1
|
Marandi P, Saini D, Arora K, Garg R, Sarkar U, Parida K, Mandal D, Neelakandan PP. Flexible Organic Molecular Single Crystal-Based Triboelectric Device as a Self-Powered Tactile Sensor. J Am Chem Soc 2024; 146:26178-26186. [PMID: 39279457 DOI: 10.1021/jacs.4c07370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/18/2024]
Abstract
Triboelectric nanogenerators (TENGs) have proven to be effective at converting mechanical energy into electrical power, making them a viable technology for operating self-powered electronic devices used in medical diagnostics and environmental monitoring. In the present study, we demonstrate the utility of the flexible single crystals of an organic compound for the fabrication of a TENG as a self-powered tactile sensor. Triboelectrification was attained in single crystals as a result of surface functionalization with positively and negatively charged moieties, viz. Zn2+ and F-, respectively, which resulted in a variable surface potential and reversible adhesion through electrostatic interaction and induction phenomena. TENG incorporating the single crystals showed an output voltage of 2.4 V, a current density of ∼2.2 μA/m2, and a power density of ∼850 mW/m2 and was capable of charging commercial capacitors thereby ensuring its ability to be used as a self-powered touch sensor. Capitalizing on these features, a self-powered tactile sensor was fabricated to demonstrate limb movements. The excellent mechano-electric sensitivity (∼102 mV/kPa until 6 kPa range) and response time (∼38 ms) establish the viability of flexible organic single crystals for mechanical energy harvesting and biosensing applications that could pave the way for their utilization as biomedical wearable devices.
Collapse
Affiliation(s)
- Parvati Marandi
- Institute of Nano Science and Technology, Knowledge City, Sector 81, Mohali 140306, Punjab, India
| | - Dalip Saini
- Institute of Nano Science and Technology, Knowledge City, Sector 81, Mohali 140306, Punjab, India
| | - Kiran Arora
- Institute of Nano Science and Technology, Knowledge City, Sector 81, Mohali 140306, Punjab, India
| | - Romy Garg
- Institute of Nano Science and Technology, Knowledge City, Sector 81, Mohali 140306, Punjab, India
| | - Utsa Sarkar
- Institute of Nano Science and Technology, Knowledge City, Sector 81, Mohali 140306, Punjab, India
| | - Kaushik Parida
- Department of Polymer and Process Engineering, Indian Institute of Technology, Roorkee 247667, Uttarakhand, India
| | - Dipankar Mandal
- Institute of Nano Science and Technology, Knowledge City, Sector 81, Mohali 140306, Punjab, India
| | - Prakash P Neelakandan
- Institute of Nano Science and Technology, Knowledge City, Sector 81, Mohali 140306, Punjab, India
| |
Collapse
|
2
|
Lu Y, Li L, Wang S, Pu X, Zhu YL, Yang Y, Luan J, Zhang S, Wang G. Charge Transfer Mechanisms of Adaptive Multicomponent Solutions at Solid-Liquid Interfaces for Real-Time Coolant State Monitoring. NANO LETTERS 2024; 24:10372-10379. [PMID: 39105796 DOI: 10.1021/acs.nanolett.4c03174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/07/2024]
Abstract
Charge-transfer mechanisms in adaptive multicomponent solutions at liquid-solid interfaces with triboelectric probes are crucial for understanding chemistry dynamics. However, liquid-solid charge transfer becomes unpredictable, due to the components or interactions in solutions, restricting its potential application for precise monitoring of liquid environments. This study utilizes triboelectric probes to investigate the charge transfer of chemicals, applying this approach to real-time coolant state monitoring. Analysis of electrical signal dynamics induced by ethylene glycol and its oxidation byproduct, oxalic acid, in ethylene glycol solutions reveals that hydrogen bond and ion adsorption diminishes the efficiency of electron transfer at the liquid-solid interface. These findings promote the engineering of the triboelectric probe that enhances coolant quality with remarkable sensitivity (detection limit: 0.0001%) and a broad freezing point operational range (0 to -49 °C). This work advances the precise control of the charge dynamics and demonstrates the potential of triboelectric probes for interdisciplinary applications.
Collapse
Affiliation(s)
- Yanxu Lu
- College of Chemistry, Key Laboratory of High Performance Plastics, Ministry of Education, Jilin University, Changchun, 130012, People's Republic of China
| | - Leibo Li
- College of Chemistry, Key Laboratory of High Performance Plastics, Ministry of Education, Jilin University, Changchun, 130012, People's Republic of China
| | - Shengdao Wang
- College of Chemistry, Key Laboratory of High Performance Plastics, Ministry of Education, Jilin University, Changchun, 130012, People's Republic of China
| | - Xin Pu
- College of Chemistry, State Key Laboratory of Supramolecular Structure and Materials, Jilin University, Changchun 130012, People's Republic of China
| | - You-Liang Zhu
- College of Chemistry, State Key Laboratory of Supramolecular Structure and Materials, Jilin University, Changchun 130012, People's Republic of China
| | - Yanchao Yang
- College of Chemistry, Key Laboratory of High Performance Plastics, Ministry of Education, Jilin University, Changchun, 130012, People's Republic of China
| | - Jiashuang Luan
- College of Chemistry, Key Laboratory of High Performance Plastics, Ministry of Education, Jilin University, Changchun, 130012, People's Republic of China
| | - Shuling Zhang
- College of Chemistry, Key Laboratory of High Performance Plastics, Ministry of Education, Jilin University, Changchun, 130012, People's Republic of China
| | - Guibin Wang
- College of Chemistry, Key Laboratory of High Performance Plastics, Ministry of Education, Jilin University, Changchun, 130012, People's Republic of China
| |
Collapse
|
3
|
Jang S, Shah SA, Lee J, Cho S, Kam D, Ra Y, Lee D, Khawar MR, Yoo D, Ahmad A, Choi D. Beyond Metallic Electrode: Spontaneous Formation of Fluidic Electrodes from Operational Liquid in Highly Functional Droplet-Based Electricity Generator. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2403090. [PMID: 38695508 DOI: 10.1002/adma.202403090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/14/2024] [Indexed: 07/03/2024]
Abstract
The droplet-based electricity generator (DEG) has facilitated efficient droplet energy harvesting, yet diversifying its applications necessitates the incorporation of various to the DEG. This study first proposes a methodology for advancing the DEG by substituting its conventional metallic electrode with electrically conductive water electrode (WE), which is spontaneously generated during the operation of the DEG with operating liquid. Due to the inherent conductive and fluidic nature of water, the introduction of the WE maintains the electrical output performance of the DEG while imparting functionalities such as high transparency and flexibility. So, the resultant WE applied DEG (WE-DEG) exhibits high optical transmittance (≈99%) and retains its electricity-generating capability under varying deformations, including bending and stretching. This innovation expands the versatility of the DEG, and especially, a sun-raindrop dual-mode energy harvester is demonstrated by hybridizing the WE-DEG and photovoltaic (PV) cell. This hybridization effectively addresses the weather-dependent limitations inherent in each energy harvester and enhances the temperature-induced inefficiencies typically observed in PV cells, thereby enhancing the overall efficiency. The introduction of the WE will be poised to catalyze new developments in DEG research, paving the way for broader applicability and enhanced efficiency in droplet energy harvesting technologies.
Collapse
Affiliation(s)
- Sunmin Jang
- Department of Mechanical Engineering (Integrated Engineering Program), Kyung Hee University, 1732, Deogyeong-daero, Giheung-gu, Yongin-si, Gyeonggi-do, 17104, Republic of Korea
| | - Soban Ali Shah
- Department of Mechanical Engineering (Integrated Engineering Program), Kyung Hee University, 1732, Deogyeong-daero, Giheung-gu, Yongin-si, Gyeonggi-do, 17104, Republic of Korea
| | - Jaehyun Lee
- Department of Mechanical Engineering (Integrated Engineering Program), Kyung Hee University, 1732, Deogyeong-daero, Giheung-gu, Yongin-si, Gyeonggi-do, 17104, Republic of Korea
| | - Sumin Cho
- Department of Mechanical Engineering (Integrated Engineering Program), Kyung Hee University, 1732, Deogyeong-daero, Giheung-gu, Yongin-si, Gyeonggi-do, 17104, Republic of Korea
| | - Dongik Kam
- Department of Mechanical Engineering (Integrated Engineering Program), Kyung Hee University, 1732, Deogyeong-daero, Giheung-gu, Yongin-si, Gyeonggi-do, 17104, Republic of Korea
| | - Yoonsang Ra
- Department of Mechanical Engineering (Integrated Engineering Program), Kyung Hee University, 1732, Deogyeong-daero, Giheung-gu, Yongin-si, Gyeonggi-do, 17104, Republic of Korea
| | - Donghan Lee
- Department of Mechanical Engineering (Integrated Engineering Program), Kyung Hee University, 1732, Deogyeong-daero, Giheung-gu, Yongin-si, Gyeonggi-do, 17104, Republic of Korea
| | - Muhammad Ramzan Khawar
- Department of Mechanical Engineering (Integrated Engineering Program), Kyung Hee University, 1732, Deogyeong-daero, Giheung-gu, Yongin-si, Gyeonggi-do, 17104, Republic of Korea
| | - Donghyeon Yoo
- Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Awais Ahmad
- Department of Chemistry, University of Lahore, Lahore, 54590, Pakistan
| | - Dongwhi Choi
- Department of Mechanical Engineering (Integrated Engineering Program), Kyung Hee University, 1732, Deogyeong-daero, Giheung-gu, Yongin-si, Gyeonggi-do, 17104, Republic of Korea
| |
Collapse
|
4
|
Zhang S, Zhou X, Nie Z, Su C, Lu Q, Wei J, Liu T, Chi M, Luo B, Liu Y, Cai C, Wang J, Gao C, Wang S, Nie S. Smart Lanceolate Surface with Fast Fog-Digesting Performance for Triboelectric Energy Harvesting. ACS NANO 2024. [PMID: 39088752 DOI: 10.1021/acsnano.4c05403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/03/2024]
Abstract
Utilizing the ubiquitous fog in nature to create decentralized energy-harvesting devices, free from geographical and hydrological constraints, presents an opportunity to foster sustainable power generation. Extracting electrical energy from fog relies heavily on fog-digesting performance. Improving the efficiency of fogwater utilization remains a formidable challenge for existing fogwater energy-harvesting technologies. Inspired by the water-harvesting behavior of Tillandsia leaves, a smart lanceolate surface is developed to harvest triboelectric energy by rapidly digesting fog. Such a surface exhibits capabilities in fog management, encompassing precise fog capture, transportation, and critical droplet separation. Specifically, fog droplets condense at hydrophilic sites of acylated cellulose ester, subsequently migrating toward the rear under Laplace pressure, thereby producing energy as they traverse through the tail end. Such architecture yields a brief voltage restoration period (with an average of 9.36 s), can rush the capacitor to 11.59 V within 20 s, and achieves a water-digestion rate of up to 71.05 kg/m2 h. This biomimetic approach enhances the water-digestion efficacy of the atmospheric water energy apparatus and offers perspectives on mitigating deficiencies in power resources.
Collapse
Affiliation(s)
- Song Zhang
- School of Light Industry and Food Engineering, Guangxi University, Nanning 530004, PR China
| | - Xujun Zhou
- School of Light Industry and Food Engineering, Guangxi University, Nanning 530004, PR China
| | - Zhichao Nie
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, PR China
| | - Chaolin Su
- School of Light Industry and Food Engineering, Guangxi University, Nanning 530004, PR China
| | - Qizhao Lu
- School of Light Industry and Food Engineering, Guangxi University, Nanning 530004, PR China
| | - Jiajia Wei
- School of Light Industry and Food Engineering, Guangxi University, Nanning 530004, PR China
| | - Tao Liu
- School of Light Industry and Food Engineering, Guangxi University, Nanning 530004, PR China
| | - Mingchao Chi
- School of Light Industry and Food Engineering, Guangxi University, Nanning 530004, PR China
| | - Bin Luo
- School of Light Industry and Food Engineering, Guangxi University, Nanning 530004, PR China
| | - Yanhua Liu
- School of Light Industry and Food Engineering, Guangxi University, Nanning 530004, PR China
| | - Chenchen Cai
- School of Light Industry and Food Engineering, Guangxi University, Nanning 530004, PR China
| | - Jinlong Wang
- School of Light Industry and Food Engineering, Guangxi University, Nanning 530004, PR China
| | - Cong Gao
- School of Light Industry and Food Engineering, Guangxi University, Nanning 530004, PR China
| | - Shuangfei Wang
- School of Light Industry and Food Engineering, Guangxi University, Nanning 530004, PR China
| | - Shuangxi Nie
- School of Light Industry and Food Engineering, Guangxi University, Nanning 530004, PR China
| |
Collapse
|
5
|
Li Y, Luo Y, Xiao S, Zhang C, Pan C, Zeng F, Cui Z, Huang B, Tang J, Shao T, Zhang X, Xiong J, Wang ZL. Visualization and standardized quantification of surface charge density for triboelectric materials. Nat Commun 2024; 15:6004. [PMID: 39019867 PMCID: PMC11255240 DOI: 10.1038/s41467-024-49660-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 06/10/2024] [Indexed: 07/19/2024] Open
Abstract
Triboelectric nanogenerator (TENG) operates on the principle of utilizing contact electrification and electrostatic induction. However, visualization and standardized quantification of surface charges for triboelectric materials remain challenging. Here, we report a surface charge visualization and standardized quantification method using electrostatic surface potential measured by Kevin probe and the iterative regularization strategy. Moreover, a tuning strategy on surface charge is demonstrated based on the corona discharge with a three-electrode design. The long-term stability and dissipation mechanisms of the injected negative or positive charges demonstrate high dependence on deep carrier traps in triboelectric materials. Typically, we achieved a 70-fold enhancement on the output voltage (~135.7 V) for the identical polytetrafluoroethylene (PTFE) based TENG (neg-PTFE/PTFE or posi-PTFE/PTFE triboelectric pair) with stable surface charge density (5% decay after 140 days). The charged PTFE was demonstrated as a robot e-skins for non-contact perception of object geometrics. This work provides valuable tools for surface charge visualization and quantification, giving a new strategy for a deeper understanding of contact electrification.
Collapse
Affiliation(s)
- Yi Li
- State Key Laboratory of Power Grid Environmental Protection, School of Electrical Engineering and Automation, Wuhan University, Wuhan, Hubei, People's Republic of China
| | - Yi Luo
- Beijing International S&T Cooperation Base for Plasma Science and Energy Conversion, Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Song Xiao
- State Key Laboratory of Power Grid Environmental Protection, School of Electrical Engineering and Automation, Wuhan University, Wuhan, Hubei, People's Republic of China
| | - Cheng Zhang
- Beijing International S&T Cooperation Base for Plasma Science and Energy Conversion, Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Cheng Pan
- State Key Laboratory of Power Grid Environmental Protection, School of Electrical Engineering and Automation, Wuhan University, Wuhan, Hubei, People's Republic of China
| | - Fuping Zeng
- State Key Laboratory of Power Grid Environmental Protection, School of Electrical Engineering and Automation, Wuhan University, Wuhan, Hubei, People's Republic of China
| | - Zhaolun Cui
- School of Electric Power Engineering, South China University of Technology, Guangzhou, People's Republic of China
| | - Bangdou Huang
- Beijing International S&T Cooperation Base for Plasma Science and Energy Conversion, Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Ju Tang
- State Key Laboratory of Power Grid Environmental Protection, School of Electrical Engineering and Automation, Wuhan University, Wuhan, Hubei, People's Republic of China
| | - Tao Shao
- Beijing International S&T Cooperation Base for Plasma Science and Energy Conversion, Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing, People's Republic of China.
| | - Xiaoxing Zhang
- Key Laboratory for High-Efficiency Utilization of Solar Energy and Operation Control of Energy Storage System, School of Electrical and Electronic Engineering, Hubei University of Technology, Wuhan, People's Republic of China.
| | - Jiaqing Xiong
- Innovation Center for Textile Science and Technology, Donghua University, Shanghai, People's Republic of China.
| | - Zhong Lin Wang
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, People's Republic of China.
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA, USA.
| |
Collapse
|
6
|
Liu H, Han X, Feng X, Zhang L, Sun F, Jia F, Zhao Z, Liu H, Li X. Redox Reactions of Organic Molecules Using Rotating Magnetic Field and Metal Rods. J Am Chem Soc 2024; 146:18143-18150. [PMID: 38916056 DOI: 10.1021/jacs.4c05987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
In recent years, redox reactions have harnessed light or mechanical energy to enable the formation of chemical bonds. We postulated a complementary approach that electromagnetic induction could promote the redox reaction of organic molecules using a rotating magnetic field and metal rods. Here, we report that electromotive force activates the redox-active trifluoromethylating reagents. This magnetoredox system can be applied to the trifluoromethylation of heteroarenes with high regioselectivity and hydrotrifluoromethylation of alkenes without the need for catalysts and organic additives.
Collapse
Affiliation(s)
- Haodong Liu
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo, Shandong 255000, China
| | - Xuliang Han
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo, Shandong 255000, China
| | - Xiaomei Feng
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo, Shandong 255000, China
| | - Lizhi Zhang
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo, Shandong 255000, China
| | - Fenggang Sun
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo, Shandong 255000, China
| | - Fuchao Jia
- School of Physics and Optoelelctronic Engineering, Shandong University of Technology, Zibo, Shandong 255000, China
| | - Zengdian Zhao
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo, Shandong 255000, China
| | - Hui Liu
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo, Shandong 255000, China
| | - Xinjin Li
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo, Shandong 255000, China
| |
Collapse
|
7
|
Gao A, Zhou Q, Cao Z, Xu W, Zhou K, Wang B, Pan J, Pan C, Xia F. A Self-Powered Biochemical Sensor for Intelligent Agriculture Enabled by Signal Enhanced Triboelectric Nanogenerator. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2309824. [PMID: 38561966 PMCID: PMC11165538 DOI: 10.1002/advs.202309824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 02/07/2024] [Indexed: 04/04/2024]
Abstract
Precise agriculture based on intelligent agriculture plays a significant role in sustainable development. The agricultural Internet of Things (IoTs) is a crucial foundation for intelligent agriculture. However, the development of agricultural IoTs has led to exponential growth in various sensors, posing a major challenge in achieving long-term stable power supply for these distributed sensors. Introducing a self-powered active biochemical sensor can help, but current sensors have poor sensitivity and specificity making this application challenging. To overcome this limitation, a triboelectric nanogenerator (TENG)-based self-powered active urea sensor which demonstrates high sensitivity and specificity is developed. This device achieves signal enhancement by introducing a volume effect to enhance the utilization of charges through a novel dual-electrode structure, and improves the specificity of urea detection by utilizing an enzyme-catalyzed reaction. The device is successfully used to monitor the variation of urea concentration during crop growth with concentrations as low as 4 µm, without being significantly affected by common fertilizers such as potassium chloride or ammonium dihydrogen phosphate. This is the first self-powered active biochemical sensor capable of highly specific and highly sensitive fertilizer detection, pointing toward a new direction for developing self-powered active biochemical sensor systems within sustainable development-oriented agricultural IoTs.
Collapse
Affiliation(s)
- Along Gao
- State Key Laboratory of Biogeology and Environmental GeologyEngineering Research Center of Nano‐Geomaterials of the Ministry of EducationFaculty of Materials Science and ChemistryChina University of GeosciencesWuhan430074China
| | - Qitao Zhou
- State Key Laboratory of Biogeology and Environmental GeologyEngineering Research Center of Nano‐Geomaterials of the Ministry of EducationFaculty of Materials Science and ChemistryChina University of GeosciencesWuhan430074China
| | - Zhikang Cao
- State Key Laboratory of Biogeology and Environmental GeologyEngineering Research Center of Nano‐Geomaterials of the Ministry of EducationFaculty of Materials Science and ChemistryChina University of GeosciencesWuhan430074China
| | - Wenxia Xu
- State Key Laboratory of Biogeology and Environmental GeologyEngineering Research Center of Nano‐Geomaterials of the Ministry of EducationFaculty of Materials Science and ChemistryChina University of GeosciencesWuhan430074China
| | - Kang Zhou
- State Key Laboratory of Biogeology and Environmental GeologyEngineering Research Center of Nano‐Geomaterials of the Ministry of EducationFaculty of Materials Science and ChemistryChina University of GeosciencesWuhan430074China
| | - Boyou Wang
- State Key Laboratory of Biogeology and Environmental GeologyEngineering Research Center of Nano‐Geomaterials of the Ministry of EducationFaculty of Materials Science and ChemistryChina University of GeosciencesWuhan430074China
| | - Jing Pan
- State Key Laboratory of Biogeology and Environmental GeologyEngineering Research Center of Nano‐Geomaterials of the Ministry of EducationFaculty of Materials Science and ChemistryChina University of GeosciencesWuhan430074China
| | - Caofeng Pan
- Beijing Institute of Nanoenergy and NanosystemsChinese Academy of SciencesBeijing100083China
| | - Fan Xia
- State Key Laboratory of Biogeology and Environmental GeologyEngineering Research Center of Nano‐Geomaterials of the Ministry of EducationFaculty of Materials Science and ChemistryChina University of GeosciencesWuhan430074China
| |
Collapse
|
8
|
Liu J, Qian J, Adil M, Bi Y, Wu H, Hu X, Wang Z, Zhang W. Bioinspired integrated triboelectric electronic tongue. MICROSYSTEMS & NANOENGINEERING 2024; 10:57. [PMID: 38725435 PMCID: PMC11079038 DOI: 10.1038/s41378-024-00690-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 02/02/2024] [Accepted: 03/11/2024] [Indexed: 05/12/2024]
Abstract
An electronic tongue (E-tongue) comprises a series of sensors that simulate human perception of taste and embedded artificial intelligence (AI) for data analysis and recognition. Traditional E-tongues based on electrochemical methods suffer from a bulky size and require larger sample volumes and extra power sources, limiting their applications in in vivo medical diagnosis and analytical chemistry. Inspired by the mechanics of the human tongue, triboelectric components have been incorporated into E-tongue platforms to overcome these limitations. In this study, an integrated multichannel triboelectric bioinspired E-tongue (TBIET) device was developed on a single glass slide chip to improve the device's taste classification accuracy by utilizing numerous sensory signals. The detection capability of the TBIET was further validated using various test samples, including representative human body, environmental, and beverage samples. The TBIET achieved a remarkably high classification accuracy. For instance, chemical solutions showed 100% identification accuracy, environmental samples reached 98.3% accuracy, and four typical teas demonstrated 97.0% accuracy. Additionally, the classification accuracy of NaCl solutions with five different concentrations reached 96.9%. The innovative TBIET exhibits a remarkable capacity to detect and analyze droplets with ultrahigh sensitivity to their electrical properties. Moreover, it offers a high degree of reliability in accurately detecting and analyzing various liquid samples within a short timeframe. The development of a self-powered portable triboelectric E-tongue prototype is a notable advancement in the field and is one that can greatly enhance the feasibility of rapid on-site detection of liquid samples in various settings.
Collapse
Affiliation(s)
- Jiaming Liu
- Anhui Province Key Laboratory of Measuring Theory and Precision Instruments, School of Instrumental Science and Optoelectronics Engineering, Hefei University of Technology, 230009 Hefei, Anhui China
| | - Jingui Qian
- Anhui Province Key Laboratory of Measuring Theory and Precision Instruments, School of Instrumental Science and Optoelectronics Engineering, Hefei University of Technology, 230009 Hefei, Anhui China
| | - Murtazt Adil
- School of Physics and Optoelectronic Engineering, Guangdong University of Technology, 510006 Guangzhou, Guangdong China
| | - Yali Bi
- Anhui Province Key Laboratory of Measuring Theory and Precision Instruments, School of Instrumental Science and Optoelectronics Engineering, Hefei University of Technology, 230009 Hefei, Anhui China
| | - Haoyi Wu
- School of Physics and Optoelectronic Engineering, Guangdong University of Technology, 510006 Guangzhou, Guangdong China
| | - Xuefeng Hu
- Anhui Province Key Laboratory of Measuring Theory and Precision Instruments, School of Instrumental Science and Optoelectronics Engineering, Hefei University of Technology, 230009 Hefei, Anhui China
| | - Zuankai Wang
- Department of Mechanical Engineering, The Hong Kong Polytechnical University, Hong Kong SAR, China
| | - Wei Zhang
- School of Physics and Optoelectronic Engineering, Guangdong University of Technology, 510006 Guangzhou, Guangdong China
| |
Collapse
|
9
|
Ivanov YD, Shumov ID, Kozlov AF, Valueva AA, Ershova MO, Ivanova IA, Ableev AN, Tatur VY, Lukyanitsa AA, Ivanova ND, Ziborov VS. Atomic Force Microscopy Study of the Long-Term Effect of the Glycerol Flow, Stopped in a Coiled Heat Exchanger, on Horseradish Peroxidase. MICROMACHINES 2024; 15:499. [PMID: 38675310 PMCID: PMC11052087 DOI: 10.3390/mi15040499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 03/19/2024] [Accepted: 03/26/2024] [Indexed: 04/28/2024]
Abstract
Glycerol is employed as a functional component of heat-transfer fluids, which are of use in both bioreactors and various biosensor devices. At the same time, flowing glycerol was reported to cause considerable triboelectric effects. Herein, by using atomic force microscopy (AFM), we have revealed the long-term effect of glycerol flow, stopped in a ground-shielded coiled heat exchanger, on horseradish peroxidase (HRP) adsorption on mica. Namely, the solution of HRP was incubated in the vicinity of the side of the cylindrical coil with stopped glycerol flow, and then HRP was adsorbed from this solution onto a mica substrate. This incubation has been found to markedly increase the content of aggregated enzyme on mica-as compared with the control enzyme sample. We explain the phenomenon observed by the influence of triboelectrically induced electromagnetic fields of non-trivial topology. The results reported should be further considered in the development of flow-based heat exchangers of biosensors and bioreactors intended for operation with enzymes.
Collapse
Affiliation(s)
- Yuri D. Ivanov
- Institute of Biomedical Chemistry, Pogodinskaya Str., 10 Build. 8, 119121 Moscow, Russia; (I.D.S.); (A.F.K.); (A.A.V.); (M.O.E.); (I.A.I.); (A.N.A.); (V.S.Z.)
- Joint Institute for High Temperatures of the Russian Academy of Sciences, 125412 Moscow, Russia
| | - Ivan D. Shumov
- Institute of Biomedical Chemistry, Pogodinskaya Str., 10 Build. 8, 119121 Moscow, Russia; (I.D.S.); (A.F.K.); (A.A.V.); (M.O.E.); (I.A.I.); (A.N.A.); (V.S.Z.)
| | - Andrey F. Kozlov
- Institute of Biomedical Chemistry, Pogodinskaya Str., 10 Build. 8, 119121 Moscow, Russia; (I.D.S.); (A.F.K.); (A.A.V.); (M.O.E.); (I.A.I.); (A.N.A.); (V.S.Z.)
| | - Anastasia A. Valueva
- Institute of Biomedical Chemistry, Pogodinskaya Str., 10 Build. 8, 119121 Moscow, Russia; (I.D.S.); (A.F.K.); (A.A.V.); (M.O.E.); (I.A.I.); (A.N.A.); (V.S.Z.)
| | - Maria O. Ershova
- Institute of Biomedical Chemistry, Pogodinskaya Str., 10 Build. 8, 119121 Moscow, Russia; (I.D.S.); (A.F.K.); (A.A.V.); (M.O.E.); (I.A.I.); (A.N.A.); (V.S.Z.)
| | - Irina A. Ivanova
- Institute of Biomedical Chemistry, Pogodinskaya Str., 10 Build. 8, 119121 Moscow, Russia; (I.D.S.); (A.F.K.); (A.A.V.); (M.O.E.); (I.A.I.); (A.N.A.); (V.S.Z.)
| | - Alexander N. Ableev
- Institute of Biomedical Chemistry, Pogodinskaya Str., 10 Build. 8, 119121 Moscow, Russia; (I.D.S.); (A.F.K.); (A.A.V.); (M.O.E.); (I.A.I.); (A.N.A.); (V.S.Z.)
| | - Vadim Y. Tatur
- Foundation of Perspective Technologies and Novations, 115682 Moscow, Russia; (V.Y.T.); (A.A.L.); (N.D.I.)
| | - Andrei A. Lukyanitsa
- Foundation of Perspective Technologies and Novations, 115682 Moscow, Russia; (V.Y.T.); (A.A.L.); (N.D.I.)
- Faculty of Computational Mathematics and Cybernetics, Moscow State University, 119991 Moscow, Russia
| | - Nina D. Ivanova
- Foundation of Perspective Technologies and Novations, 115682 Moscow, Russia; (V.Y.T.); (A.A.L.); (N.D.I.)
- Moscow State Academy of Veterinary Medicine and Biotechnology Named after Skryabin, 109472 Moscow, Russia
| | - Vadim S. Ziborov
- Institute of Biomedical Chemistry, Pogodinskaya Str., 10 Build. 8, 119121 Moscow, Russia; (I.D.S.); (A.F.K.); (A.A.V.); (M.O.E.); (I.A.I.); (A.N.A.); (V.S.Z.)
- Joint Institute for High Temperatures of the Russian Academy of Sciences, 125412 Moscow, Russia
| |
Collapse
|
10
|
Li Y, Luo Y, Deng H, Shi S, Tian S, Wu H, Tang J, Zhang C, Zhang X, Zha JW, Xiao S. Advanced Dielectric Materials for Triboelectric Nanogenerators: Principles, Methods, and Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024:e2314380. [PMID: 38517171 DOI: 10.1002/adma.202314380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 03/06/2024] [Indexed: 03/23/2024]
Abstract
Triboelectric nanogenerator (TENG) manifests distinct advantages such as multiple structural selectivity, diverse selection of materials, environmental adaptability, low cost, and remarkable conversion efficiency, which becomes a promising technology for micro-nano energy harvesting and self-powered sensing. Tribo-dielectric materials are the fundamental and core components for high-performance TENGs. In particular, the charge generation, dissipation, storage, migration of the dielectrics, and dynamic equilibrium behaviors determine the overall performance. Herein, a comprehensive summary is presented to elucidate the dielectric charge transport mechanism and tribo-dielectric material modification principle toward high-performance TENGs. The contact electrification and charge transport mechanism of dielectric materials is started first, followed by introducing the basic principle and dielectric materials of TENGs. Subsequently, modification mechanisms and strategies for high-performance tribo-dielectric materials are highlighted regarding physical/chemical, surface/bulk, dielectric coupling, and structure optimization. Furthermore, representative applications of dielectric materials based TENGs as power sources, self-powered sensors are demonstrated. The existing challenges and promising potential opportunities for advanced tribo-dielectric materials are outlined, guiding the design, fabrication, and applications of tribo-dielectric materials.
Collapse
Affiliation(s)
- Yi Li
- State Key Laboratory of Power Grid Environmental Protection, School of Electrical Engineering and Automation, Wuhan University, Wuhan, Hubei, 430072, China
| | - Yi Luo
- Beijing International S&T Cooperation Base for Plasma Science and Energy Conversion, Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing, 100190, China
| | - Haocheng Deng
- State Key Laboratory of Power Grid Environmental Protection, School of Electrical Engineering and Automation, Wuhan University, Wuhan, Hubei, 430072, China
| | - Shengyao Shi
- State Key Laboratory of Power Grid Environmental Protection, School of Electrical Engineering and Automation, Wuhan University, Wuhan, Hubei, 430072, China
| | - Shuangshuang Tian
- Hubei Engineering Research Center for Safety Monitoring of New Energy and Power Grid Equipment, Hubei University of Technology, Wuhan, Hubei, 430068, China
| | - Haoying Wu
- State Key Laboratory of Power Grid Environmental Protection, School of Electrical Engineering and Automation, Wuhan University, Wuhan, Hubei, 430072, China
| | - Ju Tang
- State Key Laboratory of Power Grid Environmental Protection, School of Electrical Engineering and Automation, Wuhan University, Wuhan, Hubei, 430072, China
| | - Cheng Zhang
- Beijing International S&T Cooperation Base for Plasma Science and Energy Conversion, Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing, 100190, China
| | - Xiaoxing Zhang
- Hubei Engineering Research Center for Safety Monitoring of New Energy and Power Grid Equipment, Hubei University of Technology, Wuhan, Hubei, 430068, China
| | - Jun-Wei Zha
- Beijing Advanced Innovation Center for Materials Genome Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Song Xiao
- State Key Laboratory of Power Grid Environmental Protection, School of Electrical Engineering and Automation, Wuhan University, Wuhan, Hubei, 430072, China
| |
Collapse
|
11
|
Jiang F, Zhan L, Lee JP, Lee PS. Triboelectric Nanogenerators Based on Fluid Medium: From Fundamental Mechanisms toward Multifunctional Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2308197. [PMID: 37842933 DOI: 10.1002/adma.202308197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 09/21/2023] [Indexed: 10/17/2023]
Abstract
Fluid-based triboelectric nanogenerators (FB-TENGs) are at the forefront of promising energy technologies, demonstrating the ability to generate electricity through the dynamic interaction between two dissimilar materials, wherein at least one is a fluidic medium (such as gas or liquid). By capitalizing on the dynamic and continuous properties of fluids and their interface interactions, FB-TENGs exhibit a larger effective contact area and a longer-lasting triboelectric effect in comparison to their solid-based counterparts, thereby affording longer-term energy harvesting and higher-precision self-powered sensors in harsh conditions. In this review, various fluid-based mechanical energy harvesters, including liquid-solid, gas-solid, liquid-liquid, and gas-liquid TENGs, have been systematically summarized. Their working mechanism, optimization strategies, respective advantages and applications, theoretical and simulation analysis, as well as the existing challenges, have also been comprehensively discussed, which provide prospective directions for device design and mechanism understanding of FB-TENGs.
Collapse
Affiliation(s)
- Feng Jiang
- Institute of Flexible Electronics Technology of Tsinghua, Jiaxing, Zhejiang, 314000, China
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Liuxiang Zhan
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Jin Pyo Lee
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Pooi See Lee
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| |
Collapse
|
12
|
Kim H, Nguyen DC, Luu TT, Ding Z, Lin ZH, Choi D. Recent Advances in Functional Fiber-Based Wearable Triboelectric Nanogenerators. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2718. [PMID: 37836359 PMCID: PMC10574623 DOI: 10.3390/nano13192718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 09/26/2023] [Accepted: 10/04/2023] [Indexed: 10/15/2023]
Abstract
The quality of human life has improved thanks to the rapid development of wearable electronics. Previously, bulk structures were usually selected for the fabrication of high performance electronics, but these are not suitable for wearable electronics due to mobility limitations and comfortability. Fibrous material-based triboelectric nanogenerators (TENGs) can provide power to wearable electronics due to their advantages such as light weight, flexibility, stretchability, wearability, etc. In this work, various fiber materials, multiple fabrication methods, and fundamentals of TENGs are described. Moreover, recent advances in functional fiber-based wearable TENGs are introduced. Furthermore, the challenges to functional fiber-based TENGs are discussed, and possible solutions are suggested. Finally, the use of TENGs in hybrid devices is introduced for a broader introduction of fiber-based energy harvesting technologies.
Collapse
Affiliation(s)
- Hakjeong Kim
- School of Mechanical Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Dinh Cong Nguyen
- School of Mechanical Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Thien Trung Luu
- School of Mechanical Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Zhengbing Ding
- School of Mechanical Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Zong-Hong Lin
- Department of Biomedical Engineering, National Taiwan University, Taipei 10167, Taiwan
| | - Dukhyun Choi
- School of Mechanical Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
- Department of Future Energy Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
- Institute of Energy Science & Technology (SIEST), Sungkyunkwan University, Suwon 16419, Republic of Korea
| |
Collapse
|
13
|
Ling Z, Lin F, Huang X, Pang H, Zhang Q, Zhang C, Li X, Wang X, Pan X. Influence of Molecular Structure and Material Properties on the Output Performance of Liquid-Solid Triboelectric Nanogenerators. MICROMACHINES 2023; 14:1825. [PMID: 37893262 PMCID: PMC10609343 DOI: 10.3390/mi14101825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 09/10/2023] [Accepted: 09/19/2023] [Indexed: 10/29/2023]
Abstract
With the advantages of superior wear resistance, mechanical durability, and stability, the liquid-solid triboelectric nanogenerator (LS-TENG) has been attracting much attention in the field of energy harvesting and self-powered sensors. However, most of the studies on LS-TENG focused on device innovations, changes in solid materials, and the effect of solid properties on output performance, and there is a lack of studies on liquids, especially at the molecular level. A U-tube LS-TENG was assembled to conduct experiments, whereby the effects of molecular structures, including molecular composition, carbon chain length, functional groups and material properties on the output performance were investigated. The deuterium replacing hydrogen and the atomic compositions could not achieve the enhancement of the output performance. Whether the chemical functional groups improve the output performance of LS-TENG depends on the mating solid material. Hydroxyl and cyanogenic groups can improve the output performance for the FEP case, while amide and cyanogenic groups can improve the output performance for the PTFE case. The order of output performances for functional groups of four groups of liquids with both FEP and PTFE materials is also obtained. It was also found that the dielectric constant is not positively correlated with the output performance. The results of this study might provide a reference for the deeper study and application of LS-TENG.
Collapse
Affiliation(s)
- Ziyun Ling
- College of Naval Architecture and Shipping, Guangdong Ocean University, Zhanjiang 524088, China; (Z.L.); (F.L.); (X.P.)
| | - Fang Lin
- College of Naval Architecture and Shipping, Guangdong Ocean University, Zhanjiang 524088, China; (Z.L.); (F.L.); (X.P.)
| | - Xili Huang
- College of Electronics and Information Engineering, Guangdong Ocean University, Zhanjiang 524088, China;
| | - Hongchen Pang
- College of Mechanical Engineering, Guangdong Ocean University, Zhanjiang 524088, China;
| | - Qianxi Zhang
- College of Ocean Engineering and Energy, Guangdong Ocean University, Zhanjiang 524088, China; (Q.Z.); (C.Z.); (X.L.)
| | - Cheng Zhang
- College of Ocean Engineering and Energy, Guangdong Ocean University, Zhanjiang 524088, China; (Q.Z.); (C.Z.); (X.L.)
| | - Xiaoning Li
- College of Ocean Engineering and Energy, Guangdong Ocean University, Zhanjiang 524088, China; (Q.Z.); (C.Z.); (X.L.)
| | - Xianzhang Wang
- College of Mechanical Engineering, Guangdong Ocean University, Zhanjiang 524088, China;
| | - Xinxiang Pan
- College of Naval Architecture and Shipping, Guangdong Ocean University, Zhanjiang 524088, China; (Z.L.); (F.L.); (X.P.)
| |
Collapse
|