. However, the effect of linkage geometry and type of linkage on the extent of π-electron conjugation in the plane of the framework and photocatalytic properties of COFs remains a significant challenge. Herein, two Kagome (kgm) topologic oligo(phenylenevinylene)-based COFs are designed and synthesized for boosting photocatalytic hydrogen evolution via a "two in one" strategy. Under visible light irradiation, COF-954 with 5 wt% Pt as cocatalyst exhibits high hydrogen evolution rate (HER) of 137.23 mmol g-1 h-1 , outperforming most reported COF-based photocatalysts. More importantly, even in natural seawater, COF-954 shows an average HER of 191.70 mmol g-1 h-1 under ultraviolet-visible (UV-vis) light irradiation. Additionally, the water-drainage experiments indoors and outdoors demonstrate that 25 and 8 mL hydrogen gas could be produced in 80 min under UV-vis light and natural sunlight, respectively, corresponding to a high HER of 167.41 and 53.57 mmol h-1 g-1 . This work not only demonstrates an effective design strategy toward highly efficient COF-based photocatalysts, but also shows the great potential of using the COF-based photocatalysts for photocatalytic hydrogen evolution.
Collapse
Affiliation(s)
- Yuelin Zhong
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Wenbo Dong
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Shijie Ren
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Longyu Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, P. R. China
| |
Collapse
|
15
|
Ashraf M, Ali R, Khan I, Ullah N, Ahmad MS, Kida T, Wooh S, Tremel W, Schwingenschlögl U, Tahir MN. Bandgap Engineering of Melon using Highly Reduced Graphene Oxide for Enhanced Photoelectrochemical Hydrogen Evolution. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2301342. [PMID: 37548517 DOI: 10.1002/adma.202301342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 06/30/2023] [Indexed: 08/08/2023]
Abstract
The uncondensed form of polymeric carbon nitrides (PCN), generally known as melon, is a stacked 2D structure of poly(aminoimino)heptazine. Melon is used as a photocatalyst in solar energy conversion applications, but suffers from poor photoconversion efficiency due to weak optical absorption in the visible spectrum, high activation energy, and inefficient separation of photoexcited charge carriers. Experimental and theoretical studies are reported to engineer the bandgap of melon with highly reduced graphene oxide (HRG). Three HRG@melon nanocomposites with different HRG:melon ratios (0.5%, 1%, and 2%) are prepared. The 1% HRG@melon nanocomposite shows higher photocurrent density (71 µA cm-2 ) than melon (24 µA cm-2 ) in alkaline conditions. The addition of a hole scavenger further increases the photocurrent density to 630 µA cm-2 relative to the reversible hydrogen electrode (RHE). These experimental results are validated by calculations using density functional theory (DFT), which revealed that HRG results in a significant charge redistribution and an improved photocatalytic hydrogen evolution reaction (HER).
Collapse
Affiliation(s)
- Muhammad Ashraf
- Chemistry Department, King Fahd University of Petroleum & Minerals, Dharan, 31261, Kingdom of Saudi Arabia
| | - Roshan Ali
- Physical Science and Engineering Division (PSE), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Ibrahim Khan
- School of Chemical Engineering and Materials Science, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul, 06974, Republic of Korea
| | - Nisar Ullah
- Chemistry Department, King Fahd University of Petroleum & Minerals, Dharan, 31261, Kingdom of Saudi Arabia
| | - Muhammad Sohail Ahmad
- International Research Organization for Advanced Science and Technology, Kumamoto University, 2-39-1 Kurokami, Kumamoto, 860-8555, Japan
- Institute of Industrial Nanomaterials, Kumamoto University, 2-39-1 Kurokami, Kumamoto, 860-8555, Japan
| | - Tetsuya Kida
- International Research Organization for Advanced Science and Technology, Kumamoto University, 2-39-1 Kurokami, Kumamoto, 860-8555, Japan
- Institute of Industrial Nanomaterials, Kumamoto University, 2-39-1 Kurokami, Kumamoto, 860-8555, Japan
- Department of Advanced Science and Technology, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto, 860-8555, Japan
| | - Sanghyuk Wooh
- School of Chemical Engineering and Materials Science, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul, 06974, Republic of Korea
| | - Wolfgang Tremel
- Chemistry Department, Johannes Gutenberg-University, Duesbergweg 10-14, D-55128, Mainz, Germany
| | - Udo Schwingenschlögl
- Physical Science and Engineering Division (PSE), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Muhammad Nawaz Tahir
- Chemistry Department, King Fahd University of Petroleum & Minerals, Dharan, 31261, Kingdom of Saudi Arabia
- Interdisciplinary Research Center for Hydrogen and Energy Storage, King Fahd University of Petroleum & Minerals, Dhahran, 31261, Saudi Arabia
| |
Collapse
|