1
|
Cao D, Gao P, Shen Y, Qiao L, Ma M, Guo X, Cheng D. Fabricating Lattice-Confined Pt Single Atoms With High Electron-Deficient State for Alkali Hydrogen Evolution Under Industrial-Current Density. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025:e2414138. [PMID: 39846326 DOI: 10.1002/adma.202414138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 01/05/2025] [Indexed: 01/24/2025]
Abstract
The confining effect is essential to regulate the activity and stability of single-atom catalysts (SACs), but the universal fabrication of confined SACs is still a great challenge. Here, various lattice-confined Pt SACs supported by different carriers are constructed by a universal co-reduction approach. Notably, Pt single atoms confined in the lattice of Ni(OH)2 (Pt1/Ni(OH)2) with a high electron-deficient state exhibit excellent activity for basic hydrogen evolution reaction (HER). Specifically, Pt1/Ni(OH)2 just requires 15 mV to get 10 mA cm-2 and the mass activity of Pt1/Ni(OH)2 is 15 times of commercial Pt/C. Moreover, Pt1/Ni(OH)2 assembled in an alkaline water electrolyzer shows 1030 h durability under the industrial current density of 800 mA cm-2. In situ spectroscopy techniques reveal Pt─H and "free" OH radical can be directly observed for Pt1/Ni(OH)2, confirming the lattice-confined Pt single atoms play a key role during HER. Further density functional theory uncovers the Pt 3d orbital strongly hybridizes with O 2p and Ni 3d orbitals in Ni(OH)2, which quickly optimizes the electronic state of the Pt site, thus largely reducing the energy barrier of the rate-determining step to 0.16 eV for HER. Finally, this synthesis method is extended to construct other 9 lattice-confined SACs.
Collapse
Affiliation(s)
- Dong Cao
- State Key Laboratory of Organic-Inorganic Composites and College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China
| | - Peng Gao
- State Key Laboratory of Organic-Inorganic Composites and College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China
| | - Yuge Shen
- Fundamental Science and Advanced Technology Lab, PetroChina Petrochemical Research Institute, Chang Ping District, Beijing, 102206, People's Republic of China
| | - Liang Qiao
- Fundamental Science and Advanced Technology Lab, PetroChina Petrochemical Research Institute, Chang Ping District, Beijing, 102206, People's Republic of China
| | - Mengyao Ma
- State Key Laboratory of Organic-Inorganic Composites and College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China
| | - Xiaoyan Guo
- State Key Laboratory of Organic-Inorganic Composites and College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China
| | - Daojian Cheng
- State Key Laboratory of Organic-Inorganic Composites and College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China
| |
Collapse
|
2
|
Gong H, Zhang D, Liu T, Kuang P, Yu J. d-Band Center Engineering of Nickel Nanoparticles Accelerates Water Dissociation for Hydrogen Evolution in Neutral NaCl Solution. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2407790. [PMID: 39460413 DOI: 10.1002/smll.202407790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 10/20/2024] [Indexed: 10/28/2024]
Abstract
While Pt is highly efficient for hydrogen evolution reaction (HER), its widespread use is limited by scarcity and high cost. Herein, a vertically aligned electrocatalyst is present comprising Ni3S2 nanotube arrays (NTAs) and Ni nanoparticles (NPs) (Ni3S2/Ni NTAs) for neutral HER. In a neutral 4 wt.% NaCl solution (pH = 7), the Ni3S2/Ni NTAs achieves a current density of 100 mA cm-2 at a low overpotential of 540 mV, outperforming both Ni3S2 NTAs and Ni NTAs and even the commercial Pt plate. The hollow tubular structure offers ample mass transfer channels, and strong electronic interaction between Ni3S2 and Ni is observed. Theoretical studies reveal that the lowered d-band center (ɛd) of Ni 3d orbital significantly reduces the activation energy for H2O dissociation and facilitates the movement of an H atom in H2O away from OH to form a transition state, consequently promoting H2 evolution. When Ni3S2/Ni NTAs is used as the cathode in a two-electrode diaphragm-free electrolyzer with a RuSnTi anode, efficient H2 production and energy-saving Cl2 evolution are achieved. This work highlights the potential of uniquely structured electrocatalysts for HER in neutral NaCl solutions.
Collapse
Affiliation(s)
- Haiming Gong
- Laboratory of Solar Fuel, Faculty of Materials Science and Chemistry, China University of Geosciences, 68 Jincheng Street, Wuhan, 430078, P. R. China
| | - Dianzhi Zhang
- Laboratory of Solar Fuel, Faculty of Materials Science and Chemistry, China University of Geosciences, 68 Jincheng Street, Wuhan, 430078, P. R. China
| | - Tao Liu
- Laboratory of Solar Fuel, Faculty of Materials Science and Chemistry, China University of Geosciences, 68 Jincheng Street, Wuhan, 430078, P. R. China
| | - Panyong Kuang
- Laboratory of Solar Fuel, Faculty of Materials Science and Chemistry, China University of Geosciences, 68 Jincheng Street, Wuhan, 430078, P. R. China
| | - Jiaguo Yu
- Laboratory of Solar Fuel, Faculty of Materials Science and Chemistry, China University of Geosciences, 68 Jincheng Street, Wuhan, 430078, P. R. China
| |
Collapse
|
3
|
Tan C, Jiang L, Xiong R, Wang H, Yan C, Wang R, Liu C, Liu Y, Dai X, Duan T, Liu W, Zhu L. Imidazole Encapsulation Enabled by Confinement for I 2 and CH 3I Coremoval. Inorg Chem 2024; 63:23877-23885. [PMID: 39630949 DOI: 10.1021/acs.inorgchem.4c04162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
Nitrogen-rich small molecules are frequently doped into porous materials to enhance their iodine adsorption properties. To explore how imidazole confinement in metal-organic frameworks (MOFs) affects iodine adsorption, we obtained a UiO-66-based composite by embedding imidazole in UiO-66 pores via solid-phase adsorption (Im@UiO-66). Characterization confirmed that imidazole was successfully confined within the UiO-66 pores, with each unit of UiO-66 accommodating up to 27 imidazole molecules. The density functional theory (DFT) calculations suggested that the octahedral cages of UiO-66 are the primary sites for iodine capture. The adsorption studies revealed that Im@UiO-66 achieved maximum adsorption capacities for I2 and CH3I that were 12 and 7.9 times higher than those of UiO-66, respectively, reaching 6.42 g/g for I2 and 553 mg/g for CH3I. The spectroscopic analysis indicated that Im@UiO-66 absorbed iodine vapor and methyl iodide via charge-transfer interactions and N-methylation reactions. This study demonstrates that imidazole confinement can effectively enhance the adsorption performance of MOF-based materials, offering valuable insights for the design of iodine adsorbents.
Collapse
Affiliation(s)
- Chuan Tan
- National Co-Innovation Center for Nuclear Waste Disposal and Environmental Safety, Southwest University of Science and Technology, Mianyang 621010, China
- State Key Laboratory of Environment-Friendly Energy Materials, School of National Defence Science & Technology, Southwest University of Science and Technology, Mianyang 621010, China
- School of Environment and Resource, Southwest University of Science and Technology, Mianyang 621010, China
| | - Lisha Jiang
- School of Environmental and Material Engineering, Yantai University, Yantai 264005, China
| | - Rui Xiong
- National Co-Innovation Center for Nuclear Waste Disposal and Environmental Safety, Southwest University of Science and Technology, Mianyang 621010, China
- State Key Laboratory of Environment-Friendly Energy Materials, School of National Defence Science & Technology, Southwest University of Science and Technology, Mianyang 621010, China
| | - Hengyang Wang
- National Co-Innovation Center for Nuclear Waste Disposal and Environmental Safety, Southwest University of Science and Technology, Mianyang 621010, China
- State Key Laboratory of Environment-Friendly Energy Materials, School of National Defence Science & Technology, Southwest University of Science and Technology, Mianyang 621010, China
| | - Chenhui Yan
- National Co-Innovation Center for Nuclear Waste Disposal and Environmental Safety, Southwest University of Science and Technology, Mianyang 621010, China
- State Key Laboratory of Environment-Friendly Energy Materials, School of National Defence Science & Technology, Southwest University of Science and Technology, Mianyang 621010, China
| | - Renren Wang
- National Co-Innovation Center for Nuclear Waste Disposal and Environmental Safety, Southwest University of Science and Technology, Mianyang 621010, China
- State Key Laboratory of Environment-Friendly Energy Materials, School of National Defence Science & Technology, Southwest University of Science and Technology, Mianyang 621010, China
| | - Cheng Liu
- National Co-Innovation Center for Nuclear Waste Disposal and Environmental Safety, Southwest University of Science and Technology, Mianyang 621010, China
- State Key Laboratory of Environment-Friendly Energy Materials, School of National Defence Science & Technology, Southwest University of Science and Technology, Mianyang 621010, China
| | - Yicen Liu
- School of Environmental and Material Engineering, Yantai University, Yantai 264005, China
| | - Xing Dai
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Tao Duan
- National Co-Innovation Center for Nuclear Waste Disposal and Environmental Safety, Southwest University of Science and Technology, Mianyang 621010, China
- State Key Laboratory of Environment-Friendly Energy Materials, School of National Defence Science & Technology, Southwest University of Science and Technology, Mianyang 621010, China
| | - Wei Liu
- School of Environmental and Material Engineering, Yantai University, Yantai 264005, China
| | - Lin Zhu
- National Co-Innovation Center for Nuclear Waste Disposal and Environmental Safety, Southwest University of Science and Technology, Mianyang 621010, China
- State Key Laboratory of Environment-Friendly Energy Materials, School of National Defence Science & Technology, Southwest University of Science and Technology, Mianyang 621010, China
| |
Collapse
|
4
|
Song H, Xiong X, Gao J, Hu Y, Yang Q, Zheng D, Hao J, Lin X, Zhang L, Wang JQ. Unveiling the Promotion of Fe in Ni 3S 2 Catalyst on Charge Transfer for the Oxygen Evolution Reaction. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2404060. [PMID: 39235565 DOI: 10.1002/smll.202404060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 08/13/2024] [Indexed: 09/06/2024]
Abstract
In recent years, catalysts based on transition metal sulfides have garnered extensive attention due to their low cost and excellent electrocatalytic activity in the alkaline oxygen evolution reaction. Here, the preparation of Fe-doped Ni3S2 via a one-step hydrothermal approach is reported by utilizing inexpensive transition metals Ni and Fe. In an alkaline medium, Fe-Ni3S2 exhibits outstanding electrocatalytic activity and stability for the OER, and the current density can reach 10 mA cm-2 with an overpotential of 163 mV. In addition, Pt/C||Fe-Ni3S2 is used as the membrane electrode of the anion exchange membrane water electrolyzer, which is capable of providing a current density of 650 mA cm-2 at a cell voltage of 2.0 V, outperforming the benchmark Ir/C. The principle is revealed that the doping of Fe enhances the electrocatalytic water decomposition ability of Ni3S2 by in situ Raman and in situ X-ray absorption fine structure. The results indicate that the doping of Fe decreases the charge density near Ni atoms, which renders Fe-Ni3S2 more favorable for the adsorption of OH- and the formation of *OO- intermediates. This work puts forward an effective strategy to significantly improve both the alkaline OER activity and stability of low-cost electrocatalysts.
Collapse
Affiliation(s)
- Haoyu Song
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
| | - Xiaolu Xiong
- Shanghai Institute of Applied Physics Chinese Academy of Sciences, Shanghai, 201800, P. R. China
| | - Jinxiao Gao
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
| | - Yue Hu
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
| | - Qun Yang
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
| | - Dehua Zheng
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
| | - Jingxuan Hao
- Shanghai Institute of Applied Physics Chinese Academy of Sciences, Shanghai, 201800, P. R. China
| | - Xiao Lin
- Shanghai Institute of Applied Physics Chinese Academy of Sciences, Shanghai, 201800, P. R. China
| | - Linjuan Zhang
- Shanghai Institute of Applied Physics Chinese Academy of Sciences, Shanghai, 201800, P. R. China
| | - Jian-Qiang Wang
- Shanghai Institute of Applied Physics Chinese Academy of Sciences, Shanghai, 201800, P. R. China
| |
Collapse
|
5
|
Chen D, Gao T, Wei Z, Wang M, Ma Y, Xiao D, Cao C, Lee CY, Liu P, Wang D, Zhao S, Wang HT, Han L. WS 2 Moiré Superlattices Supporting Au Nanoclusters and Isolated Ru to Boost Hydrogen Production. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2410537. [PMID: 39300857 DOI: 10.1002/adma.202410537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 09/03/2024] [Indexed: 09/22/2024]
Abstract
Maximizing the catalytic activity of single-atom and nanocluster catalysts through the modulation of the interaction between these components and the corresponding supports is crucial but challenging. Herein, guided by theoretical calculations, a nanoporous bilayer WS2 Moiré superlattices (MSLs) supported Au nanoclusters (NCs) adjacent to Ru single atoms (SAs) (Ru1/Aun-2LWS2) is developed for alkaline hydrogen evolution reaction (HER) for the first time. Theoretical analysis suggests that the induced robust electronic metal-support interaction effect in Ru1/Aun-2LWS2 is prone to promote the charge redistribution among Ru SAs, Au NCs, and WS2 MSLs support, which is beneficial to reduce the energy barrier for water adsorption and thus promoting the subsequent H2 formation. As feedback, the well-designed Ru1/Aun-2LWS2 electrocatalyst exhibits outstanding HER performance with high activity (η10 = 19 mV), low Tafel slope (35 mV dec-1), and excellent long-term stability. Further, in situ, experimental studies reveal that the reconstruction of Ru SAs/NCs with S vacancies in Ru1/Aun-2LWS2 structure acts as the main catalytically active center, while high-valence Au NCs are responsible for activating and stabilizing Ru sites to prevent the dissolution and deactivation of active sites. This work offers guidelines for the rational design of high-performance atomic-scale electrocatalysts.
Collapse
Affiliation(s)
- Dechao Chen
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian, 350108, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 101408, China
| | - Tianyu Gao
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 101408, China
| | - Zengxi Wei
- Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology and School of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004, China
- State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, Guangxi University, Nanning, 53004, China
| | - Mengjia Wang
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Yingfei Ma
- Materials and Packaging Engineering, Fujian Polytechnic Normal University, Fuzhou, Fujian, 350330, China
| | - Dongdong Xiao
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
| | - Changsheng Cao
- Key Laboratory of Advanced Carbon-Based Functional Materials (Fujian Province University), Fuzhou University, Fuzhou, Fujian, 350016, China
| | - Cheng-You Lee
- Bachelors's Program in Advanced Materials Science, Tamkang University, New Taipei, 251301, Taiwan
| | - Pan Liu
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Dengchao Wang
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 101408, China
| | - Shuangliang Zhao
- Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology and School of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004, China
- State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, Guangxi University, Nanning, 53004, China
| | - Hsiao-Tsu Wang
- Bachelors's Program in Advanced Materials Science, Tamkang University, New Taipei, 251301, Taiwan
| | - Lili Han
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 101408, China
| |
Collapse
|
6
|
Zhou W, Zou C, Luo X, Yuan C, Liu S, Chen M, Zhang J, Lei W, Wang S. Enhanced Magnetic Heating for Efficient Oxygen Evolution Reaction by Pinning Effect of Ferromagnetic/Antiferromagnetic Coupling. NANO LETTERS 2024; 24:12420-12425. [PMID: 39348164 DOI: 10.1021/acs.nanolett.4c02886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
The magnetic heating effect under alternating magnetic fields (AMFs) has recently gained attention in catalysis due to its potential to greatly boost catalytic activities by providing localized heating around magnetic nanoparticles. However, nanoparticles still suffer from low magnetic heating efficiency due to their low magnetic anisotropy and thermal fluctuation, which is a key barrier in the wide application of AMF-assisted catalysis. Herein, by introducing the pinning effect of ferromagnetic/antiferromagnetic (FM/AFM) coupling, NiO/NiOOH (AFM/FM) core-shell nanoparticles exhibit significantly enhanced oxygen evolution reaction activity and resistance to thermal fluctuations under AMF, compared to NiOOH nanoparticles. Notably, magnetized NiO/NiOOH nanoparticles provide an overpotential of 186 mV at 10 mA cm-2, outperforming unmagnetized ones (218 mV) under the same conditions, further emphasizing the prominent role of the pinning effect in enhanced magnetic heating efficiency. This work provides valuable inspiration to design advanced magnetic catalysts and meet the challenge of the development of AMF-assisted catalysis.
Collapse
Affiliation(s)
- Wenda Zhou
- Anhui Key Laboratory of Magnetic Functional Materials and Devices, School of Materials Science and Engineering, Anhui University, 111 Jiulong Road, Hefei 230601, Anhui, China
- Jiangxi Key Laboratory of Nanomaterials and Sensors, School of Physics, Communication and Electronics, Jiangxi Normal University, 99 Ziyang Avenue, Nanchang 330022, Jiangxi, China
| | - Chengwu Zou
- Jiangxi Key Laboratory of Nanomaterials and Sensors, School of Physics, Communication and Electronics, Jiangxi Normal University, 99 Ziyang Avenue, Nanchang 330022, Jiangxi, China
| | - Xingfang Luo
- Jiangxi Key Laboratory of Nanomaterials and Sensors, School of Physics, Communication and Electronics, Jiangxi Normal University, 99 Ziyang Avenue, Nanchang 330022, Jiangxi, China
| | - Cailei Yuan
- Jiangxi Key Laboratory of Nanomaterials and Sensors, School of Physics, Communication and Electronics, Jiangxi Normal University, 99 Ziyang Avenue, Nanchang 330022, Jiangxi, China
| | - Shoujie Liu
- Anhui Key Laboratory of Magnetic Functional Materials and Devices, School of Materials Science and Engineering, Anhui University, 111 Jiulong Road, Hefei 230601, Anhui, China
| | - Mingyue Chen
- School of Materials Science and Engineering, Beijing Advanced Innovation Center for Materials Genome Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing 100083, China
| | - Jingyan Zhang
- School of Materials Science and Engineering, Beijing Advanced Innovation Center for Materials Genome Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing 100083, China
| | - Wen Lei
- Department of Electrical, Electronic and Computer Engineering, The University of Western Australia, 35 Stirling Highway, Crawley 6009, Australia
| | - Shouguo Wang
- Anhui Key Laboratory of Magnetic Functional Materials and Devices, School of Materials Science and Engineering, Anhui University, 111 Jiulong Road, Hefei 230601, Anhui, China
- School of Materials Science and Engineering, Beijing Advanced Innovation Center for Materials Genome Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing 100083, China
| |
Collapse
|
7
|
Zhao L, Liang S, Zhang L, Huang H, Zhang QH, Ge W, Wang S, Tan T, Huang L, An Q. Stabilizing and Activating Active Sites: 1T-MoS 2 Supported Pd Single Atoms for Efficient Hydrogen Evolution Reaction. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2401537. [PMID: 38822716 DOI: 10.1002/smll.202401537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 05/07/2024] [Indexed: 06/03/2024]
Abstract
Metallic 1T-MoS2 with high intrinsic electronic conductivity performs Pt-like catalytic activity for hydrogen evolution reaction (HER). However, obtaining pure 1T-MoS2 is challenging due to its high formation energy and metastable properties. Herein, an in situ SO4 2--anchoring strategy is reported to synthesize a thin layer of 1T-MoS2 loaded on commercial carbon. Single Pd atoms, constituting a substantial loading of 7.2 wt%, are then immobilized on the 1T-phase MoS2 via Pd─S bonds to modulate the electronic structure and ensure a stable active phase. The resulting Pd1/1T-MoS2/C catalyst exhibits superior HER performance, featuring a low overpotential of 53 mV at the current density of 10 mA cm-2, a small Tafel slope of 37 mV dec-1, and minimal charge transfer resistance in alkaline electrolyte. Moreover, the catalyst also demonstrates efficacy in acid and neutral electrolytes. Atomic structural characterization and theoretical calculations reveal that the high activity of Pd1/1T-MoS2/C is attributed to the near-zero hydrogen adsorption energy of the activated sulfur sites on the two adjacent shells of atomic Pd.
Collapse
Affiliation(s)
- Lu Zhao
- Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences, Beijing, 100083, China
| | - Shaojie Liang
- Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences, Beijing, 100083, China
| | - Li Zhang
- National Center for Nanoscience and Technology, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Haoliang Huang
- Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201800, China
- Songshan Lake Materials Laboratory, Dongguan, 523808, China
| | - Qing-Hua Zhang
- Beijing National Research Center for Condensed Matter Physics, Collaborative Innovation Center of Quantum Matter, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
| | - Weiyi Ge
- Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences, Beijing, 100083, China
| | - Shuqi Wang
- Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences, Beijing, 100083, China
| | - Ting Tan
- National Center for Nanoscience and Technology, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Linbo Huang
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Laboratory of Molecular Nanostructure and Nanotechnology, Institute of Chemistry, Chinese Academy of Sciences (CAS), Beijing, 100190, China
| | - Qi An
- Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences, Beijing, 100083, China
| |
Collapse
|
8
|
Wang Q, Cheng Y, Yang HB, Su C, Liu B. Integrative catalytic pairs for efficient multi-intermediate catalysis. NATURE NANOTECHNOLOGY 2024; 19:1442-1451. [PMID: 39103451 DOI: 10.1038/s41565-024-01716-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 06/06/2024] [Indexed: 08/07/2024]
Abstract
Single-atom catalysts (SACs) have attracted considerable research interest owing to their combined merits of homogeneous and heterogeneous catalysts. However, the uniform and isolated active sites of SACs fall short in catalysing complex chemical processes that simultaneously involve multiple intermediates. In this Review, we highlight an emerging class of catalysts with adjacent binary active centres, which is called integrative catalytic pairs (ICPs), showing not only atomic-scale site-to-site electronic interactions but also synergistic catalytic effects. Compared with SACs or their derivative dual-atom catalysts (DACs), multi-interactive intermediates on ICPs can overcome kinetic barriers, adjust reaction pathways and break the universal linear scaling relations as the smallest active units. Starting from this active-site design principle, each single active atom can be considered as a brick to further build integrative catalytic clusters (ICCs) with desirable configurations, towards trimer or even larger multi-atom units depending on the requirement of a given reaction.
Collapse
Affiliation(s)
- Qilun Wang
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong SAR, China
- International Collaboration Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen, China
| | - Yaqi Cheng
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong SAR, China
| | - Hong Bin Yang
- School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou, China.
| | - Chenliang Su
- International Collaboration Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen, China.
| | - Bin Liu
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong SAR, China.
- Department of Chemistry, Hong Kong Institute of Clean Energy (HKICE) and Center of Super-Diamond and Advanced Films (COSDAF), City University of Hong Kong, Hong Kong SAR, China.
| |
Collapse
|
9
|
Wu J, Huang F, Hu Q, He D, Liu W, Li X, Yan W, Hu J, Zhu J, Zhu S, Chen Q, Jiao X, Xie Y. Regulated Photocatalytic CO 2-to-CH 3OH Pathway by Synergetic Dual Active Sites of Interlayer. J Am Chem Soc 2024; 146:26478-26484. [PMID: 39259936 DOI: 10.1021/jacs.4c09841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/13/2024]
Abstract
Herein, composites of nanosheets with van der Waals contacts are employed to disclose how the interlayer-microenvironment affects the product selectivity of carbon dioxide (CO2) photoreduction. The concept of composites of nanosheets with dual active sites is introduced to manipulate the bonding configuration and promote the thermodynamic formation of methanol (CH3OH). As a prototype, the CoNi2S4-In2O3 composites of nanosheets are prepared, in which high-resolution transmission electron microscopy imaging, X-ray photoelectron spectroscopy spectra, and zeta potential tests confirm the presence of van der Waals contacts rather than chemical bonding between the In2O3 nanosheets and the CoNi2S4 nanosheets within the composite. The fabricated CoNi2S4-In2O3 composites of nanosheets exhibit the detection of the key intermediate *CH3O during CO2 photoreduction through in situ Fourier transform infrared spectra, while the In2O3 nanosheets and CoNi2S4 nanosheets alone do not show this capability, further verified by the density functional theory calculations. Accordingly, the CoNi2S4-In2O3 composites of nanosheets show the ability to produce CH3OH, whereas the CoNi2S4 and In2O3 nanosheets solely generate carbon monoxide products from CO2 photoreduction.
Collapse
Affiliation(s)
- Jiacong Wu
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering Jiangnan University, Wuxi 214122, China
| | - Fei Huang
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering Jiangnan University, Wuxi 214122, China
| | - Qinyuan Hu
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering Jiangnan University, Wuxi 214122, China
| | - Dongpo He
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering Jiangnan University, Wuxi 214122, China
| | - Wenxiu Liu
- Key Laboratory of Precision and Intelligent Chemistry, Hefei National Research Center for Physical Sciences at Microscale, National Synchrotron Radiation Laboratory University of Science and Technology of China, Hefei 230026, China
| | - Xiaodong Li
- Max Planck Institute of Microstructure Physics, Weinberg 2, Halle 06120, Germany
| | - Wensheng Yan
- Key Laboratory of Precision and Intelligent Chemistry, Hefei National Research Center for Physical Sciences at Microscale, National Synchrotron Radiation Laboratory University of Science and Technology of China, Hefei 230026, China
| | - Jun Hu
- Key Laboratory of Precision and Intelligent Chemistry, Hefei National Research Center for Physical Sciences at Microscale, National Synchrotron Radiation Laboratory University of Science and Technology of China, Hefei 230026, China
| | - Junfa Zhu
- Key Laboratory of Precision and Intelligent Chemistry, Hefei National Research Center for Physical Sciences at Microscale, National Synchrotron Radiation Laboratory University of Science and Technology of China, Hefei 230026, China
| | - Shan Zhu
- State Grid Anhui Electric Power Research Institute, Hefei 230601, China
| | - Qingxia Chen
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering Jiangnan University, Wuxi 214122, China
| | - Xingchen Jiao
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering Jiangnan University, Wuxi 214122, China
| | - Yi Xie
- Key Laboratory of Precision and Intelligent Chemistry, Hefei National Research Center for Physical Sciences at Microscale, National Synchrotron Radiation Laboratory University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
10
|
Deshmukh MA, Bakandritsos A, Zbořil R. Bimetallic Single-Atom Catalysts for Water Splitting. NANO-MICRO LETTERS 2024; 17:1. [PMID: 39317789 PMCID: PMC11422407 DOI: 10.1007/s40820-024-01505-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Accepted: 08/10/2024] [Indexed: 09/26/2024]
Abstract
Green hydrogen from water splitting has emerged as a critical energy vector with the potential to spearhead the global transition to a fossil fuel-independent society. The field of catalysis has been revolutionized by single-atom catalysts (SACs), which exhibit unique and intricate interactions between atomically dispersed metal atoms and their supports. Recently, bimetallic SACs (bimSACs) have garnered significant attention for leveraging the synergistic functions of two metal ions coordinated on appropriately designed supports. BimSACs offer an avenue for rich metal-metal and metal-support cooperativity, potentially addressing current limitations of SACs in effectively furnishing transformations which involve synchronous proton-electron exchanges, substrate activation with reversible redox cycles, simultaneous multi-electron transfer, regulation of spin states, tuning of electronic properties, and cyclic transition states with low activation energies. This review aims to encapsulate the growing advancements in bimSACs, with an emphasis on their pivotal role in hydrogen generation via water splitting. We subsequently delve into advanced experimental methodologies for the elaborate characterization of SACs, elucidate their electronic properties, and discuss their local coordination environment. Overall, we present comprehensive discussion on the deployment of bimSACs in both hydrogen evolution reaction and oxygen evolution reaction, the two half-reactions of the water electrolysis process.
Collapse
Affiliation(s)
- Megha A Deshmukh
- Nanotechnology Centre, Centre for Energy and Environmental Technologies, VŠB-Technical University of Ostrava, 17. listopadu 2172/15, 708 00, Ostrava-Poruba, Czech Republic
| | - Aristides Bakandritsos
- Nanotechnology Centre, Centre for Energy and Environmental Technologies, VŠB-Technical University of Ostrava, 17. listopadu 2172/15, 708 00, Ostrava-Poruba, Czech Republic.
- Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute (CATRIN), Palacký University Olomouc, Šlechtitelů 241/27, 783 71, Olomouc - Holice, Czech Republic.
| | - Radek Zbořil
- Nanotechnology Centre, Centre for Energy and Environmental Technologies, VŠB-Technical University of Ostrava, 17. listopadu 2172/15, 708 00, Ostrava-Poruba, Czech Republic.
- Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute (CATRIN), Palacký University Olomouc, Šlechtitelů 241/27, 783 71, Olomouc - Holice, Czech Republic.
| |
Collapse
|
11
|
Fu K, Yuan D, Yu T, Lei C, Kou Z, Huang B, Lyu S, Zhang F, Wan T. Recent Advances on Two-Dimensional Nanomaterials Supported Single-Atom for Hydrogen Evolution Electrocatalysts. Molecules 2024; 29:4304. [PMID: 39339299 PMCID: PMC11434429 DOI: 10.3390/molecules29184304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 09/05/2024] [Accepted: 09/09/2024] [Indexed: 09/30/2024] Open
Abstract
Water electrolysis has been recognized as a promising technology that can convert renewable energy into hydrogen for storage and utilization. The superior activity and low cost of catalysis are key factors in promoting the industrialization of water electrolysis. Single-atom catalysts (SACs) have attracted attention due to their ultra-high atomic utilization, clear structure, and highest hydrogen evolution reaction (HER) performance. In addition, the performance and stability of single-atom (SA) substrates are crucial, and various two-dimensional (2D) nanomaterial supports have become promising foundations for SA due to their unique exposed surfaces, diverse elemental compositions, and flexible electronic structures, to drive single atoms to reach performance limits. The SA supported by 2D nanomaterials exhibits various electronic interactions and synergistic effects, all of which need to be comprehensively summarized. This article aims to organize and discuss the progress of 2D nanomaterial single-atom supports in enhancing HER, including common and widely used synthesis methods, advanced characterization techniques, different types of 2D supports, and the correlation between structural hydrogen evolution performance. Finally, the latest understanding of 2D nanomaterial supports was proposed.
Collapse
Affiliation(s)
- Kangkai Fu
- Hubei Key Laboratory of Automotive Power Train and Electronic Control, School of Automotive Engineering, Hubei University of Automotive Technology, Shiyan 442002, China
- Hubei Key Laboratory of Energy Storage and Power Battery, School of Mathematics, Physics and Optoelectronic Engineering, Hubei University of Automotive Technology, Shiyan 442002, China
| | - Douke Yuan
- Hubei Key Laboratory of Automotive Power Train and Electronic Control, School of Automotive Engineering, Hubei University of Automotive Technology, Shiyan 442002, China
- Hubei Key Laboratory of Energy Storage and Power Battery, School of Mathematics, Physics and Optoelectronic Engineering, Hubei University of Automotive Technology, Shiyan 442002, China
| | - Ting Yu
- Hubei Key Laboratory of Automotive Power Train and Electronic Control, School of Automotive Engineering, Hubei University of Automotive Technology, Shiyan 442002, China
- Hubei Key Laboratory of Energy Storage and Power Battery, School of Mathematics, Physics and Optoelectronic Engineering, Hubei University of Automotive Technology, Shiyan 442002, China
| | - Chaojun Lei
- Key Laboratory of Organosilicon Chemistry and Material Technology, College of Material, Chemistry and Chemical Engineering, Ministry of Education, Hangzhou Normal University, Hangzhou 311121, China
| | - Zhenhui Kou
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Bingfeng Huang
- Hubei Key Laboratory of Automotive Power Train and Electronic Control, School of Automotive Engineering, Hubei University of Automotive Technology, Shiyan 442002, China
- Hubei Key Laboratory of Energy Storage and Power Battery, School of Mathematics, Physics and Optoelectronic Engineering, Hubei University of Automotive Technology, Shiyan 442002, China
| | - Siliu Lyu
- Hubei Key Laboratory of Automotive Power Train and Electronic Control, School of Automotive Engineering, Hubei University of Automotive Technology, Shiyan 442002, China
- Hubei Key Laboratory of Energy Storage and Power Battery, School of Mathematics, Physics and Optoelectronic Engineering, Hubei University of Automotive Technology, Shiyan 442002, China
| | - Feng Zhang
- Hubei Key Laboratory of Automotive Power Train and Electronic Control, School of Automotive Engineering, Hubei University of Automotive Technology, Shiyan 442002, China
- Hubei Key Laboratory of Energy Storage and Power Battery, School of Mathematics, Physics and Optoelectronic Engineering, Hubei University of Automotive Technology, Shiyan 442002, China
| | - Tongtao Wan
- Hubei Key Laboratory of Automotive Power Train and Electronic Control, School of Automotive Engineering, Hubei University of Automotive Technology, Shiyan 442002, China
- Hubei Key Laboratory of Energy Storage and Power Battery, School of Mathematics, Physics and Optoelectronic Engineering, Hubei University of Automotive Technology, Shiyan 442002, China
| |
Collapse
|
12
|
Tiwari JN, Kumar K, Safarkhani M, Umer M, Vilian ATE, Beloqui A, Bhaskaran G, Huh YS, Han Y. Materials Containing Single-, Di-, Tri-, and Multi-Metal Atoms Bonded to C, N, S, P, B, and O Species as Advanced Catalysts for Energy, Sensor, and Biomedical Applications. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2403197. [PMID: 38946671 PMCID: PMC11580296 DOI: 10.1002/advs.202403197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 06/08/2024] [Indexed: 07/02/2024]
Abstract
Modifying the coordination or local environments of single-, di-, tri-, and multi-metal atom (SMA/DMA/TMA/MMA)-based materials is one of the best strategies for increasing the catalytic activities, selectivity, and long-term durability of these materials. Advanced sheet materials supported by metal atom-based materials have become a critical topic in the fields of renewable energy conversion systems, storage devices, sensors, and biomedicine owing to the maximum atom utilization efficiency, precisely located metal centers, specific electron configurations, unique reactivity, and precise chemical tunability. Several sheet materials offer excellent support for metal atom-based materials and are attractive for applications in energy, sensors, and medical research, such as in oxygen reduction, oxygen production, hydrogen generation, fuel production, selective chemical detection, and enzymatic reactions. The strong metal-metal and metal-carbon with metal-heteroatom (i.e., N, S, P, B, and O) bonds stabilize and optimize the electronic structures of the metal atoms due to strong interfacial interactions, yielding excellent catalytic activities. These materials provide excellent models for understanding the fundamental problems with multistep chemical reactions. This review summarizes the substrate structure-activity relationship of metal atom-based materials with different active sites based on experimental and theoretical data. Additionally, the new synthesis procedures, physicochemical characterizations, and energy and biomedical applications are discussed. Finally, the remaining challenges in developing efficient SMA/DMA/TMA/MMA-based materials are presented.
Collapse
Affiliation(s)
- Jitendra N. Tiwari
- Department of Energy and Materials EngineeringDongguk University‐SeoulSeoul100715Republic of Korea
| | - Krishan Kumar
- POLYMATApplied Chemistry DepartmentFaculty of ChemistryUniversity of the Basque Country UPV/EHUPaseo Manuel de Lardizabal 3Danostia‐San Sebastian20018Spain
| | - Moein Safarkhani
- Department of Biological Sciences and BioengineeringNano Bio High‐Tech Materials Research CenterInha UniversityIncheon22212Republic of Korea
- School of ChemistryDamghan UniversityDamghan36716‐45667Iran
| | - Muhammad Umer
- Bernal InstituteDepartment of Chemical SciencesUniversity of LimerickLimerickV94 T9PXRepublic of Ireland
| | - A. T. Ezhil Vilian
- Department of Energy and Materials EngineeringDongguk University‐SeoulSeoul100715Republic of Korea
| | - Ana Beloqui
- POLYMATApplied Chemistry DepartmentFaculty of ChemistryUniversity of the Basque Country UPV/EHUPaseo Manuel de Lardizabal 3Danostia‐San Sebastian20018Spain
- IKERBASQUEBasque Foundation for SciencePlaza Euskadi 5Bilbao48009Spain
| | - Gokul Bhaskaran
- Department of Biological Sciences and BioengineeringNano Bio High‐Tech Materials Research CenterInha UniversityIncheon22212Republic of Korea
| | - Yun Suk Huh
- Department of Biological Sciences and BioengineeringNano Bio High‐Tech Materials Research CenterInha UniversityIncheon22212Republic of Korea
| | - Young‐Kyu Han
- Department of Energy and Materials EngineeringDongguk University‐SeoulSeoul100715Republic of Korea
| |
Collapse
|
13
|
Li J, Tian W, Li Q, Zhao S. Acidic Oxygen Evolution Reaction: Fundamental Understanding and Electrocatalysts Design. CHEMSUSCHEM 2024; 17:e202400239. [PMID: 38481084 DOI: 10.1002/cssc.202400239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 03/07/2024] [Indexed: 04/05/2024]
Abstract
Water electrolysis driven by "green electricity" is an ideal technology to realize energy conversion and store renewable energy into hydrogen. With the development of proton exchange membrane (PEM), water electrolysis in acidic media suitable for many situations with an outstanding advantage of high gas purity has attracted significant attention. Compared with hydrogen evolution reaction (HER) in water electrolysis, oxygen evolution reaction (OER) is a kinetic sluggish process that needs a higher overpotential. Especially in acidic media, OER process poses higher requirements for the electrocatalysts, such as high efficiency, high stability and low costs. This review focuses on the acidic OER electrocatalysis, reaction mechanisms, and critical parameters used to evaluate performance. Especially the modification strategies applied in the design and construction of new-type electrocatalysts are also summarized. The characteristics of traditional noble metal-based electrocatalysts and the noble metal-free electrocatalysts developed in recent decades are compared and discussed. Finally, the current challenges for the most promising acidic OER electrocatalysts are presented, together with a perspective for future water electrolysis.
Collapse
Affiliation(s)
- Jiao Li
- School of Materials Science and Engineering, Shijiazhuang Tiedao University, Shijiazhuang, 050043, P.R. China
| | - Weichen Tian
- School of Materials Science and Engineering, Shijiazhuang Tiedao University, Shijiazhuang, 050043, P.R. China
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, P.R. China
| | - Qi Li
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P.R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P.R. China
| | - Shenlong Zhao
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, P.R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P.R. China
| |
Collapse
|
14
|
Zhang T, Ye Q, Han Z, Liu Q, Liu Y, Wu D, Fan HJ. Biaxial strain induced OH engineer for accelerating alkaline hydrogen evolution. Nat Commun 2024; 15:6508. [PMID: 39095396 PMCID: PMC11297234 DOI: 10.1038/s41467-024-50942-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 07/25/2024] [Indexed: 08/04/2024] Open
Abstract
The sluggish kinetics of Volmer step in the alkaline hydrogen evolution results in large energy consumption. The challenge that has yet well resolved is to control the water adsorption and dissociation. Here, we develop biaxially strained MoSe2 three dimensional nanoshells that exhibit enhanced catalytic performance with a low overpotential of 58.2 mV at 10 mA cm-2 in base, and long-term stable activity in membrane-electrode-assembly based electrolyser at 1 A cm-2. Compared to the flat and uniaxial-strained MoSe2, we establish that the stably adsorbed OH engineer on biaxially strained MoSe2 changes the water adsorption configuration from O-down on Mo to O-horizontal on OH* via stronger hydrogen bonds. The favorable water dissociation on 3-coordinated Mo sites and hydrogen adsorption on 4-coordinated Mo sites constitute a tandem electrolysis, resulting in thermodynamically favorable hydrogen evolution. This work deepens our understanding to the impact of strain dimensions on water dissociation and inspires the design of nanostructured catalysts for accelerating the rate-determining step in multi-electron reactions.
Collapse
Grants
- This study was financially supported by Tier 1 grant from Singapore Ministry of Education (RG80/22, H.J.F), Tier 2 grant from Singapore Ministry of Education (MOE-T2EP50121-0006, H.J.F.), National Natural Science Foundation of China (Grant No. 22369003, Y.L.), Hainan Provincial Natural Science Foundation of China (Grant No. 223QN185, Y.L.) and the specific research fund of the Innovation Platform for Academicians of Hainan Province (YSPTZX202123, Y.L.), Tier 1 grant from Singapore Ministry of Education (RG81/22, D.W), and NAP-SUG startup grand from NTU (D.W.).
Collapse
Affiliation(s)
- Tao Zhang
- School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore
| | - Qitong Ye
- State Key Laboratory of Marine Resource Utilization in South China Sea, School of Materials Science and Engineering, Hainan University, Haikou, 570228, PR China
| | - Zengyu Han
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Qingyi Liu
- School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore
| | - Yipu Liu
- State Key Laboratory of Marine Resource Utilization in South China Sea, School of Materials Science and Engineering, Hainan University, Haikou, 570228, PR China.
| | - Dongshuang Wu
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Hong Jin Fan
- School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore.
| |
Collapse
|
15
|
Qian Y, Zhang F, Luo X, Zhong Y, Kang DJ, Hu Y. Synthesis and Electrocatalytic Applications of Layer-Structured Metal Chalcogenides Composites. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2310526. [PMID: 38221685 DOI: 10.1002/smll.202310526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 12/28/2023] [Indexed: 01/16/2024]
Abstract
Featured with the attractive properties such as large surface area, unique atomic layer thickness, excellent electronic conductivity, and superior catalytic activity, layered metal chalcogenides (LMCs) have received considerable research attention in electrocatalytic applications. In this review, the approaches developed to synthesize LMCs-based electrocatalysts are summarized. Recent progress in LMCs-based composites for electrochemical energy conversion applications including oxygen reduction reaction, carbon dioxide reduction reaction, oxygen evolution reaction, hydrogen evolution reaction, overall water splitting, and nitrogen reduction reaction is reviewed, and the potential opportunities and practical obstacles for the development of LMCs-based composites as high-performing active substances for electrocatalytic applications are also discussed. This review may provide an inspiring guidance for developing high-performance LMCs for electrochemical energy conversion applications.
Collapse
Affiliation(s)
- Yongteng Qian
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Department of Chemistry, Zhejiang Normal University, Jinhua, 321004, P. R. China
- College of Pharmacy, Jinhua Polytechnic, Jinhua, Zhejiang, 321007, P. R. China
| | - Fangfang Zhang
- College of Pharmacy, Jinhua Polytechnic, Jinhua, Zhejiang, 321007, P. R. China
| | - Xiaohui Luo
- College of Pharmacy, Jinhua Polytechnic, Jinhua, Zhejiang, 321007, P. R. China
| | - Yijun Zhong
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Department of Chemistry, Zhejiang Normal University, Jinhua, 321004, P. R. China
| | - Dae Joon Kang
- Department of Physics, Sungkyunkwan University, 2066, Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do, 16419, Republic of Korea
| | - Yong Hu
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Department of Chemistry, Zhejiang Normal University, Jinhua, 321004, P. R. China
- College of Chemistry and Materials Engineering, Zhejiang A&F University, Hangzhou, 311300, P. R. China
| |
Collapse
|
16
|
Li L, Liu Y, Chen Y, Zhai W, Dai Z. Research progress on layered metal oxide electrocatalysts for an efficient oxygen evolution reaction. Dalton Trans 2024; 53:8872-8886. [PMID: 38738345 DOI: 10.1039/d4dt00619d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2024]
Abstract
Hydrogen, highly valued for its pristine cleanliness and remarkable efficiency as an emerging energy source, is anticipated to ascend to a preeminent status within the forthcoming energy landscape. Electrocatalytic water splitting is considered a pivotal, eco-friendly, and sustainable strategy for hydrogen production. The substantial energy consumption stemming from oxygen evolution side reactions significantly impedes the commercial viability of water electrolysis. Consequently, the pursuit of a cost-effective and efficacious oxygen evolution reaction (OER) catalyst stands as an imperative strategy for realizing hydrogen production via water electrolysis. Layered metal oxides, owing to their robust anisotropic properties, versatile adjustability, and extensive surface area, have emerged as suitable candidates for OER catalysts. However, owing to the distinctive attributes of layered metal oxides, ongoing investigations into these materials are slightly fragmented, lacking universal consensus. This article comprehensively surveys the recent advancements in layered metal oxide-based OER catalysts, categorized into single metal oxides, alkali cobalt oxides, perovskites, and miscellaneous metal oxides. Initially, the main OER intermediate reaction steps of layered metal oxides are scrutinized. Subsequently, the design, mechanism, and application of several pivotal layered metal oxides in the OER are systematically delineated. Finally, a summary is provided, alongside the proposal of future research trajectories and challenges encountered by layered metal oxides, with the aspiration that this paper may serve as a valuable reference for scholars in the field.
Collapse
Affiliation(s)
- Lei Li
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, China.
| | - Yaoda Liu
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, China.
| | - Ya Chen
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, China.
| | - Wenfang Zhai
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, China.
| | - Zhengfei Dai
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, China.
| |
Collapse
|
17
|
Sengupta S, Sudakar C, Kundu M. 3D-engineered WO 3 microspheres assembled by 2D nanosheets with superior sodium storage capacity. RSC Adv 2024; 14:15706-15712. [PMID: 38746841 PMCID: PMC11091957 DOI: 10.1039/d4ra01800a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 05/02/2024] [Indexed: 08/29/2024] Open
Abstract
Because of the inadequate sodium storage capacity of graphite, the exploration of high-performance SIB anodes is a crucial step forward. Herein, we report the hydrothermally synthesized self-assembled interconnected nanosheets of WO3 microspheres possessing admirable sodium storage in terms of cycling stability and acceptable rate capability. Benefitting from the interconnected nature of the nanosheets with a hollow interior, the WO3 microspheres exhibited a high sodiation capacity of 431 mA h g-1 at 100 mA g-1 and an excellent rate performance of 60 mA h g-1 at 500 mA g-1 with an impressive coulombic efficiency of around 99%. Importantly, even after continuous cycling with increasing current densities, a specific capacity as high as 220 mA h g-1 could be recovered at a current density of 50 mA g-1, suggesting excellent sodium storage reversibility.
Collapse
Affiliation(s)
- Shilpi Sengupta
- Electrochemical Energy Storage Laboratory, Department of Chemistry, SRM Institute of Science and Technology Chennai 603203 Tamil Nadu India
| | - C Sudakar
- Multifunctional Materials Laboratory, Department of Physics, Indian Institute of Technology Madras Chennai 600036 India
| | - Manab Kundu
- Electrochemical Energy Storage Laboratory, Department of Chemistry, SRM Institute of Science and Technology Chennai 603203 Tamil Nadu India
| |
Collapse
|
18
|
Zhang Y, Wang D, Wei G, Li B, Mao Z, Xu SM, Tang S, Jiang J, Li Z, Wang X, Xu X. Engineering Spin Polarization of the Surface-Adsorbed Fe Atom by Intercalating a Transition Metal Atom into the MoS 2 Bilayer for Enhanced Nitrogen Reduction. JACS AU 2024; 4:1509-1520. [PMID: 38665658 PMCID: PMC11040660 DOI: 10.1021/jacsau.4c00030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 03/14/2024] [Accepted: 03/14/2024] [Indexed: 04/28/2024]
Abstract
The precise control of spin states in transition metal (TM)-based single-atom catalysts (SACs) is crucial for advancing the functionality of electrocatalysts, yet it presents significant scientific challenges. Using density functional theory (DFT) calculations, we propose a novel mechanism to precisely modulate the spin state of the surface-adsorbed Fe atom on the MoS2 bilayer. This is achieved by strategically intercalating a TM atom into the interlayer space of the MoS2 bilayer. Our results show that these strategically intercalated TM atoms can induce a substantial interfacial charge polarization, thereby effectively controlling the charge transfer and spin polarization on the surface Fe site. In particular, by varying the identity of the intercalated TM atoms and their vacancy filling site, a continuous modulation of the spin states of the surface Fe site from low to medium to high can be achieved, which can be accurately described using descriptors composed of readily accessible intrinsic properties of materials. Using the electrochemical dinitrogen reduction reaction (eNRR) as a prototypical reaction, we discovered a universal volcano-like relation between the tuned spin and the catalytic activity of Fe-based SACs. This finding contrasts with the linear scaling relationships commonly seen in traditional studies and offers a robust new approach to modulating the activity of SACs through interfacial engineering.
Collapse
Affiliation(s)
- Yuqin Zhang
- Key
Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province, Gannan Normal University, Ganzhou 341000, China
| | - Da Wang
- School
of Mathematics and Computer Science, Gannan
Normal University, Ganzhou 341000, China
| | - Guanping Wei
- Key
Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province, Gannan Normal University, Ganzhou 341000, China
| | - Baolei Li
- School
of Mathematics and Computer Science, Gannan
Normal University, Ganzhou 341000, China
| | - Zongchang Mao
- Key
Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province, Gannan Normal University, Ganzhou 341000, China
| | - Si-Min Xu
- Key
Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province, Gannan Normal University, Ganzhou 341000, China
| | - Shaobin Tang
- Key
Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province, Gannan Normal University, Ganzhou 341000, China
| | - Jun Jiang
- Key
Laboratory of Precision and Intelligent Chemistry, School of Chemistry
and Materials Science, University of Science
and Technology of China, Hefei, Anhui 230026, China
| | - Zhenyu Li
- Key
Laboratory of Precision and Intelligent Chemistry, School of Chemistry
and Materials Science, University of Science
and Technology of China, Hefei, Anhui 230026, China
| | - Xijun Wang
- Department
of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Xin Xu
- Collaborative
Innovation Center of Chemistry for Energy Materials, Shanghai Key
Laboratory of Molecular Catalysis and Innovative Materials, MOE Key
Laboratory of Computational Physical Sciences, Department of Chemistry, Fudan University, Shanghai 200438, China
| |
Collapse
|
19
|
Lounasvuori M, Zhang T, Gogotsi Y, Petit T. Tuning the Microenvironment of Water Confined in Ti 3C 2T x MXene by Cation Intercalation. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2024; 128:2803-2813. [PMID: 38414833 PMCID: PMC10895661 DOI: 10.1021/acs.jpcc.4c00247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 01/30/2024] [Accepted: 01/30/2024] [Indexed: 02/29/2024]
Abstract
The local microenvironment has recently been found to play a major role in the electrocatalytic activity of nanomaterials. Modulating the microenvironment by adding alkali metal cations into the electrolyte can be used to either suppress hydrogen or oxygen evolution, thereby extending the electrochemical window of energy storage systems, or to tune the selectivity of electrocatalysts. MXenes are a large family of two-dimensional transition metal carbides, nitrides, and carbonitrides that have shown potential for use in electrochemical energy storage applications. Due to their negatively charged surfaces, MXenes can accommodate cations and water molecules between the layers. Nevertheless, the nature of the aqueous microenvironment in the MXene interlayer space is poorly understood. Here, we apply Fourier transform infrared spectroscopy (FTIR) to probe the hydrogen bonding of intercalated water in Ti3C2Tx as a function of intercalated cation and relative humidity. Substantial changes in the FTIR spectra after cation exchange demonstrate that the hydrogen bonding of water molecules confined between the MXene layers is strongly cation-dependent. Furthermore, the IR absorbance of the confined water correlates with resistivity estimated by 4-point probe measurements and interlayer distance calculated from XRD patterns. This work demonstrates that cation intercalation strongly modulates the confined microenvironment, which can be used to tune the activity or selectivity of electrochemical reactions in the interlayer space of MXenes in the future.
Collapse
Affiliation(s)
- Mailis Lounasvuori
- Nanoscale Solid-Liquid Interfaces, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Albert-Einstein-Str. 15, 12489 Berlin, Germany
| | - Teng Zhang
- A.J. Drexel Nanomaterials Institute and Department of Materials Science and Engineering, Drexel University, 3141 Chestnut Street, Philadelphia, Pennsylvania 19104, United States
| | - Yury Gogotsi
- A.J. Drexel Nanomaterials Institute and Department of Materials Science and Engineering, Drexel University, 3141 Chestnut Street, Philadelphia, Pennsylvania 19104, United States
| | - Tristan Petit
- Nanoscale Solid-Liquid Interfaces, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Albert-Einstein-Str. 15, 12489 Berlin, Germany
| |
Collapse
|
20
|
Peng SS, Zhang GS, Shao XB, Song XR, Qi SC, Tan P, Liu XQ, Yan J, Sun LB. Stable Mg Single-Atom Solid Base Catalysts Anchored on Metal-Organic Framework-Derived Nitrogen-Doped Carbon. Inorg Chem 2024; 63:1607-1612. [PMID: 38194295 DOI: 10.1021/acs.inorgchem.3c03566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2024]
Abstract
Solid base catalysts are widely used in the chemical industry owing to their advantages of environmental friendliness and easy separation. However, their application is limited by basic site aggregation and poor stability. In this study, we report the preparation of magnesium (Mg) single-atom catalysts with high activity and stability by a sublimation-trapping strategy. The Mg net was sublimated as Mg vapor at 620 °C, subsequently transported through argon, and finally trapped on the defects of nitrogen-doped carbon derived from metal-organic framework ZIF-8, producing Mg1/NC. Because of the atomically dispersed Mg sites, the obtained Mg1/NC exhibits high catalytic activity and stability for Knoevenagel condensation of benzaldehyde with malononitrile, which is a typical base-catalyzed reaction. The Mg1/NC catalyst achieves a high efficiency with a turnover frequency of 49.6 h-1, which is much better than that of the traditional counterpart MgO/NC (7.7 h-1). In particular, the activity of Mg1/NC shows no decrease after five catalytic cycles, while that of MgO/NC declines due to the instability of basic sites.
Collapse
Affiliation(s)
- Song-Song Peng
- State Key Laboratory of Materials-Oriented Chemical Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), College of Chemical Engineering, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, China
| | - Guo-Song Zhang
- State Key Laboratory of Materials-Oriented Chemical Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), College of Chemical Engineering, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, China
| | - Xiang-Bin Shao
- State Key Laboratory of Materials-Oriented Chemical Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), College of Chemical Engineering, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, China
| | - Xing-Ru Song
- State Key Laboratory of Materials-Oriented Chemical Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), College of Chemical Engineering, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, China
| | - Shi-Chao Qi
- State Key Laboratory of Materials-Oriented Chemical Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), College of Chemical Engineering, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, China
| | - Peng Tan
- State Key Laboratory of Materials-Oriented Chemical Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), College of Chemical Engineering, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, China
| | - Xiao-Qin Liu
- State Key Laboratory of Materials-Oriented Chemical Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), College of Chemical Engineering, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, China
| | - Juntao Yan
- College of Chemistry and Environmental Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Lin-Bing Sun
- State Key Laboratory of Materials-Oriented Chemical Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), College of Chemical Engineering, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, China
| |
Collapse
|
21
|
Li Z, Huang Y, Li H, Zhang F, Ren Y, Shi W, Liu Q, Wang X. Single-Walled Cluster Nanotubes for Single-Atom Catalysts with Precise Structures. J Am Chem Soc 2024; 146:450-459. [PMID: 38151238 DOI: 10.1021/jacs.3c09752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2023]
Abstract
Spatially confining isolated atomic sites in low-dimensional nanostructures is a promising strategy for preparing high-performance single-atom catalysts (SACs). Herein, fascinating polyoxometalate cluster-based single-walled nanotubes (POM-SWNTs) with atomically precise structures, uniform diameter, and single-cluster wall thickness are constructed by lacunary POM clusters (PW11 and P2W17 clusters). Isolated metal centers are accurately incorporated into the PW11-SWNTs and P2W17-SWNTs supports. The structures of the resulting MPW11-SWNTs and MP2W17-SWNTs are well established (M = Cu, Pt). Molecular dynamics simulations demonstrate the stability of POM-SWNTs. Furthermore, the turnover frequency of PtP2W17-SWNTs is 20 times higher than that of PtP2W17 cluster units and 140 times higher than that of Pt nanoparticles in the alcoholysis of dimethylphenylsilane. Theoretical studies indicate that incorporating a Pt atom into the P2W17 support induces straightforward electron transfer between them, combining the nanoconfined environment to enhance the catalytic activity of PtP2W17-SWNTs. This work shows the feasibility of using subnanometric POM clusters to assemble single-walled cluster nanotubes, highlighting their potential to prepare superior SACs with precise structures.
Collapse
Affiliation(s)
- Zhong Li
- Engineering Research Center of Advanced Rare Earth Materials, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Yunwei Huang
- Engineering Research Center of Advanced Rare Earth Materials, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Haoyang Li
- Engineering Research Center of Advanced Rare Earth Materials, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Fenghua Zhang
- Engineering Research Center of Advanced Rare Earth Materials, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Yazhou Ren
- Engineering Research Center of Advanced Rare Earth Materials, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Wenxiong Shi
- Institute for New Energy Materials and Low Carbon Technologies, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300384, China
| | - Qingda Liu
- Engineering Research Center of Advanced Rare Earth Materials, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Xun Wang
- Engineering Research Center of Advanced Rare Earth Materials, Department of Chemistry, Tsinghua University, Beijing 100084, China
| |
Collapse
|
22
|
Shi J, Li R, Zhang J, Wang Y, Ma W, Yue Z, Jin C, Liu Y, Zheng L, Bai J, Li X, Leng K, Qu Y. N-Coordinated Iridium-Molybdenum Dual-Atom Catalysts Enabling Efficient Bifunctional Hydrogen Electrocatalysis. ACS APPLIED MATERIALS & INTERFACES 2024; 16:889-897. [PMID: 38153800 DOI: 10.1021/acsami.3c16300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2023]
Abstract
Achieving effective hydrogen evolution/oxidation reaction (HER/HOR) across a wide pH span is of critical importance in unlocking the full potential of hydrogen energy but remains intrinsically challenging. Here, we engineer the N-coordinated Ir-Mo dual atoms on a carbon matrix by ultrafast high-temperature sintering, creating an efficient bifunctional electrocatalyst for both HER and HOR in both acidic and alkaline electrolytes. The optimized catalyst, Ir-Mo DAC/NC, demonstrates exceptional performance, with a significantly reduced HER overpotential of 11.3 mV at 10 mA/cm2 and a HOR exchange current (i0,m) of 3972 mA/mgIr in acidic conditions, surpassing the performance of Pt/C and Ir/C catalysts. In alkaline conditions, Ir-Mo DAC/NC also outperforms Pt/C, as evidenced by its low HER overpotential of 23 mV at 10 mA/cm2 and a high i0,m of 1308 mA/mgIr. Furthermore, our catalyst exhibits remarkable stability in both acidic and alkaline environments. DFT calculations results reveal that the superior electrochemical performance of Ir-Mo DAC/NC arises from the electronic synergy between Ir and Mo pairs, which regulates the interaction between the intermediates and active sites. These findings present a promising strategy for the development of dual-atom catalysts (DACs), with potential applications in the polymer fuel cells and water electrolyzers.
Collapse
Affiliation(s)
- Jingbo Shi
- State Key Laboratory of Photoelectric Technology and Functional Materials, International Collaborative Center on Photoelectric Technology and Nano Functional Materials, Institute of Photonics & Photon-Technology, Northwest University, Xi'an 710069, P. R. China
| | - Ren Li
- State Key Laboratory of Photoelectric Technology and Functional Materials, International Collaborative Center on Photoelectric Technology and Nano Functional Materials, Institute of Photonics & Photon-Technology, Northwest University, Xi'an 710069, P. R. China
| | - Jianting Zhang
- State Key Laboratory of Photoelectric Technology and Functional Materials, International Collaborative Center on Photoelectric Technology and Nano Functional Materials, Institute of Photonics & Photon-Technology, Northwest University, Xi'an 710069, P. R. China
| | - Yi Wang
- State Key Laboratory of Photoelectric Technology and Functional Materials, International Collaborative Center on Photoelectric Technology and Nano Functional Materials, Institute of Photonics & Photon-Technology, Northwest University, Xi'an 710069, P. R. China
| | - Weilong Ma
- State Key Laboratory of Photoelectric Technology and Functional Materials, International Collaborative Center on Photoelectric Technology and Nano Functional Materials, Institute of Photonics & Photon-Technology, Northwest University, Xi'an 710069, P. R. China
| | - Zongye Yue
- State Key Laboratory of Photoelectric Technology and Functional Materials, International Collaborative Center on Photoelectric Technology and Nano Functional Materials, Institute of Photonics & Photon-Technology, Northwest University, Xi'an 710069, P. R. China
| | - Chenghao Jin
- State Key Laboratory of Photoelectric Technology and Functional Materials, International Collaborative Center on Photoelectric Technology and Nano Functional Materials, Institute of Photonics & Photon-Technology, Northwest University, Xi'an 710069, P. R. China
| | - Yijiang Liu
- State Key Laboratory of Photoelectric Technology and Functional Materials, International Collaborative Center on Photoelectric Technology and Nano Functional Materials, Institute of Photonics & Photon-Technology, Northwest University, Xi'an 710069, P. R. China
| | - Lirong Zheng
- Institute of High Energy Physics, Beijing 100039, China
| | - Jinbo Bai
- CentraleSupélec, ENS Paris-Saclay, CNRS, LMPS-Laboratoire de Mécanique Paris-Saclay, Université Paris-Saclay, 8-10 rue Joliot-Curie, Gif-sur-Yvette 91190, France
| | - Xiaolin Li
- Institute of Intelligent Manufacturing Technology, Shenzhen Polytechnic, Shenzhen 518055, China
| | - Kunyue Leng
- State Key Laboratory of Photoelectric Technology and Functional Materials, International Collaborative Center on Photoelectric Technology and Nano Functional Materials, Institute of Photonics & Photon-Technology, Northwest University, Xi'an 710069, P. R. China
| | - Yunteng Qu
- State Key Laboratory of Photoelectric Technology and Functional Materials, International Collaborative Center on Photoelectric Technology and Nano Functional Materials, Institute of Photonics & Photon-Technology, Northwest University, Xi'an 710069, P. R. China
| |
Collapse
|
23
|
Zhang P, Liu Y, Liu S, Zhou L, Wu X, Han G, Liu T, Sun K, Li B, Jiang J. Precise Design and Modification Engineering of Single-Atom Catalytic Materials for Oxygen Reduction. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2305782. [PMID: 37718497 DOI: 10.1002/smll.202305782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/17/2023] [Indexed: 09/19/2023]
Abstract
Due to their unique electronic and structural properties, single-atom catalytic materials (SACMs) hold great promise for the oxygen reduction reaction (ORR). Coordinating environmental and engineering strategies is the key to improving the ORR performance of SACMs. This review summarizes the latest research progress and breakthroughs of SACMs in the field of ORR catalysis. First, the research progress on the catalytic mechanism of SACMs acting on ORR is reviewed, including the latest research results on the origin of SACMs activity and the analysis of pre-adsorption mechanism. The study of the pre-adsorption mechanism is an important breakthrough direction to explore the origin of the high activity of SACMs and the practical and theoretical understanding of the catalytic process. Precise coordination environment modification, including in-plane, axial, and adjacent site modifications, can enhance the intrinsic catalytic activity of SACMs and promote the ORR process. Additionally, several engineering strategies are discussed, including multiple SACMs, high loading, and atomic site confinement. Multiple SACMs synergistically enhance catalytic activity and selectivity, while high loading can provide more active sites for catalytic reactions. Overall, this review provides important insights into the design of advanced catalysts for ORR.
Collapse
Affiliation(s)
- Pengxiang Zhang
- College of Chemistry, Zhengzhou University, 100 Science Road, Zhengzhou, 450001, P. R. China
| | - Yanyan Liu
- College of Chemistry, Zhengzhou University, 100 Science Road, Zhengzhou, 450001, P. R. China
- Institute of Chemical Industry of Forest Products, CAF, National Engineering Lab. for Biomass Chemical Utilization, Nanjing, 210042, P. R. China
- College of Science, Henan Agricultural University, 63 Agriculture Road, Zhengzhou, 450002, P. R. China
| | - Shuling Liu
- College of Chemistry, Zhengzhou University, 100 Science Road, Zhengzhou, 450001, P. R. China
| | - Limin Zhou
- College of Chemistry, Zhengzhou University, 100 Science Road, Zhengzhou, 450001, P. R. China
| | - Xianli Wu
- College of Chemistry, Zhengzhou University, 100 Science Road, Zhengzhou, 450001, P. R. China
| | - Guosheng Han
- College of Chemistry, Zhengzhou University, 100 Science Road, Zhengzhou, 450001, P. R. China
| | - Tao Liu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
| | - Kang Sun
- Institute of Chemical Industry of Forest Products, CAF, National Engineering Lab. for Biomass Chemical Utilization, Nanjing, 210042, P. R. China
| | - Baojun Li
- College of Chemistry, Zhengzhou University, 100 Science Road, Zhengzhou, 450001, P. R. China
| | - Jianchun Jiang
- Institute of Chemical Industry of Forest Products, CAF, National Engineering Lab. for Biomass Chemical Utilization, Nanjing, 210042, P. R. China
| |
Collapse
|
24
|
Wang F, Xie L, Sun N, Zhi T, Zhang M, Liu Y, Luo Z, Yi L, Zhao Q, Wang L. Deformable Catalytic Material Derived from Mechanical Flexibility for Hydrogen Evolution Reaction. NANO-MICRO LETTERS 2023; 16:32. [PMID: 37999792 PMCID: PMC10673806 DOI: 10.1007/s40820-023-01251-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 10/21/2023] [Indexed: 11/25/2023]
Abstract
Deformable catalytic material with excellent flexible structure is a new type of catalyst that has been applied in various chemical reactions, especially electrocatalytic hydrogen evolution reaction (HER). In recent years, deformable catalysts for HER have made great progress and would become a research hotspot. The catalytic activities of deformable catalysts could be adjustable by the strain engineering and surface reconfiguration. The surface curvature of flexible catalytic materials is closely related to the electrocatalytic HER properties. Here, firstly, we systematically summarized self-adaptive catalytic performance of deformable catalysts and various micro-nanostructures evolution in catalytic HER process. Secondly, a series of strategies to design highly active catalysts based on the mechanical flexibility of low-dimensional nanomaterials were summarized. Last but not least, we presented the challenges and prospects of the study of flexible and deformable micro-nanostructures of electrocatalysts, which would further deepen the understanding of catalytic mechanisms of deformable HER catalyst.
Collapse
Affiliation(s)
- Fengshun Wang
- College of Electronic and Optical Engineering & College of Flexible Electronics (Future Technology), Nanjing University of Posts & Telecommunications (NJUPT), 9 Wenyuan, Nanjing, 210023, People's Republic of China
| | - Lingbin Xie
- College of Electronic and Optical Engineering & College of Flexible Electronics (Future Technology), Nanjing University of Posts & Telecommunications (NJUPT), 9 Wenyuan, Nanjing, 210023, People's Republic of China
| | - Ning Sun
- College of Electronic and Optical Engineering & College of Flexible Electronics (Future Technology), Nanjing University of Posts & Telecommunications (NJUPT), 9 Wenyuan, Nanjing, 210023, People's Republic of China
| | - Ting Zhi
- College of Electronic and Optical Engineering & College of Flexible Electronics (Future Technology), Nanjing University of Posts & Telecommunications (NJUPT), 9 Wenyuan, Nanjing, 210023, People's Republic of China.
| | - Mengyang Zhang
- College of Electronic and Optical Engineering & College of Flexible Electronics (Future Technology), Nanjing University of Posts & Telecommunications (NJUPT), 9 Wenyuan, Nanjing, 210023, People's Republic of China
| | - Yang Liu
- College of Electronic and Optical Engineering & College of Flexible Electronics (Future Technology), Nanjing University of Posts & Telecommunications (NJUPT), 9 Wenyuan, Nanjing, 210023, People's Republic of China
| | - Zhongzhong Luo
- College of Electronic and Optical Engineering & College of Flexible Electronics (Future Technology), Nanjing University of Posts & Telecommunications (NJUPT), 9 Wenyuan, Nanjing, 210023, People's Republic of China
| | - Lanhua Yi
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, School of Chemistry, Xiangtan University, Xiangtan, 411105, People's Republic of China
| | - Qiang Zhao
- College of Electronic and Optical Engineering & College of Flexible Electronics (Future Technology), Nanjing University of Posts & Telecommunications (NJUPT), 9 Wenyuan, Nanjing, 210023, People's Republic of China.
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM) & Institute of Flexible Electronics (Future Technology), Nanjing University of Posts & Telecommunications, 9 Wenyuan, Nanjing, 210023, People's Republic of China.
| | - Longlu Wang
- College of Electronic and Optical Engineering & College of Flexible Electronics (Future Technology), Nanjing University of Posts & Telecommunications (NJUPT), 9 Wenyuan, Nanjing, 210023, People's Republic of China.
| |
Collapse
|
25
|
Ge M, Li H, Zhu X, Feng Y, Wang M, Cui D, Yang H, Li S, Zheng J, Ju J, Chen X, Yuan X. Confinement Effects in Carbonized ZIF-Confined Hollow PtCo Nanospheres Enable the Methanol Oxidation Reaction. Inorg Chem 2023; 62:16582-16588. [PMID: 37751364 DOI: 10.1021/acs.inorgchem.3c02519] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/28/2023]
Abstract
Confinement effects in highly porous nanostructures can effectively adjust the selectivity and kinetics of electrochemical reactions, which can boost the methanol oxidation reaction (MOR). In this work, carbonized ZIF-8-confined hollow PtCo nanospheres (PtCo@carbonized ZIF-8) were fabricated using a facile strategy. A monodisperse confined region was successfully prepared, and the dispersion of the PtCo nanoparticles (NPs) could be precisely regulated, allowing for the effective tuning of the confined region. Thus, the precise regulation of the catalytic reaction was achieved. Importantly, hollow PtCo NPs were prepared using a method based on the Kirkendall effect, and their forming mechanism was systematically investigated. Because of the confinement effects of carbonized zeolitic imidazolate framework-8 (ZIF-8), the crystal and electronic structures of the PtCo NPs were able to be effectively tuned. Our electrochemical results show that PtCo@carbonized ZIF-8 composites manifest a higher mass activity (1.4 A mgPt-1) and better stability compared to commercial Pt/C.
Collapse
Affiliation(s)
- Ming Ge
- School of Chemistry and Chemical Engineering, Nantong University, 9 Seyuan Road, Nantong, Jiangsu 226019, P.R. China
| | - Han Li
- School of Chemistry and Chemical Engineering, Nantong University, 9 Seyuan Road, Nantong, Jiangsu 226019, P.R. China
| | - Xiaorong Zhu
- School of Chemistry and Chemical Engineering, Nantong University, 9 Seyuan Road, Nantong, Jiangsu 226019, P.R. China
| | - Yanjun Feng
- Shanghai Institute of Satellite Engineering, 3666 Yuanjiang Road, Shanghai 201109, P.R. China
| | - Miao Wang
- School of Chemistry and Chemical Engineering, Nantong University, 9 Seyuan Road, Nantong, Jiangsu 226019, P.R. China
| | - Ding Cui
- School of Chemistry and Chemical Engineering, Nantong University, 9 Seyuan Road, Nantong, Jiangsu 226019, P.R. China
| | - Hu Yang
- School of Chemistry and Chemical Engineering, Nantong University, 9 Seyuan Road, Nantong, Jiangsu 226019, P.R. China
| | - Shengming Li
- School of Chemistry and Chemical Engineering, Nantong University, 9 Seyuan Road, Nantong, Jiangsu 226019, P.R. China
| | - Jie Zheng
- School of Chemistry and Chemical Engineering, Nantong University, 9 Seyuan Road, Nantong, Jiangsu 226019, P.R. China
| | - Jianfeng Ju
- School of Chemistry and Chemical Engineering, Nantong University, 9 Seyuan Road, Nantong, Jiangsu 226019, P.R. China
| | - Xiaolei Chen
- School of Chemistry and Chemical Engineering, Nantong University, 9 Seyuan Road, Nantong, Jiangsu 226019, P.R. China
| | - Xiaolei Yuan
- School of Chemistry and Chemical Engineering, Nantong University, 9 Seyuan Road, Nantong, Jiangsu 226019, P.R. China
| |
Collapse
|
26
|
Xu X, Mo Q, Zheng K, Xu Z, Cai H. Multifunctional Ni 3S 2@NF-based electrocatalysts for efficient and durable electrocatalytic water splitting. Dalton Trans 2023; 52:12378-12389. [PMID: 37593924 DOI: 10.1039/d3dt02035e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/19/2023]
Abstract
Transition-metal sulfides (TMSs) have indeed drawn dramatic interest as a potential species of electrocatalysts by virtue of their unique structural features. However, their poor stability and inherent activity have impeded their use in electrocatalytic water splitting. Here, we provide a rational design of a hierarchical nanostructured electrocatalyst containing CeOx-decorated NiCo-layered double hydroxide (LDH) coupled with Ni3S2 protrusions formed on a Ni foam (NF). Specifically, the as-prepared electrocatalyst, denoted as Ni2Co1 LDH-CeOx/Ni3S2@NF, presents only 250 and 300 mV overpotential at ±100 mA cm-2, respectively, along with the Tafel slope values of 92 and 52 mV dec-1, as well remarkable long-term life for water splitting in an alkaline electrolyte. Based on systematic experiments and theoretical analysis, the superior electrocatalytic property in terms of Ni2Co1 LDH-CeOx/Ni3S2@NF can be imputed to the following reasons: the porous framework of Ni3S2@NF provides a largely surface area and high conductivity; the NiCo LDH nanosheets provide enriched active sites and favorable adsorption ability; the oxygen-vacancy-rich CeOx optimizes the electronic configuration. Overall, these factors work synergistically to expedite the catalytic kinetics of splitting water. Our work concentrates on a rational interface to devise efficient, multifunctional, and serviceable electrocatalysts for future applications.
Collapse
Affiliation(s)
- Xiaomei Xu
- School of Chemistry and Chemical Engineering, Nanchang University, 999 Xuefu Avenue, Nanchang 330031, China.
| | - Qiaoling Mo
- Center of analysis and testing, Nanchang University, 235 Nanjing east road, Nanchang 330029, China.
| | - Kuangqi Zheng
- School of Future Technology, Nanchang University, 999 Xue fu Avenue, Nanchang 330031, China
| | - Zhaodi Xu
- Center of analysis and testing, Nanchang University, 235 Nanjing east road, Nanchang 330029, China.
| | - Hu Cai
- School of Chemistry and Chemical Engineering, Nanchang University, 999 Xuefu Avenue, Nanchang 330031, China.
| |
Collapse
|
27
|
Yu S, Wang P, Ye H, Tang H, Wang S, Wu Z, Pei C, Lu J, Li H. Transition Metal Dichalcogenides Nanoscrolls: Preparation and Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2433. [PMID: 37686941 PMCID: PMC10490124 DOI: 10.3390/nano13172433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 08/21/2023] [Accepted: 08/25/2023] [Indexed: 09/10/2023]
Abstract
Two-dimensional (2D) transition metal dichalcogenides (TMDCs) nanosheets have shown extensive applications due to their excellent physical and chemical properties. However, the low light absorption efficiency limits their application in optoelectronics. By rolling up 2D TMDCs nanosheets, the one-dimensional (1D) TMDCs nanoscrolls are formed with spiral tubular structure, tunable interlayer spacing, and opening ends. Due to the increased thickness of the scroll structure, the light absorption is enhanced. Meanwhile, the rapid electron transportation is confined along the 1D structure. Therefore, the TMDCs nanoscrolls show improved optoelectronic performance compared to 2D nanosheets. In addition, the high specific surface area and active edge site from the bending strain of the basal plane make them promising materials for catalytic reaction. Thus, the TMDCs nanoscrolls have attracted intensive attention in recent years. In this review, the structure of TMDCs nanoscrolls is first demonstrated and followed by various preparation methods of the TMDCs nanoscrolls. Afterwards, the applications of TMDCs nanoscrolls in the fields of photodetection, hydrogen evolution reaction, and gas sensing are discussed.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Hai Li
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University, Nanjing 211816, China
| |
Collapse
|