1
|
Li F, Wang L, Gao L, Zu D, Zhang D, Xu T, Hu Q, Zhu R, Liu Y, Hu BL. Reducing Dielectric Loss of High-Dielectric-Constant Elastomer via Rigid Short-Chain Crosslinking. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2411082. [PMID: 39380411 DOI: 10.1002/adma.202411082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 09/14/2024] [Indexed: 10/10/2024]
Abstract
High-dielectric-constant elastomers have broad applications in wearable electronics, which can be achieved by the elastification of relaxor ferroelectric polymers. However, the introduction of soft long chains, with their high mobility under strong electric fields, leads to high dielectric loss. Given the relatively low modulus of relaxor ferroelectric polymers, elastification can be realized by introducing short-chain crosslinkers. In this work, a molecular engineering design is employed, utilizing a rigid short-chain crosslinker to create crosslinks with relaxor ferroelectric polymer, resulting in intrinsic elastomers characterized by a high dielectric constant but low dielectric loss. The obtained intrinsic ferroelectric elastomer possesses a high dielectric constant (35 at 1 kHz and 25 °C) and a low dielectric loss (0.09). Furthermore, this elastomer exhibits stable ferroelectric response and relaxor characteristics even under strains up to 80%. The study supplies a simple but effective method to reduce the dielectric loss of high-dielectric-constant intrinsic elastomers, thereby expanding their application fields in wearable electronics.
Collapse
Affiliation(s)
- Fangzhou Li
- Advanced Interdisciplinary Sciences Research (AIR) Center, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Linping Wang
- Advanced Interdisciplinary Sciences Research (AIR) Center, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
| | - Liang Gao
- Advanced Interdisciplinary Sciences Research (AIR) Center, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Da Zu
- Key Laboratory of Low Dimensional Materials and Application Technology of Ministry of Education, School of Materials Science and Engineering, Xiangtan University, Xiangtan, 411105, China
| | - Dongyang Zhang
- Advanced Interdisciplinary Sciences Research (AIR) Center, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
| | - Tianhua Xu
- Advanced Interdisciplinary Sciences Research (AIR) Center, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
| | - Qiuyue Hu
- Advanced Interdisciplinary Sciences Research (AIR) Center, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
| | - Ren Zhu
- Oxford Instruments Asylum Research, Shanghai, 200233, China
| | - Yunya Liu
- Key Laboratory of Low Dimensional Materials and Application Technology of Ministry of Education, School of Materials Science and Engineering, Xiangtan University, Xiangtan, 411105, China
| | - Ben-Lin Hu
- Advanced Interdisciplinary Sciences Research (AIR) Center, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
2
|
Hao X, Liu X, Wang Y, Zang W, Wu W, Jiang Y, Ning N, Tian M, Zhang L. Trapping Ions to Enhance High-Field Energy Harvesting Performance by Filling Polar Macromolecular Dielectrics. ACS APPLIED MATERIALS & INTERFACES 2024; 16:50887-50896. [PMID: 39262274 DOI: 10.1021/acsami.4c11462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/13/2024]
Abstract
In the quest for sustainable and renewable energy sources, researchers and engineers have explored innovative technologies to harvest energy from various environmental sources. Dielectric elastomer generators (DEGs) with high energy harvesting performance have been proven to be promising energy collectors, but achieving a high dielectric constant (ε') and low electrical conductivity (EC) under high electric fields of dielectric elastomer (DE) simultaneously is a struggle, which poses significant challenges. In this study, high-content carboxyl group-grafted liquid polybutadiene (HCPB) is synthesized and then adopted as an organic dielectric filler to blend and cocross-link with a butadiene rubber (BR) matrix to prepare DE composites with high energy harvesting performance. The introduction of carboxyl groups enhances polarization while trapping free Al3+ in the matrix, which revolutionarily achieves a significant increase in ε' under extremely low EC. Ultimately, the contradiction between increased ε' and decreased EC under high electric fields is reconciled, resulting in a 30 HCPB/BR composite with high energy density (w = 91.9 mJ/cm3) and fine power conversion efficiency (PCE = 24.1%). This advancement paves the way for the development of HCPB/BR composite-based DEGs with enhanced ε' and energy harvesting performance.
Collapse
Affiliation(s)
- Xuesong Hao
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
| | - Xueying Liu
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yuhao Wang
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
| | - Wenpeng Zang
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
| | - Wenju Wu
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yingjie Jiang
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
| | - Nanying Ning
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
- Key Laboratory of Carbon Fiber and Functional Polymers, Ministry of Education, Beijing University of Chemical Technology, Beijing 100029, China
| | - Ming Tian
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
- Key Laboratory of Carbon Fiber and Functional Polymers, Ministry of Education, Beijing University of Chemical Technology, Beijing 100029, China
| | - Liqun Zhang
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
- Key Laboratory of Carbon Fiber and Functional Polymers, Ministry of Education, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
3
|
Yuan H, Liu Z, Song J, Okamura S, Xin JH, Xue M, Jing T. Soft Gel Filler Embedded Elastomer with Surfactant Improved Interface for Dielectric Elastomer Actuators. ACS APPLIED MATERIALS & INTERFACES 2024; 16:26787-26796. [PMID: 38739459 DOI: 10.1021/acsami.4c04264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Stretchable materials are the foundation of dielectric actuators (DEAs) for artificial muscle. However, the inadequate dielectric constant of stretchable materials has always greatly limited the performance of artificial muscle. Recently, soft fillers have been proposed to improve the dielectric property and preserve the stretchability for softness, aiming to avoid the stiffening effect of traditional rigid fillers. As composites, an amount of interfacial region is generated, which remarkably affects composites' performance from dielectrics to mechanics. Herein, we demonstrate that the size effect, interfacial binding, and compatibility have a great impact on soft filler doped composites. Particularly, according to the liquid characteristics of soft fillers, we explore an interfacial modification method using surfactants. Composite breakdown strength is thus enhanced 2.2-fold from that in the control group due to the reduction of mismatch between fillers and matrix. Moreover, surfactants alleviate the well-known stiffening effect in small fillers. The area strain of the composites reaches 10.3 ± 0.4% at a low electric field of 7 MV/m, and a soft micropump is successfully assembled. These findings demonstrate a unique and combined interfacial influence of soft filler doped elastomer, which promotes the advancements of the dielectric elastomer artificial muscle.
Collapse
Affiliation(s)
- Haiyuan Yuan
- School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai 519082, People's Republic of China
- State Key Laboratory of Electrical Insulation and Power Equipment, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China
| | - Zupeng Liu
- School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai 519082, People's Republic of China
| | - Jundong Song
- Department of Applied Physics, Tokyo University of Science, Tokyo 125-8585, Japan
| | - Soichiro Okamura
- Department of Applied Physics, Tokyo University of Science, Tokyo 125-8585, Japan
| | - John H Xin
- Research Institute for Intelligent Wearable Systems, School of Fashion and Textiles, The Hong Kong Polytechnic University, Hung Hom, Kowloon 999077, Hong Kong, People's Republic of China
| | - Ming Xue
- School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai 519082, People's Republic of China
| | - Titao Jing
- School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai 519082, People's Republic of China
| |
Collapse
|
4
|
Yao J, Zang W, Wang Y, Yu B, Jiang Y, Ning N, Tian M. Largely Enhanced Service Life and Energy Harvesting Stability of Dielectric Elastomer Generator by Designing and Optimizing Compliance of Electrodes. ACS APPLIED MATERIALS & INTERFACES 2024; 16:11595-11604. [PMID: 38381554 DOI: 10.1021/acsami.3c19158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
Dielectric elastomer generator (DEG), which consists of a dielectric elastomer (DE) film sandwiched between two flexible electrodes (FEs), has the advantages of lightweight, high energy density, and high energy conversion efficiency, providing a simple and feasible solution for harvesting energy from human motion or nature. As crucial constituents of DEG, FEs are expected to possess excellent conductivity and compliance. Nevertheless, there is currently no quantitative characterization method for FE compliance. In addition, the impact mechanism of FE compliance on the energy harvesting performance and fatigue life of the DEG remains unclear. In this study, the dynamic mechanical property (DMP) was used to assess the compliance of FEs, and the quantitative characterization method of FE compliance was proposed. A series of silicone rubber electrodes (SREs) with different DMPs and compliance were designed and prepared, and the impact mechanism of FE compliance on the energy harvesting stability and fatigue life of the DEG was investigated. The results indicate that the key to achieving excellent FE compliance lies in reducing the difference in the magnitude of the complex modulus and phase angle between the FEs and DE, which can significantly reduce interfacial friction and extend the fatigue life of DEG. Benefiting from the enhanced FE compliance, the fatigue life and full-life energy density of the DEG device increase by 20.3 times and 26.4 times, respectively, compared with those of the commonly used carbon-based electrodes.
Collapse
Affiliation(s)
- Jiashuai Yao
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
| | - Wenpeng Zang
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yuhao Wang
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
| | - Bing Yu
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yingjie Jiang
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
| | - Nanying Ning
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
- Key Laboratory of Carbon Fiber and Functional Polymers, Ministry of Education, Beijing University of Chemical Technology, Beijing 100029, China
| | - Ming Tian
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
- Key Laboratory of Carbon Fiber and Functional Polymers, Ministry of Education, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
5
|
Zang W, Wang Y, Wu W, Yao J, Hao X, Yu B, Wu D, Cao PF, Jiang Y, Ning N, Tian M, Zhang L. Superstretchable Liquid-Metal Electrodes for Dielectric Elastomer Transducers and Flexible Circuits. ACS NANO 2024; 18:1226-1236. [PMID: 38153997 DOI: 10.1021/acsnano.3c12210] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2023]
Abstract
Dielectric elastomer transducers (DETs), with a dielectric elastomer (DE) film sandwiched between two compliant electrodes, are highly sought after in the fields of soft robotics, energy harvesting, and human-machine interaction. To achieve a high-performance DET, it is essential to develop electrodes with high conductivity, strain-insensitive resistance, and adaptability. Herein, we design an electrode (Supra-LMNs) based on multiple dynamic bond cross-linked supramolecular networks (Ns) and liquid metal (LM), which realizes high conductivity (up to 16,000 S cm-1), negligible resistance changes at high strain (1.3-fold increase at 1000% strain), instantaneous self-healability at ambient temperature, and rapid recycling. The conductive pathway can be activated through simple friction by transmitting stress through the silver nanowires (AgNWs) and cross-linking sites of LM particles. This method is especially attractive for printing circuits on flexible substrates, especially DE films. Utilized as dielectric elastomer generator (DEG) electrodes, it reduces the charge loss by 3 orders of magnitude and achieves high generating energy density and energy conversion efficiency on a low-resistance load. Additionally, serving as sensor (DES) and actuator (DEA) electrodes, it enables a highly sensitive sensing capability and complex interaction.
Collapse
Affiliation(s)
- Wenpeng Zang
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yuhao Wang
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
| | - Wenju Wu
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
| | - Jiashuai Yao
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
| | - Xuesong Hao
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
| | - Bing Yu
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Daming Wu
- College of Mechanical and Electrical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Peng-Fei Cao
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yingjie Jiang
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
| | - Nanying Ning
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Ming Tian
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Liqun Zhang
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|