1
|
Jia S, Yang B, Du J, Zhang J, Xie Y, Tao T, Tang J, Tang W, Gong J. Circularly Polarized Luminescence in Cellulose-Based Assemblies: Synthesis, Regulation, and Application. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024:e2408219. [PMID: 39711311 DOI: 10.1002/smll.202408219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 12/02/2024] [Indexed: 12/24/2024]
Abstract
Currently, circularly polarized luminescence (CPL) has drawn wide interest in 3D display, information storage, and optical sensing. However, traditional synthetic paths are often accompanied by low chiral optical intensity and complex processes. Cellulose nanocrystals (CNCs), with the properties of liquid crystals, can spontaneously arrange into the left-handed layered nanofilm, which enables them candidates in the construction of CPL materials. Following this approach, this work reviews the synthesis of cellulose-based chiral luminescent materials. The co-assembly technique, in situ intercalation strategy, and defect destruction design are efficient in encapsulating the luminophores into the CNC organization. Next, various strategies on the CPL regulation, including the matching of the photonic bandgap, optical pathway design, and tailored helical structure, are summarized. These offer new sights in the CPL control, mainly focusing on the amplification and inversion of optical signals. Multimodal and convertible chiroptical signals enable the photonic films with practical values in anti-counterfeit, sensing, and handedness induction. Overall, this timely overview summarizes the synthesis, regulation, and application of cellulose-based CPL materials, and aims to inspire the development of the chiral optical materials.
Collapse
Affiliation(s)
- Shengzhe Jia
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Bingbing Yang
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Jing Du
- Department of Chemistry, Institute of Molecular Aggregation Science, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Tianjin University, Tianjin, 300072, China
| | - Jiayin Zhang
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Yujiang Xie
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Tiantian Tao
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Jiaxuan Tang
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Weiwei Tang
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
- Collaborative Innovation Center of Chemistry Science and Engineering, Tianjin, 300072, China
| | - Junbo Gong
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
- Collaborative Innovation Center of Chemistry Science and Engineering, Tianjin, 300072, China
| |
Collapse
|
2
|
Xu L, Li Y, Liu W, Yang Y. Upconversion circularly polarized luminescence of cholesteric liquid crystal polymer networks with NaYF 4:Yb,Tm UCNPs. MATERIALS HORIZONS 2024; 11:6455-6462. [PMID: 39385583 DOI: 10.1039/d4mh00966e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Upconversion circularly polarized luminescence (UC-CPL) exhibits promising potential for application for anti-counterfeiting and displays. Upconversion nanoparticles (UCNPs), NaYF4:Yb,Tm, with uniform morphology and high crystallinity, were prepared via a simple solvothermal method. These UCNPs were embedded into cholesteric liquid crystal polymer network (CLCN) films. The UC-CPL performance of these films was investigated using left- and right-handed circular polarizers. After calibration, the |gcallum| values (up to 0.33) were obtained for the free-standing CLCN-UCNPs films, while a |gcallum| value of 0.43 was achieved for the CLCN-UCNPs-coated PET film. Moreover, a combined system comprising a PMMA-UCNPs layer and a CLCN layer yielded an ultra-large |gcallum| value of up to 1.73. Flexible and colourful patterned CLCN films were fabricated using photomasks, offering potential applications in anti-counterfeiting. This study not only successfully prepared UC-CPL-active materials based on CLCNs and UCNPs, but also demonstrated the chiral filtering effect of CLCN films in upconversion luminescent materials.
Collapse
Affiliation(s)
- Liting Xu
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials, Department of Polymer Science and Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China.
| | - Yi Li
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials, Department of Polymer Science and Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China.
| | - Wei Liu
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials, Department of Polymer Science and Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China.
| | - Yonggang Yang
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials, Department of Polymer Science and Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China.
| |
Collapse
|
3
|
Ai L, Xiang W, Li ZW, Liu H, Xiao J, Song H, Yu J, Song Z, Zhu K, Pan Z, Wang H, Lu S. Hydrogen Bond-Induced Flexible and Twisted Self-Assembly of Functionalized Carbon Dots with Customized-Color Circularly Polarized Luminescence. Angew Chem Int Ed Engl 2024; 63:e202410988. [PMID: 39283269 DOI: 10.1002/anie.202410988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Indexed: 11/01/2024]
Abstract
Circularly polarized luminescence (CPL) has numerous applications in optical data storage, quantum computing, bioresponsive imaging, liquid crystal displays, and backlights in three-dimensional (3D) displays. In addition to their competitive optical properties, carbon dots (CDs) benefit from simple and low-cost preparation, facile post-modification, and excellent resistance to photo- and chemical bleaching after carbonization. Combining the superior optical performance with polarization peculiarities through hierarchical structure engineering is imperative for the development of CDs. In this study, hydrophobic interactions of aromatic ligands, which participate in the surface-ligand post-modification process on the ground-state chiral carbon core, are employed to drive the oriented assembly. Furthermore, the residual chiral amides on CDs form multiple hydrogen bonds during gradual aggregation, causing the assembled materials to form an asymmetric bending structure. Superficial ligands interfere with the optical dynamics of the exciton radiation transition and stabilize the excited state of the assembled materials to achieve a circularly polarized signal. The linkage ligands overcome the frequent aggregation-induced quenching phenomenon that present difficulties in conventional CDs, facilitate the assembly of self-supporting films, and improve chiral optical expression. The full-color and white CPL are manipulated by simply adjusting the functional groups of the ligands, which also illustrates the versatility of the post-modification strategy. Finally, large chiral flexible films and multicolor chiral light-emitting diodes based on the stable chiral powder phosphors were constructed, thereby providing feasible materials and technical support for flexible 3D displays.
Collapse
Affiliation(s)
- Lin Ai
- College of Chemistry, Pingyuan Laboratory, Zhengzhou University, 450001, Zhengzhou, China
| | - Wenjuan Xiang
- College of Chemistry, Pingyuan Laboratory, Zhengzhou University, 450001, Zhengzhou, China
| | - Zhan-Wei Li
- College of Chemistry, Pingyuan Laboratory, Zhengzhou University, 450001, Zhengzhou, China
| | - Huimin Liu
- College of Chemistry, Pingyuan Laboratory, Zhengzhou University, 450001, Zhengzhou, China
| | - Jiping Xiao
- College of Chemistry, Pingyuan Laboratory, Zhengzhou University, 450001, Zhengzhou, China
| | - Haoqiang Song
- College of Chemistry, Pingyuan Laboratory, Zhengzhou University, 450001, Zhengzhou, China
| | - Jingkun Yu
- College of Chemistry, Pingyuan Laboratory, Zhengzhou University, 450001, Zhengzhou, China
| | - Ziqi Song
- College of Chemistry, Pingyuan Laboratory, Zhengzhou University, 450001, Zhengzhou, China
| | - Kai Zhu
- College of Chemistry, Pingyuan Laboratory, Zhengzhou University, 450001, Zhengzhou, China
| | - Zhuohan Pan
- College of Chemistry, Pingyuan Laboratory, Zhengzhou University, 450001, Zhengzhou, China
| | - Haolin Wang
- College of Chemistry, Pingyuan Laboratory, Zhengzhou University, 450001, Zhengzhou, China
| | - Siyu Lu
- College of Chemistry, Pingyuan Laboratory, Zhengzhou University, 450001, Zhengzhou, China
| |
Collapse
|
4
|
Yao K, Wang Z, Wang P, Li Y, Hu L, Cheng Y, Geng Z. Excitation-Dependent Circularly Polarized Luminescence Inversion Driven by Dichroic Competition of Achiral Dyes in Cholesteric Liquid Crystals. Angew Chem Int Ed Engl 2024:e202420290. [PMID: 39611398 DOI: 10.1002/anie.202420290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Revised: 11/27/2024] [Accepted: 11/27/2024] [Indexed: 11/30/2024]
Abstract
The development of stimuli-responsive chiral cholesteric liquid crystals (CLCs) materials holds significant potential for achieving three-dimensional (3D) anti-counterfeiting and multi-level information encryption. However, constructing phototunable CLCs systems with easy fabrication and fast response remains a great challenge. Herein, we exploit an excitation-dependent CLCs (ExD-CLCs) material by establishing dynamically photoresponsive dichroic competition between two achiral dyes: a negative dichroic dye (SP-COOH) and a positive dichroic dye (Nile Red, NR) within a CLCs medium. The ExD-CLCs exhibits a negative circularly polarized luminescence (CPL) signal (glum=-0.16) at 625 nm when excited at 365 nm. Remarkably, under excitation at 430 nm, the CPL signal is inverted, and the glum value increases to +0.26. Notably, the helical superstructure and handedness of the ExD-CLCs remain unchanged during this reversal process. The CPL signal reversal is driven by the dichroic competition between the SP-COOH dimer, which displays strong negative dichroism in its open-ring isomer form and silent negative dichroism in its closed-ring isomer form, and the NR dye, which exhibits static positive dichroism. Leveraging these excitation-dependent CPL properties, the quadruplex numerical anti-counterfeiting using ExD-CLCs is achieved.
Collapse
Affiliation(s)
- Kun Yao
- School of Chemical and Printing-Dyeing Engineering, Henan University of Engineering, Zhengzhou, 450007, Henan Province, China
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, Jiangsu Province, China
| | - Zhentan Wang
- School of Energy, Materials and Chemical Engineering, Hefei University, Hefei, 230601, Anhui Province, China
| | - Peng Wang
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, Jiangsu Province, China
| | - Yang Li
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, Jiangsu Province, China
| | - Liangyu Hu
- School of Energy, Materials and Chemical Engineering, Hefei University, Hefei, 230601, Anhui Province, China
| | - Yixiang Cheng
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, Jiangsu Province, China
| | - Zhongxing Geng
- School of Energy, Materials and Chemical Engineering, Hefei University, Hefei, 230601, Anhui Province, China
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, Jiangsu Province, China
| |
Collapse
|
5
|
Chen P, Fan H, Du S, Wen X, Zhang L, Liu M. Supramolecular chiroptical sensing of chiral species based on circularly polarized luminescence. SOFT MATTER 2024; 20:8937-8946. [PMID: 39508495 DOI: 10.1039/d4sm00960f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2024]
Abstract
Circularly polarized luminescence (CPL) refers to the differentiation of the left-handed and right-handed emissions of chiral systems in the excited state. Serving as an alternative characterization method to circular dichroism (CD), CPL can detect changes in fluorescence in a chiral system, which could be more efficient in recognizing chiral species. Although CPL can be generated by attaching luminophores to a chiral unit through a covalent bond, the non-covalent bonding of fluorescent chromophores with chiral species or helical nanostructures can also induce CPL and their changes. Thus, CPL can be used as an alternative detection technique for sensing chiral species. In this review, we summarize typical recent advances in chirality sensing based on CPL. The determination of the absolute configuration of chiral compounds and encrypted sensing is also discussed. We hope to provide useful and powerful insights into the construction of chemical sensors based on CPL.
Collapse
Affiliation(s)
- Panyang Chen
- Zhengzhou University, Zhengzhou 450000, P. R. China.
| | - Huahua Fan
- School of Materials Science and Engineering, and Key Lab for Special Functional Materials of Ministry of Education, Henan University, Kaifeng 475004, P. R. China
- Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Zhongguancun North First Street 2, Beijing, 100190, P. R. China.
| | - Sifan Du
- Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Zhongguancun North First Street 2, Beijing, 100190, P. R. China.
| | - Xin Wen
- Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Zhongguancun North First Street 2, Beijing, 100190, P. R. China.
| | - Li Zhang
- Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Zhongguancun North First Street 2, Beijing, 100190, P. R. China.
| | - Minghua Liu
- Zhengzhou University, Zhengzhou 450000, P. R. China.
- Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Zhongguancun North First Street 2, Beijing, 100190, P. R. China.
| |
Collapse
|
6
|
Yu H, Zhang K, Yu Q, Zhang J, Ye Y, Redshaw C, Chen Z, Xu D, Mehl GH. Enhanced Asymmetric Circularly Polarized Luminescence in Self-Organized Helical Superstructures Enabled by Macro-Chiral Liquid Crystal Quantum Dots. ACS NANO 2024; 18:32056-32064. [PMID: 39495020 DOI: 10.1021/acsnano.4c10423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2024]
Abstract
Circularly polarized luminescent (CPL) materials have garnered considerable interest for a variety of advanced optical applications including 3D imaging, data encryption, and asymmetric catalysis. However, the development of high-performance CPL has been hindered by the absence of simple synthetic methods for chiral luminescent emitters that exhibit both high quantum yields and dissymmetry factors. In this study, we present an innovative approach for the synthesis of macro-chiral liquid crystal quantum dots (Ch-QDs/LC) and their CPL performance enhancement through doping with 4-cyano-4'-pentylbiphenyl (5CB), thus yielding a CPL-emitting generator (CEG). The Ch-QDs/LCs were synthesized, and their surfaces functionalized with a chiral mesogenic ligand, specifically cholesteryl benzoate, anchored via a lipoic acid linker. Under the regulation of chiral 2S-Zn2+ coordination complexes, the chiral LC encapsulation process promotes coordinated ligand substitution, resulting in an exceptional quantum yield of 56.3%. This is accompanied by high absorption dissymmetry factor (gabs) and luminescence dissymmetry factor (glum) values ranging from 10-3 to 10-2, surpassing most reported dissymmetry factors by at least an order of magnitude. The modular Ch-QDs/LCs demonstrate the ability to transfer chirality to the surrounding medium efficiently and manifest macro-chiral characteristics within a nematic LC matrix. Utilizing Ch-QDs/LC as an effective CPL emitter within achiral 5CB matrices enabled the system to achieve a maximum glum value of 0.35. The resultant CEG device acted as a direct CPL source, initiating enantioselective photopolymerization.
Collapse
Affiliation(s)
- Huanan Yu
- School of Materials and Chemistry, China Jiliang University, Hangzhou 310018, China
| | - Kaige Zhang
- School of Materials and Chemistry, China Jiliang University, Hangzhou 310018, China
| | - Qiqi Yu
- Key Laboratory of Organosilicon Chemistry and Materials Technology of Ministry of Education, College of Material, Chemistry, and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, China
| | - Jingji Zhang
- School of Materials and Chemistry, China Jiliang University, Hangzhou 310018, China
| | - Yongchun Ye
- School of Materials and Chemistry, China Jiliang University, Hangzhou 310018, China
| | - Carl Redshaw
- Department of Chemistry, University of Hull, Hull HU6 7RX, U.K
| | - Zhonghui Chen
- Advanced Optoelectronic Technology Research Institute, Zhengzhou Research Institute, Harbin Institute of Technology, Zhengzhou 450052, China
| | - Dongdong Xu
- Key Laboratory of Organosilicon Chemistry and Materials Technology of Ministry of Education, College of Material, Chemistry, and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, China
| | - Georg H Mehl
- Department of Chemistry, University of Hull, Hull HU6 7RX, U.K
| |
Collapse
|
7
|
Wang T, Wang Z, Xing P, Hao A. Thermal Chiroptical Switch Based on an Ultrahigh Temperature-Initiated Macrocycle Gel Platform. Macromol Rapid Commun 2024; 45:e2400316. [PMID: 38825873 DOI: 10.1002/marc.202400316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 05/22/2024] [Indexed: 06/04/2024]
Abstract
Responsive chiral optical materials have gained considerable interests from the fields of sensing, display, and optical devices. Materials that are capable of changing chiral optics under harsh conditions such as strong basic/acidic or ultrahigh temperature provides thoughts for the design of materials working at special environments, which however, are still underdeveloped. Here, a proof-of-concept design of organogel is reported that acts as matrices for thermal chiroptical switch with critical working temperature above 100 °C. The reversible solution-to-gel transition of the specific β-cyclodextrin/dimethyl formide/LiCl system is initialized at about 130 °C, when the luminophores with aggregation-induced-emission property shall be lighted up with transferred chirality from inherent chiral β-cyclodextrin. It allows for the controlled emergence of circularly polarized luminescence. This delicate design enables successful fabrication of ultrahigh temperature thermal chiroptical switch.
Collapse
Affiliation(s)
- Tianhao Wang
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, P. R. China
| | - Zhuoer Wang
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, P. R. China
| | - Pengyao Xing
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, P. R. China
| | - Aiyou Hao
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, P. R. China
| |
Collapse
|
8
|
Long Z, Zheng S, Zhou W, Liu G. Supramolecular chirality capture in solvent monomer-based co-assemblies via in situ photopolymerization. Chem Commun (Camb) 2024; 60:9054-9057. [PMID: 39099543 DOI: 10.1039/d4cc03560g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/06/2024]
Abstract
Supramolecular assemblies with chirality inversion were developed using a co-assembly system comprising solvent monomers and a pyridine-cholesterol gelator. The polarity-dependent chiralities were captured in situ through photopolymerization, enabling the formation of multi-color circularly polarized luminescence films.
Collapse
Affiliation(s)
- Zefeng Long
- Institution of Green Chemistry and Chemical Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, P.R. China.
- Shanghai Key Lab of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Advanced Research Institute, Tongji University, Shanghai, 200092, P.R. China.
| | - Shuyuan Zheng
- Shanghai Key Lab of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Advanced Research Institute, Tongji University, Shanghai, 200092, P.R. China.
| | - Weiqiang Zhou
- Institution of Green Chemistry and Chemical Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, P.R. China.
| | - Guofeng Liu
- Shanghai Key Lab of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Advanced Research Institute, Tongji University, Shanghai, 200092, P.R. China.
| |
Collapse
|
9
|
Wang Q, Xu H, Qi Z, Mei J, Tian H, Qu DH. Dynamic Near-Infrared Circularly Polarized Luminescence Encoded by Transient Supramolecular Chiral Assemblies. Angew Chem Int Ed Engl 2024; 63:e202407385. [PMID: 38736176 DOI: 10.1002/anie.202407385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 05/10/2024] [Accepted: 05/10/2024] [Indexed: 05/14/2024]
Abstract
Circularly polarized luminescence (CPL) is promising for applications in many fields. However, most systems involving CPL are within the visible range; near-infrared (NIR) CPL-active materials, especially those that exhibit high glum values and can be controlled spatially and temporally, are rare. Herein, dynamic NIR-CPL with a glum value of 2.5×10-2 was achieved through supramolecular coassembly and energy-transfer strategies. The chiral assemblies formed by the coassembly between adenosine triphosphate (ATP) and a pyrene derivative exhibited a red CPL signal (glum of 10-3). The further introduction of sulfo-cyanine5 resulted in a energy-transfer process, which not only led to the NIR CPL but also increased the glum value to 10-2. Temporal control of these chiral assemblies was realized by introducing alkaline phosphatase to fabricate a biomimetic enzyme-catalyzed network, allowing the dynamic NIR CPL signal to be turned on. Based on these enzyme-regulated temporally controllable dynamic CPL-active chiral assemblies, a multilevel information encryption system was further developed. This study provides a pioneering example for the construction of dynamic NIR CPL materials with the ability to perform temporal control via the supramolecular assembly strategy, which is expected to aid in the design of supramolecular complex systems that more closely resemble natural biological systems.
Collapse
Affiliation(s)
- Qian Wang
- Key Laboratory for Advanced Materials, Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Hanren Xu
- Key Laboratory for Advanced Materials, Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Zhen Qi
- Key Laboratory for Advanced Materials, Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Ju Mei
- Key Laboratory for Advanced Materials, Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - He Tian
- Key Laboratory for Advanced Materials, Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Da-Hui Qu
- Key Laboratory for Advanced Materials, Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| |
Collapse
|
10
|
Lei S, Bu S, Yao M, Wang SR. Divergent Aromatization of α-Halobenzyl γ-Butenolides Initiated by Selective Enol Protonation to Benzo[ c]fluorenones and Naphthalenes. J Org Chem 2024; 89:11067-11071. [PMID: 39041582 DOI: 10.1021/acs.joc.4c01181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/24/2024]
Abstract
An unprecedented divergent aromatization reaction of α-halobenzyl γ-butenolides has been described for the selective and concise synthesis of highly substituted benzo and higher π-extended fluorenones, and 1,3-disubstituted naphthalenes depending on the migration ability of the quaternary α-substituent. This aromatization switch from Ag+-mediated planarization to ylidenebutenolides likely originates from selective protonation on the enolic double bond rather than the benzyl halides by TfOH.
Collapse
|
11
|
Zhang H, Cheng Q, Pei H, He S, Guo R, Liu N, Mo Z. Synthesis Strategies, Preparation Methods, and Applications of Chiral Metal-Organic Frameworks. Chemistry 2024; 30:e202401091. [PMID: 38625048 DOI: 10.1002/chem.202401091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 04/12/2024] [Accepted: 04/15/2024] [Indexed: 04/17/2024]
Abstract
Chiral Metal-Organic Frameworks (CMOFs) is a kind of material with great application value in recent years. Formed by the coordination of metal ions or metal clusters with organic ligands. It has ordered and adjustable pores, multi-dimensional network structure, large specific surface area and excellent adsorption properties. This material structure combines the properties of metal-organic frameworks (MOFs) with the chiral properties of chiral molecules. It has great advantages in catalysis, adsorption, separation and other fields. Therefore, it has a wide range of applications in chemistry, biology, medicine and materials science. In this paper, various synthesis strategies and preparation methods of chiral metal-organic frameworks are reviewed from different perspectives, and the advantages of each method are analyzed. In addition, the applications of chiral metal-organic framework materials in enantiomer recognition and separation, circular polarization luminescence and asymmetric catalysis are systematically summarized, and the corresponding mechanisms are discussed. Finally, the challenges and prospects of the development of chiral metal-organic frame materials are analyzed in detail.
Collapse
Affiliation(s)
- Hui Zhang
- Research Center of Gansu Military and Civilian Integration Advanced Structural Materials, Key Laboratory of Eco-Functional Polymer Materials of the Ministry of Education,College of Chemistry and Chemical Engineering, Northwest Normal University, 730000, Lanzhou, Gansu, China
| | - Qingsong Cheng
- Research Center of Gansu Military and Civilian Integration Advanced Structural Materials, Key Laboratory of Eco-Functional Polymer Materials of the Ministry of Education,College of Chemistry and Chemical Engineering, Northwest Normal University, 730000, Lanzhou, Gansu, China
| | - Hebing Pei
- Research Center of Gansu Military and Civilian Integration Advanced Structural Materials, Key Laboratory of Eco-Functional Polymer Materials of the Ministry of Education,College of Chemistry and Chemical Engineering, Northwest Normal University, 730000, Lanzhou, Gansu, China
| | - Simin He
- Research Center of Gansu Military and Civilian Integration Advanced Structural Materials, Key Laboratory of Eco-Functional Polymer Materials of the Ministry of Education,College of Chemistry and Chemical Engineering, Northwest Normal University, 730000, Lanzhou, Gansu, China
| | - Ruibin Guo
- Research Center of Gansu Military and Civilian Integration Advanced Structural Materials, Key Laboratory of Eco-Functional Polymer Materials of the Ministry of Education,College of Chemistry and Chemical Engineering, Northwest Normal University, 730000, Lanzhou, Gansu, China
| | - Nijuan Liu
- Research Center of Gansu Military and Civilian Integration Advanced Structural Materials, Key Laboratory of Eco-Functional Polymer Materials of the Ministry of Education,College of Chemistry and Chemical Engineering, Northwest Normal University, 730000, Lanzhou, Gansu, China
| | - Zunli Mo
- Research Center of Gansu Military and Civilian Integration Advanced Structural Materials, Key Laboratory of Eco-Functional Polymer Materials of the Ministry of Education,College of Chemistry and Chemical Engineering, Northwest Normal University, 730000, Lanzhou, Gansu, China
| |
Collapse
|
12
|
Li S, Xu X, Xu L, Lin H, Kuang H, Xu C. Emerging trends in chiral inorganic nanomaterials for enantioselective catalysis. Nat Commun 2024; 15:3506. [PMID: 38664409 PMCID: PMC11045795 DOI: 10.1038/s41467-024-47657-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Accepted: 04/01/2024] [Indexed: 04/28/2024] Open
Abstract
Asymmetric transformations and synthesis have garnered considerable interest in recent decades due to the extensive need for chiral organic compounds in biomedical, agrochemical, chemical, and food industries. The field of chiral inorganic catalysts, garnering considerable interest for its contributions to asymmetric organic transformations, has witnessed remarkable advancements and emerged as a highly innovative research area. Here, we review the latest developments in this dynamic and emerging field to comprehensively understand the advances in chiral inorganic nanocatalysts and stimulate further progress in asymmetric catalysis.
Collapse
Affiliation(s)
- Si Li
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu, 214122, China
- International Joint Research Laboratory for Biointerface and Biodetection, Jiangnan University, Wuxi, Jiangsu, 214122, People's Republic of China
| | - Xinxin Xu
- International Joint Research Laboratory for Biointerface and Biodetection, Jiangnan University, Wuxi, Jiangsu, 214122, People's Republic of China.
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, People's Republic of China.
| | - Liguang Xu
- International Joint Research Laboratory for Biointerface and Biodetection, Jiangnan University, Wuxi, Jiangsu, 214122, People's Republic of China.
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, People's Republic of China.
| | - Hengwei Lin
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Hua Kuang
- International Joint Research Laboratory for Biointerface and Biodetection, Jiangnan University, Wuxi, Jiangsu, 214122, People's Republic of China
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, People's Republic of China
| | - Chuanlai Xu
- International Joint Research Laboratory for Biointerface and Biodetection, Jiangnan University, Wuxi, Jiangsu, 214122, People's Republic of China.
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, People's Republic of China.
| |
Collapse
|
13
|
Kwon Y, Jung J, Lee WB, Oh JH. Axially Chiral Organic Semiconductors for Visible-Blind UV-Selective Circularly Polarized Light Detection. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2308262. [PMID: 38311579 PMCID: PMC11005684 DOI: 10.1002/advs.202308262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 12/23/2023] [Indexed: 02/06/2024]
Abstract
Technologies that detect circularly polarized light (CPL), particularly in the UV region, have significant potential for various applications, including bioimaging and optical communication. However, a major challenge in directly sensing CPL arises from the conflicting requirements of planar structures for efficient charge transport and distorted structures for effective interaction with CPL. Here, a novel design of an axially chiral n-type organic semiconductor is presented to surmount the challenge, in which a binaphthyl group results in a high dissymmetry factor at the molecular level, while maintaining excellent electron-transporting characteristics through the naphthalene diimide group. Experimental and computational methods reveal different stacking behaviors in homochiral and heterochiral assemblies, yielding different structures: Nanowires and nanoparticles, respectively. Especially, the homochiral assemblies exhibit effective π-π stacking between naphthalene diimides despite axial chirality. Thus, phototransistors fabricated using enantiomers exhibit a high maximum electron mobility of 0.22 cm2 V-1 s-1 and a detectivity of 3.9 × 1012 Jones, alongside the CPL distinguishing ability with a dissymmetry factor of responsivity of 0.05. Furthermore, the material possesses a wide bandgap, contributing to its excellent visible-blind UV-selective detection. These findings highlight the new strategy for compact CPL detectors, coupled with the demonstration of less-explored n-type and UV region phototransistors.
Collapse
Affiliation(s)
- Yejin Kwon
- School of Chemical and Biological EngineeringInstitute of Chemical ProcessesSeoul National University1 Gwanak‐ro, Gwanak‐guSeoul08826Republic of Korea
| | - Je‐Yeon Jung
- School of Chemical and Biological EngineeringInstitute of Chemical ProcessesSeoul National University1 Gwanak‐ro, Gwanak‐guSeoul08826Republic of Korea
| | - Won Bo Lee
- School of Chemical and Biological EngineeringInstitute of Chemical ProcessesSeoul National University1 Gwanak‐ro, Gwanak‐guSeoul08826Republic of Korea
| | - Joon Hak Oh
- School of Chemical and Biological EngineeringInstitute of Chemical ProcessesSeoul National University1 Gwanak‐ro, Gwanak‐guSeoul08826Republic of Korea
| |
Collapse
|
14
|
Wang F, Zhou S, Zhang Y, Wang Y, Guo R, Xiao H, Sun X. Chiral Phosphorescent Carbonized Polymer Dots Relayed Light-Harvesting System for Color-Tunable Circularly Polarized Room Temperature Phosphorescence. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2306969. [PMID: 37994220 DOI: 10.1002/smll.202306969] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 11/06/2023] [Indexed: 11/24/2023]
Abstract
Carbonized polymer dots (CPDs) with a circularly polarized fluorescence property have received increasing attention in recent years. However, it is still a great challenge to construct circularly polarized room-temperature phosphorescence (CPRTP) CPDs. Herein, a simple approach to the synthesis of intrinsically CPRTP CPDs for the first time by utilizing sodium alginate and l-/d-arginine as precursors under relatively mild reaction conditions is presented. Notably, the CPDs exhibit both chirality and green RTP in solid states. Furthermore, color-tunable CPRTP is successfully achieved by engineering chiral light-harvesting systems based on circularly polarized phosphorescence resonance energy transfer (C-PRET) where the CPDs with green RTP function as an initiator of chirality and light absorbance, and commercially available fluorescent dyes with different emission colors ranging from yellow to red serve as the terminal acceptors. Through one-step or sequential C-PRET, the light-harvesting systems can simultaneously furnish energy transfer and chirality transmission/amplification. Given the multicolor long afterglow, lifetime-tunable, and CPRTP properties, their potential applications in multiple information encryption are demonstrated.
Collapse
Affiliation(s)
- Feixiang Wang
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo, 255000, P. R. China
| | - Shengju Zhou
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo, 255000, P. R. China
| | - Youxin Zhang
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo, 255000, P. R. China
| | - Yijie Wang
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo, 255000, P. R. China
| | - Rui Guo
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo, 255000, P. R. China
| | - Haibin Xiao
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo, 255000, P. R. China
| | - Xiaofeng Sun
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo, 255000, P. R. China
| |
Collapse
|
15
|
Yang B, Yan S, Zhang Y, Ban S, Ma H, Feng F, Huang W. Double-Model Decay Strategy Integrating Persistent Photogenic Radicaloids with Dynamic Circularly Polarized Doublet Radiance and Triplet Afterglow. J Am Chem Soc 2024; 146:7668-7678. [PMID: 38451846 DOI: 10.1021/jacs.3c14262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2024]
Abstract
Organic phosphors integrating circularly polarized persistent luminescence (CPPL) across the visible range are widespread for applications in optical information encryption, bioimaging, and 3D display, but the pursuit of color-tunable CPPL in single-component organics remains a formidable task. Herein, via in situ photoimplanting radical ion pairing into axial chiral crystals, we present and elucidate an unprecedented double-module decay strategy to achieve a colorful CPPL through a combination of stable triplet emission from neutral diphosphine and doublet radiance from photogenic radicals in an exclusive crystalline framework. Owing to the photoactivation-dependent doublet radiance component and an inherent triplet phosphorescence in the asymmetric environment, the CPL vision can be regulated by altering the photoactivation and observation time window, allowing colorful glow tuning from blue and orange to delayed green emission. Mechanism studies clearly reveal that this asymmetric electron migration environment and hybrid n-π* and π-π* instincts are responsible for the afterglow and radical radiance at ambient conditions. Moreover, we demonstrate the applications of colorful CPPL for displays and encryption via manipulation of both excitation and observation times.
Collapse
Affiliation(s)
- Bo Yang
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, P. R. China
| | - Suqiong Yan
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, P. R. China
| | - Yuan Zhang
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, P. R. China
| | - Shirong Ban
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, P. R. China
| | - Hui Ma
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, P. R. China
| | - Fanda Feng
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, P. R. China
| | - Wei Huang
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, P. R. China
- Shenzhen Research Institute of Nanjing University, Shenzhen 518057, P. R. China
| |
Collapse
|
16
|
Ramarao J, Rambabu M, Suresh S. NHC-Catalyzed Formal [4 + 2] Annulation of o-Formyl-Tethered Michael Acceptors and Ynones to Access Highly Functionalized Naphthalene Derivatives. Org Lett 2024; 26:1780-1786. [PMID: 38411544 DOI: 10.1021/acs.orglett.3c04249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
Herein we demonstrate a novel organocatalytic method to access multifunctionalized naphthalenes via an NHC-catalyzed reaction of ynones and o-formyl-tethered Michael acceptors. The presented method proceeds through an intermolecular Stetter reaction-cyclization-aromatization cascade and represents a rare example of organocatalytic benzannulation for the synthesis of substituted arenes by using ynone as a two-carbon synthon. The current method has broad substrate scope; postsynthetic transformations and gram-scale syntheses highlight the practicality of the displayed methodology.
Collapse
Affiliation(s)
- Jakkula Ramarao
- Department of Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad 500 007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201 002, India
| | - Molugumati Rambabu
- Department of Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad 500 007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201 002, India
| | - Surisetti Suresh
- Department of Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad 500 007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201 002, India
| |
Collapse
|
17
|
Sengupta A, Roy G, Likhar AR, Asthana D. A supramolecular assembly-based strategy towards the generation and amplification of photon up-conversion and circularly polarized luminescence. NANOSCALE 2023; 15:18999-19015. [PMID: 37991436 DOI: 10.1039/d3nr04184k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2023]
Abstract
For the molecular properties in which energy transfer/migration is determinantal, such as triplet-triplet annihilation-based photon up-conversion (TTAUC), the overall performance is largely affected by the intermolecular distance and relative molecular orientations. In such scenarios, tools that may steer the intermolecular interactions and provide control over molecular organisation in the bulk, become most valuable. Often these non-covalent interactions, found predominantly in supramolecular assemblies, enable pre-programming of the molecular network in the assembled structures. In other words, by employing supramolecular chemistry principles, an arrangement where molecular units are arranged in a desired fashion, very much like a Lego toy, could be achieved. This leads to enhanced energy transfer from one molecule to other. In recent past, chiral luminescent systems have attracted huge attention for producing circularly polarized luminescence (CPL). In such systems, chirality is a necessary requirement. Chirality induction/transfer through supramolecular interactions has been known for a long time. It was realized recently that it may help in the generation and amplification of CPL signals as well. In this review article we have discussed the applicability of self-/co-assembly processes for achieving maximum TTA-UC and CPL in various molecular systems.
Collapse
Affiliation(s)
- Alisha Sengupta
- Department of Chemistry, Ashoka University, Sonipat, Haryana 131029, India.
| | - Gargee Roy
- Department of Chemistry, Ashoka University, Sonipat, Haryana 131029, India.
| | | | - Deepak Asthana
- Department of Chemistry, Ashoka University, Sonipat, Haryana 131029, India.
| |
Collapse
|
18
|
Wen X, Du S, Zhang L, Liu M. Chiral Deep Eutectic Solvents Enable Full-Color and White Circularly Polarized Luminescence from Achiral Luminophores. Angew Chem Int Ed Engl 2023; 62:e202311816. [PMID: 37743623 DOI: 10.1002/anie.202311816] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 09/20/2023] [Accepted: 09/21/2023] [Indexed: 09/26/2023]
Abstract
Herein, chiral deep eutectic solvents (DES) are prepared by lauric acid as hydrogen bond donors (HBD) and chiral menthol as hydrogen bond acceptors (HBA). When achiral fluorescent molecules are dopedin the menthol-based chiral DES, they emit circularly polarized luminescence (CPL) with handedness controlled by the molecular chirality (l or d) of menthol. Remarkably, the strategy is universal and a series of achiral fluorescent molecules can be endowed with CPL activity, showing a full-color and white CPL upon appropriate mixing, which paves the way to prepare white CPL materials. Interestingly, CPL appears only in a certain temperature range in the DES. Variable-temperature spectra and other characterization methods reveal that the H-bond network in the chiral DES plays an important role in inducing CPL. This work unveils how the interior structure as well as the hydrogen-bond network of a chiral DES can transfer its chirality to achiral luminophores for the first time and realizes a full-color and white CPL in a DES.
Collapse
Affiliation(s)
- Xin Wen
- Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences (CAS), ZhongGuanCun North First Street 2, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100190, China
| | - Sifan Du
- Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences (CAS), ZhongGuanCun North First Street 2, Beijing, 100190, China
| | - Li Zhang
- Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences (CAS), ZhongGuanCun North First Street 2, Beijing, 100190, China
| | - Minghua Liu
- Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences (CAS), ZhongGuanCun North First Street 2, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100190, China
| |
Collapse
|
19
|
Yin K, Zhang J, Xing P, Li H. Chiral Polymer Dots Show Unexpected Versatility of Highly Ordered Self-Assembly into Chiroptical Liquid Crystals, Ultra-Thin Films, and Long-Ribbons. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2302668. [PMID: 37150858 DOI: 10.1002/smll.202302668] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 04/16/2023] [Indexed: 05/09/2023]
Abstract
Compared to the organic counterparts, chiral self-assembly of nanomaterials shows persistency to kinetic factors such as solvent environments, and consequently, dynamic modulation of self-assembly and functions remains major challenge. Here, it is shown that alkylated, chiral polymer dots (c-PDs) give highly ordered self-assemblies with amplified chirality adaptive to solvent environments, and one-to-many hierarchical aggregation can be realized. The c-PDs tended to self-assemble into nanohelices with cubic packing in the solid state, which, thanks to the thermo-responsiveness, transformed into thermic liquid crystals upon heating. Cotton effects and circularly polarized luminescence evidenced the chirality transfer from central chirality to supramolecular chirality. At the air-water interface, the c-PDs are self-assembled into monolayers, which further stack into multiple layers with chirality transfer and highly ordered packing. In addition, undergoing a good/poor solvent exchange, the c-PDs afforded ultra-long microribbons up to a length scale of millimeters, which are constituted by the bilayer lamellar stacking. The versatile chiral self-assembly modalities with long-range ordered packing arrays of carbonized c-PDs via solvent strategy are realized. This feature is comparable to the organic species, although the c-PDs have no atomic precise structures. This work would surely expand the applications of quantum dot ordered self-assembly with adaptiveness to kinetic factors.
Collapse
Affiliation(s)
- Keyang Yin
- Key Laboratory of Colloid and Interface Chemistry of Ministry of Education and School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, People's Republic of China
| | - Jichao Zhang
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201204, People's Republic of China
| | - Pengyao Xing
- Key Laboratory of Colloid and Interface Chemistry of Ministry of Education and School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, People's Republic of China
| | - Honguang Li
- Key Laboratory of Colloid and Interface Chemistry of Ministry of Education and School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, People's Republic of China
| |
Collapse
|
20
|
Xiao C, Li C, Huang K, Duan P, Wang Y. Cascade energy transfer boosted near-infrared circularly polarized luminescence of nanofibers from an exclusively achiral system. NANOSCALE 2023. [PMID: 37334660 DOI: 10.1039/d3nr01515g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
We constructed chiral supramolecular nanofibers for light harvesting based on symmetry-breaking, and these can generate near-infrared circularly polarized luminescence (CPL) with high dissymmetry factor (glum) through a synergistic energy transfer and chirality transfer process. Firstly, the achiral molecule BTABA was assembled into a symmetry-breaking assembly using a seeded vortex strategy. Subsequently, the chiral assembly can endow the two achiral acceptors, Nile Red (NR) and Cyanine 7 (CY7), with supramolecular chirality, as well as chiroptical properties. CY7 can reach an excited state and emit near-infrared light through a cascade energy transfer process from BTABA to NR and then to CY7, but cannot directly acquire energy from the excited BTABA. Significantly, the near-infrared CPL of CY7 can be obtained with a boosted glum value of 0.03. This work will provide a deep insight into the preparation of materials with near-infrared CPL activity from an exclusively achiral system.
Collapse
Affiliation(s)
- Chen Xiao
- National Experimental Demonstration Center for Materials Science and Engineering, Jiangsu Key Laboratory of Environmentally Friendly Polymeric Materials, Jiangsu Collaborative Innovation Center of Photovoltaic Science and Engineering, Jiangsu Engineering Laboratory of Light-Electricity-Heat Energy-Converting Materials and Applications, School of Materials Science & Engineering, Changzhou University, Changzhou, 213164, P. R. China.
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology (NCNST), No. 11 ZhongGuanCun BeiYiTiao, Beijing 100190, P. R. China.
| | - Chengxi Li
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology (NCNST), No. 11 ZhongGuanCun BeiYiTiao, Beijing 100190, P. R. China.
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Kang Huang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology (NCNST), No. 11 ZhongGuanCun BeiYiTiao, Beijing 100190, P. R. China.
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Pengfei Duan
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology (NCNST), No. 11 ZhongGuanCun BeiYiTiao, Beijing 100190, P. R. China.
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Yafei Wang
- National Experimental Demonstration Center for Materials Science and Engineering, Jiangsu Key Laboratory of Environmentally Friendly Polymeric Materials, Jiangsu Collaborative Innovation Center of Photovoltaic Science and Engineering, Jiangsu Engineering Laboratory of Light-Electricity-Heat Energy-Converting Materials and Applications, School of Materials Science & Engineering, Changzhou University, Changzhou, 213164, P. R. China.
| |
Collapse
|