1
|
Zhan L, Lu W, Xiang Q, Chen Z, Luo W, Xu C, Huang R, Wang S, He H. Construction of low-energy regenerative bagasse-based carbon capture material for high efficiency CO 2 capture. J Colloid Interface Sci 2025; 687:261-270. [PMID: 39954420 DOI: 10.1016/j.jcis.2025.02.070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Revised: 02/09/2025] [Accepted: 02/11/2025] [Indexed: 02/17/2025]
Abstract
Using biomass for the production of low-energy regenerative carbon capture materials represents an effective strategy to advance carbon dioxide capture and storage technologies. In this study, a low-energy regenerative bagasse-based CO2 capture material is synthesized through a one-step, rapid crosslinking strategy. In this method, epichlorohydrin is used to crosslink bagasse with temperature sensitive Pluronic® F-127 and polyethyleneimine, thereby addressing the challenge of simultaneously incorporating multiple functional groups into the biomass matrix. The resulting material with abundant amino adsorption sites demonstrates a high adsorption capacity of 4.52 mmol/g. Interestingly, the temperature-sensitive response of the material facilitates the grafted amine chain segments on bagasse to stretch and shrink reversibly within a narrow temperature range of 25 °C for adsorption and 55 °C for desorption. The shrinkage state is conducive to the CO2 desorption process, resulting in an ultralow regeneration temperature of 55 °C. Additionally, the water contained in the material enhances its cyclic stability in extreme environments, such as pure CO2 atmosphere at high temperature. Overall, this research not only provides new ideas for enhancing the long-term stability and economic viability of CO2 capture materials but also offers feasible solutions for combating climate change and promoting sustainable development.
Collapse
Affiliation(s)
- Lianlong Zhan
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China
| | - Wei Lu
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China
| | - Qin Xiang
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China
| | - Zhiping Chen
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China
| | - Wenlu Luo
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China
| | - Cailin Xu
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China
| | - Renting Huang
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China
| | - Shuagnfei Wang
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China
| | - Hui He
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China.
| |
Collapse
|
2
|
Shen M, Guo W, Tong L, Wang L, Chu PK, Kawi S, Ding Y. Behavior, mechanisms, and applications of low-concentration CO 2 in energy media. Chem Soc Rev 2025. [PMID: 39866134 DOI: 10.1039/d4cs00574k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
This review explores the behavior of low-concentration CO2 (LCC) in various energy media, such as solid adsorbents, liquid absorbents, and catalytic surfaces. It delves into the mechanisms of diffusion, adsorption, and catalytic reactions, while analyzing the potential applications and challenges of these properties in technologies like air separation, compressed gas energy storage, and CO2 catalytic conversion. Given the current lack of comprehensive analyses, especially those encompassing multiscale studies of LCC behavior, this review aims to provide a theoretical foundation and data support for optimizing CO2 capture, storage, and conversion technologies, as well as guidance for the development and application of new materials. By summarizing recent advancements in LCC separation techniques (e.g., cryogenic air separation and direct air carbon capture) and catalytic conversion technologies (including thermal catalysis, electrochemical catalysis, photocatalysis, plasma catalysis, and biocatalysis), this review highlights their importance in achieving carbon neutrality. It also discusses the challenges and future directions of these technologies. The findings emphasize that advancing the efficient utilization of LCC not only enhances CO2 reduction and resource utilization efficiency, promoting the development of clean energy technologies, but also provides an economically and environmentally viable solution for addressing global climate change.
Collapse
Affiliation(s)
- Minghai Shen
- Beijing Key Laboratory of Energy Saving and Emission Reduction for Metallurgical Industry, School of Energy and Environmental Engineering, China.
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore.
| | - Wei Guo
- Beijing Key Laboratory of Energy Saving and Emission Reduction for Metallurgical Industry, School of Energy and Environmental Engineering, China.
| | - Lige Tong
- Beijing Key Laboratory of Energy Saving and Emission Reduction for Metallurgical Industry, School of Energy and Environmental Engineering, China.
| | - Li Wang
- Beijing Key Laboratory of Energy Saving and Emission Reduction for Metallurgical Industry, School of Energy and Environmental Engineering, China.
| | - Paul K Chu
- Department of Physics, Department of Materials Science and Engineering, and Department of Biomedical Engineering, City University of Hong Kong, Hong Kong
| | - Sibudjing Kawi
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore.
| | - Yulong Ding
- Birmingham Centre for Energy Storage & School of Chemical Engineering, University of Birmingham, UK.
| |
Collapse
|
3
|
Barker-Rothschild D, Chen J, Wan Z, Renneckar S, Burgert I, Ding Y, Lu Y, Rojas OJ. Lignin-based porous carbon adsorbents for CO 2 capture. Chem Soc Rev 2025; 54:623-652. [PMID: 39526409 DOI: 10.1039/d4cs00923a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
A major driver of global climate change is the rising concentration of atmospheric CO2, the mitigation of which requires the development of efficient and sustainable carbon capture technologies. Solid porous adsorbents have emerged as promising alternatives to liquid amine counterparts due to their potential to reduce regeneration costs. Among them, porous carbons stand out for their high surface area, tailorable pore structure, and exceptional thermal and mechanical properties, making them highly robust and efficient in cycling operations. Moreover, porous carbons can be synthesized from readily available organic (waste) streams, reducing costs and promoting circularity. Lignin, a renewable and abundant by-product of the forest products industry and emerging biorefineries, is a complex organic polymer with a high carbon content, making it a suitable precursor for carbon-based adsorbents. This review explores lignin's sources, structure, and thermal properties, as well as traditional and emerging methods for producing lignin-based porous adsorbents. We examine the physicochemical properties, CO2 adsorption mechanisms, and performance of lignin-derived materials. Additionally, the review highlights recent advances in lignin valorization and provides critical insights into optimizing the design of lignin-based adsorbents to enhance CO2 capture efficiency. Finally, it addresses the prospects and challenges in the field, emphasizing the significant role that lignin-derived materials could play in advancing sustainable carbon capture technologies and mitigating climate change.
Collapse
Affiliation(s)
- Daniel Barker-Rothschild
- Bioproducts Institute, Department of Chemical and Biological Engineering, The University of British Columbia, 2360 East Mall, Vancouver, BC V6T 1Z3, Canada.
| | - Jingqian Chen
- Bioproducts Institute, Department of Chemical and Biological Engineering, The University of British Columbia, 2360 East Mall, Vancouver, BC V6T 1Z3, Canada.
| | - Zhangmin Wan
- Bioproducts Institute, Department of Chemical and Biological Engineering, The University of British Columbia, 2360 East Mall, Vancouver, BC V6T 1Z3, Canada.
| | - Scott Renneckar
- Department of Wood Science, University of British Columbia, 2424 Main Mall, Vancouver, BC V6T 1Z4, Canada
| | - Ingo Burgert
- Wood Materials Science, Institute for Building Materials, ETH Zürich, 8093 Zürich, Switzerland.
- WoodTec Group, Cellulose & Wood Materials, Empa, 8600 Dübendorf, Switzerland
| | - Yong Ding
- Wood Materials Science, Institute for Building Materials, ETH Zürich, 8093 Zürich, Switzerland.
- WoodTec Group, Cellulose & Wood Materials, Empa, 8600 Dübendorf, Switzerland
| | - Yi Lu
- Bioproducts Institute, Department of Chemical and Biological Engineering, The University of British Columbia, 2360 East Mall, Vancouver, BC V6T 1Z3, Canada.
| | - Orlando J Rojas
- Bioproducts Institute, Department of Chemical and Biological Engineering, The University of British Columbia, 2360 East Mall, Vancouver, BC V6T 1Z3, Canada.
- Department of Wood Science, University of British Columbia, 2424 Main Mall, Vancouver, BC V6T 1Z4, Canada
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z1, Canada
| |
Collapse
|
4
|
Drwęska J, Roztocki K, Janiak AM. Advances in chemistry of CALF-20, a metal-organic framework for industrial gas applications. Chem Commun (Camb) 2025; 61:1032-1047. [PMID: 39668774 DOI: 10.1039/d4cc05744a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2024]
Abstract
The metal-organic framework CALF-20 is a super-stable adsorbent utilised for carbon dioxide capture and storage in cement plants. Furthermore, recent findings suggest its potential for various gas-related applications. In this brief review, we summarise ten years of research on CALF-20, emphasising its historical background and key findings. We discuss its flexibility, stability, processability, and tunability, detailing how these properties contribute to advancements in CALF-20 chemistry. We believe that this information will provide a better understanding of CALF-20 and assist in evaluating the potential of both novel and existing materials for gas-related applications.
Collapse
Affiliation(s)
- Joanna Drwęska
- Faculty of Chemistry, Adam Mickiewicz University, 61-614 Poznań, Poland.
| | - Kornel Roztocki
- Faculty of Chemistry, Adam Mickiewicz University, 61-614 Poznań, Poland.
| | - Agnieszka M Janiak
- Faculty of Chemistry, Adam Mickiewicz University, 61-614 Poznań, Poland.
| |
Collapse
|
5
|
Zentou H, Aliyu M, Abdalla MA, Abdelaziz OY, Hoque B, Alloush AM, Tayeb IM, Patchigolla K, Abdelnaby MM. Advancements and Challenges in Adsorption-Based Carbon Capture Technology: From Fundamentals to Deployment. CHEM REC 2025; 25:e202400188. [PMID: 39629504 DOI: 10.1002/tcr.202400188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 11/17/2024] [Indexed: 01/18/2025]
Abstract
Carbon dioxide (CO2) adsorption on solid sorbents represents a promising technology for separating carbon from different sources and mitigating anthropogenic emissions. The complete integration of carbon capture technologies in various industrial sectors will be crucial for a sustainable, low-carbon future. Despite developing new sorbents, a comprehensive strategy is essential to realize the full potential and widespread adoption of CO2 capture technologies, including different engineering aspects. This study discusses the pathway for deploying adsorption-based carbon capture technology in fundamental material science aspects, thermo-physical properties behavior at the molecular level, and industrial pilot scale demonstrations. When integrated with process simulation and economic evaluations, these techniques are instrumental in enhancing the efficiency and cost-effectiveness of the capturing processes. While advancements in adsorption-based carbon capture technologies have been notable, their deployment still encounters significant hurdles, including technical, economic, and environmental challenges. Leveraging hybrid systems, renewable energy integration, and the strategic application of emerging machine learning techniques appear promising to address global warming effectively and will consequently be discussed in this investigation.
Collapse
Affiliation(s)
- Hamid Zentou
- Interdisciplinary Research Center for Hydrogen Technologies and Carbon Management (IRC-HTMC), King Fahd University of Petroleum & Minerals, Dhahran, 31261, Saudi Arabia
| | - Mansur Aliyu
- Interdisciplinary Research Center for Hydrogen Technologies and Carbon Management (IRC-HTMC), King Fahd University of Petroleum & Minerals, Dhahran, 31261, Saudi Arabia
| | - Mahmoud A Abdalla
- Department of Chemical Engineering, King Fahd University of Petroleum & Minerals, Dhahran, 31261, Saudi Arabia
| | - Omar Y Abdelaziz
- Department of Chemical Engineering, King Fahd University of Petroleum & Minerals, Dhahran, 31261, Saudi Arabia
- Interdisciplinary Research Center for Refining & Advanced Chemicals, King Fahd University of Petroleum & Minerals, Dhahran, 31261, Saudi Arabia
| | - Bosirul Hoque
- Interdisciplinary Research Center for Hydrogen Technologies and Carbon Management (IRC-HTMC), King Fahd University of Petroleum & Minerals, Dhahran, 31261, Saudi Arabia
| | - Ahmed M Alloush
- Chemistry Department, Khalifa University of Science and Technology, P.O. Box 127788, Abu Dhabi, United Arab Emirates
| | - Islam M Tayeb
- Trinity College of Arts & Sciences, Duke University, Durham, NC 27708, United States
| | - Kumar Patchigolla
- Net Zero Industry Innovation Centre (NZIIC), Teesside University, Ferrous Road, Middlesborough, TS2 1DJ, United Kingdom
| | - Mahmoud M Abdelnaby
- Interdisciplinary Research Center for Hydrogen Technologies and Carbon Management (IRC-HTMC), King Fahd University of Petroleum & Minerals, Dhahran, 31261, Saudi Arabia
| |
Collapse
|
6
|
Verstreken MFK, Chanut N, Magnin Y, Landa HOR, Denayer JFM, Baron GV, Ameloot R. Mind the Gap: The Role of Mass Transfer in Shaped Nanoporous Adsorbents for Carbon Dioxide Capture. J Am Chem Soc 2024; 146:23633-23648. [PMID: 39162369 DOI: 10.1021/jacs.4c03086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/21/2024]
Abstract
Adsorptive separations by nanoporous materials are major industrial processes. The industrial importance of solid adsorbents is only expected to grow due to the increased focus on carbon dioxide capture technology and energy-efficient separations. To evaluate the performance of an adsorbent and design a separation process, the adsorption thermodynamics and kinetics must be known. However, although diffusion kinetics determine the maximum production rate in any adsorption-based separation, this aspect has received less attention due to the challenges associated with conducting diffusion measurements. These challenges are exacerbated in the study of shaped adsorbents due to the presence of porosity at different length scales. As a result, adsorbent selection typically relies mainly on adsorption properties at equilibrium, i.e., uptake capacity, selectivity and adsorption enthalpy. In this Perspective, based on an extensive literature review on mass transfer of CO2 in nanoporous adsorbents, we discuss the importance and limitations of measuring diffusion in nanoporous materials, from the powder form to the adsorption bed, considering the nature of the process, i.e., equilibrium-based or kinetic-based separations. By highlighting the lack of and discrepancies between published diffusivity data in the context of CO2 capture, we discuss future challenges and opportunities in studying mass transfer across scales in adsorption-based separations.
Collapse
Affiliation(s)
- Margot F K Verstreken
- Center for Membrane Separations, Adsorption, Catalysis and Spectroscopy (cMACS), KU Leuven, Celestijnenlaan 200F, 3001 Leuven, Belgium
| | - Nicolas Chanut
- Center for Membrane Separations, Adsorption, Catalysis and Spectroscopy (cMACS), KU Leuven, Celestijnenlaan 200F, 3001 Leuven, Belgium
| | - Yann Magnin
- TotalEnergies, OneTech, R&D, CSTJF, Pau 64800, France
| | - Héctor Octavio Rubiera Landa
- Department of Chemical Engineering & Industrial Chemistry, Vrije Universiteit Brussel, Pleinlaan 2, Elsene, B-1050, Brussels, Belgium
| | - Joeri F M Denayer
- Department of Chemical Engineering & Industrial Chemistry, Vrije Universiteit Brussel, Pleinlaan 2, Elsene, B-1050, Brussels, Belgium
| | - Gino V Baron
- Department of Chemical Engineering & Industrial Chemistry, Vrije Universiteit Brussel, Pleinlaan 2, Elsene, B-1050, Brussels, Belgium
| | - Rob Ameloot
- Center for Membrane Separations, Adsorption, Catalysis and Spectroscopy (cMACS), KU Leuven, Celestijnenlaan 200F, 3001 Leuven, Belgium
| |
Collapse
|
7
|
Siderius DW, Hatch HW, Shen VK. Flat-Histogram Monte Carlo Simulation of Water Adsorption in Metal-Organic Frameworks. J Phys Chem B 2024; 128:4830-4845. [PMID: 38676704 PMCID: PMC11175621 DOI: 10.1021/acs.jpcb.4c00753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/29/2024]
Abstract
Molecular simulations of water adsorption in porous materials often converge slowly due to sampling bottlenecks that follow from hydrogen bonding and, in many cases, the formation of water clusters. These effects may be exacerbated in metal-organic framework (MOF) adsorbents, due to the presence of pore spaces (cages) that promote the formation of discrete-size clusters and hydrophobic effects (if present), among other reasons. In Grand Canonical Monte Carlo (MC) simulations, these sampling challenges are typically manifested by low MC acceptance ratios, a tendency for the simulation to become stuck in a particular loading state (i.e., macrostates), and the persistence of specific clusters for long periods of the simulation. We present simulation strategies to address these sampling challenges, by applying flat-histogram MC (FHMC) methods and specialized MC move types to simulations of water adsorption. FHMC, in both Transition-matrix and Wang-Landau forms, drives the simulation to sample relevant macrostates by incorporating weights that are self-consistently adjusted throughout the simulation and generate the macrostate probability distribution (MPD). Specialized MC moves, based on aggregation-volume bias and configurational bias methods, separately address low acceptance ratios for basic MC trial moves and specifically target water molecules in clusters; in turn, the specialized MC moves improve the efficiency of generating new configurations which is ultimately reflected in improved statistics collected by FHMC. The combined strategies are applied to study the adsorption of water in CuBTC and ZIF-8 at 300 K, through examination of the MPD and the adsorption isotherm generated by histogram reweighting. A key result is the appearance of nontrivial oscillations in the MPD, which we show to be associated with water clusters in the adsorption system. Additionally, we show that the probabilities of certain clusters become similar in value near the boundaries of the isotherm hysteresis loop, indicating a strong connection between cluster formation/destruction and the thermodynamic limits of stability. For a hydrophobic MOF, the FHMC results show that the phase transition from low density to high density is suppressed to water pressure far above the bulk-fluid saturation pressure; this is consistent with results presented elsewhere. We also compare our FHMC simulation isotherm to one measured by a different technique but with ostensibly the same molecular interactions and comment on observed differences and the need for follow-up work. The simulation strategies presented here can be applied to the simulation of water in other MOFs using heuristic guidelines laid out in our text, which should facilitate the more consistent and efficient simulation of water adsorption in porous materials in future applications.
Collapse
Affiliation(s)
- Daniel W. Siderius
- Chemical Sciences Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899-8320, United States
| | - Harold W. Hatch
- Chemical Sciences Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899-8320, United States
| | - Vincent K. Shen
- Chemical Sciences Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899-8320, United States
| |
Collapse
|
8
|
Wang X, Alzayer M, Shih AJ, Bose S, Xie H, Vornholt SM, Malliakas CD, Alhashem H, Joodaki F, Marzouk S, Xiong G, Del Campo M, Le Magueres P, Formalik F, Sengupta D, Idrees KB, Ma K, Chen Y, Kirlikovali KO, Islamoglu T, Chapman KW, Snurr RQ, Farha OK. Tailoring Hydrophobicity and Pore Environment in Physisorbents for Improved Carbon Dioxide Capture under High Humidity. J Am Chem Soc 2024; 146:3943-3954. [PMID: 38295342 DOI: 10.1021/jacs.3c11671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2024]
Abstract
CALF-20, a Zn-triazolate-based metal-organic framework (MOF), is one of the most promising adsorbent materials for CO2 capture. However, competitive adsorption of water severely limits its performance when the relative humidity (RH) exceeds 40%, limiting the potential implementation of CALF-20 in practical settings where CO2 is saturated with moisture, such as postcombustion flue gas. In this work, three newly designed MOFs related to CALF-20, denoted as NU-220, CALF-20M-w, and CALF-20M-e that feature hydrophobic methyltriazolate linkers, are presented. Inclusion of methyl groups in the linker is proposed as a strategy to improve the uptake of CO2 in the presence of water. Notably, both CALF-20M-w and CALF-20M-e retain over 20% of their initial CO2 capture efficiency at 70% RH─a threshold at which CALF-20 shows negligible CO2 uptake. Grand canonical Monte Carlo simulations reveal that the methyl group hinders water network formation in the pores of CALF-20M-w and CALF-20M-e and enhances their CO2 selectivity over N2 in the presence of a high moisture content. Moreover, calculated radial distribution functions indicate that introducing the methyl group into the triazolate linker increases the distance between water molecules and Zn coordination bonds, offering insights into the origin of the enhanced moisture stability observed for CALF-20M-w and CALF-20M-e relative to CALF-20. Overall, this straightforward design strategy has afforded more robust sorbents that can potentially meet the challenge of effectively capturing CO2 in practical industrial applications.
Collapse
Affiliation(s)
- Xiaoliang Wang
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Maytham Alzayer
- Department of Chemical & Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Arthur J Shih
- Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Saptasree Bose
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Haomiao Xie
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Simon M Vornholt
- Department of Chemistry, Stony Brook University, Stony Brook, New York 11794, United States
| | - Christos D Malliakas
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Hussain Alhashem
- Department of Chemical & Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Faramarz Joodaki
- Department of Chemical & Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Sammer Marzouk
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Grace Xiong
- Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Mark Del Campo
- Rigaku Americas Corporation, The Woodlands, Texas 77381, United States
| | | | - Filip Formalik
- Department of Chemical & Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Department of Micro, Nano and Bioprocess Engineering, Wroclaw University of Science and Technology, 50-370 Wroclaw, Poland
| | - Debabrata Sengupta
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Karam B Idrees
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Kaikai Ma
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Yongwei Chen
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Kent O Kirlikovali
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Timur Islamoglu
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Karena W Chapman
- Department of Chemistry, Stony Brook University, Stony Brook, New York 11794, United States
| | - Randall Q Snurr
- Department of Chemical & Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Omar K Farha
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
- Department of Chemical & Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
| |
Collapse
|
9
|
Rajendran A, Subraveti SG, Pai KN, Prasad V, Li Z. How Can (or Why Should) Process Engineering Aid the Screening and Discovery of Solid Sorbents for CO 2 Capture? Acc Chem Res 2023; 56:2354-2365. [PMID: 37607397 DOI: 10.1021/acs.accounts.3c00335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
ConspectusAdsorption using solid sorbents is emerging as a serious contender to amine-based liquid absorption for postcombustion CO2 capture. In the last 20+ years, significant efforts have been invested in developing adsorption processes for CO2 capture. In particular, significant efforts have been invested in developing new adsorbents for this application. These efforts have led to the generation of hundreds of thousands of (hypothetical and real) adsorbents, e.g., zeolites and metal-organic frameworks (MOFs). Identifying the right adsorbent for CO2 capture remains a challenging task. Most studies are focused on identifying adsorbents based on certain adsorption metrics. Recent studies have demonstrated that the performance of an adsorbent is intimately linked to the process in which it is deployed. Any meaningful screening should thus consider the complexity of the process. However, simulation and optimization of adsorption processes are computationally intensive, as they constitute the simultaneous propagation of heat and mass transfer fronts; the process is cyclic, and there are no straightforward design tools, thereby making large-scale process-informed screening of sorbents prohibitive.This Account discusses four papers that develop computational methods to incorporate process-based evaluation for both bottom-up (chemistry to engineering) screening problems and top-down (engineering to chemistry) inverse problems. We discuss the development of the machine-assisted adsorption process learning and emulation (MAPLE) framework, a surrogate model based on deep artificial neural networks (ANNs) that can predict process-level performance by considering both process and material inputs. The framework, which has been experimentally validated, allows for reliable, process-informed screening of large adsorbent databases. We then discuss how process engineering tools can be used beyond adsorbent screening, i.e., to estimate the practically achievable performance and cost limits of pressure vacuum swing adsorption (PVSA) processes should the ideal bespoke adsorbent be made. These studies show what conditions stand-alone PVSA processes are attractive and when they should not be considered. Finally, recent developments in physics-informed neural networks (PINNS) enable the rapid solution of complex partial differential equations, providing tools to potentially identify optimal cycle configurations. Ultimately, we provide areas where further developments are required and emphasize the need for strong collaborations between chemists and chemical engineers to move rapidly from discovery to field trials, as we do not have much time to fulfill commitments to net-zero targets.
Collapse
Affiliation(s)
- Arvind Rajendran
- Donadeo Innovation Centre for Engineering, University of Alberta, 9211-116 Street NW, Edmonton, AB T6G 1H9, Canada
| | - Sai Gokul Subraveti
- Donadeo Innovation Centre for Engineering, University of Alberta, 9211-116 Street NW, Edmonton, AB T6G 1H9, Canada
- SINTEF Energy Research, Trondheim 7019, Norway
| | - Kasturi Nagesh Pai
- Donadeo Innovation Centre for Engineering, University of Alberta, 9211-116 Street NW, Edmonton, AB T6G 1H9, Canada
- Svante Structured Adsorbents Centre of Excellence, 3021 Underhill Ave, Burnaby, BC V5A 3C2, Canada
| | - Vinay Prasad
- Donadeo Innovation Centre for Engineering, University of Alberta, 9211-116 Street NW, Edmonton, AB T6G 1H9, Canada
| | - Zukui Li
- Donadeo Innovation Centre for Engineering, University of Alberta, 9211-116 Street NW, Edmonton, AB T6G 1H9, Canada
| |
Collapse
|