1
|
Lin X, Li Q, Tang Y, Chen Z, Chen R, Sun Y, Lin W, Yi G, Li Q. Physical Unclonable Functions with Hyperspectral Imaging System for Ultrafast Storage and Authentication Enabled by Random Structural Color Domains. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2401983. [PMID: 38894574 PMCID: PMC11336904 DOI: 10.1002/advs.202401983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 04/28/2024] [Indexed: 06/21/2024]
Abstract
Physical unclonable function (PUF) is attractive in modern encryption technologies. Addressing the disadvantage of slow data storage/authentication in optical PUF is paramount for practical applications but remains an on-going challenge. Here, a highly efficient PUF strategy based on random structural color domains (SCDs) of cellulose nanocrystal (CNC) is proposed for the first time, combing with hyperspectral imaging system (HIS) for ultrafast storage and authentication. By controlling the growth and fusion behavior of the tactoids of CNC, the SCDs display an irregular and random distribution of colors, shapes, sizes, and reflectance spectra, which grant unique and inherent fingerprint-like characteristics that are non-duplicated. Based on images and spectra, these fingerprint features are used to develop two sets of PUF key generation methods, which can be respectively authenticated at the user-end and the manufacturer-front-end that achieving a high coding capacity of at least 22304. Notably, the use of HIS greatly shortens the time of key reading and generation (≈5 s for recording, 0.5-0.7 s for authentication). This new optical PUF labels can not only solve slow data storage and complicated authentication in optical PUF, but also impulse the development of CNC in industrial applications by reducing color uniformity requirement.
Collapse
Affiliation(s)
- Xiaofeng Lin
- School of Chemical Engineering and Light IndustryGuangdong University of TechnologyGuangzhou510006P. R. China
- Guangdong Provincial Laboratory of Chemistry and Fine Chemical Engineering Jieyang CenterJieyang515200China
| | - Quhai Li
- School of Chemical Engineering and Light IndustryGuangdong University of TechnologyGuangzhou510006P. R. China
| | - Yuqi Tang
- Institute of Advanced Materials and School of Chemistry and Chemical EngineeringSoutheast UniversityNanjing211189China
| | - Zhaohan Chen
- School of Chemical Engineering and Light IndustryGuangdong University of TechnologyGuangzhou510006P. R. China
| | - Ruilian Chen
- Key Laboratory for Polymeric Composite and Functional Materials of Ministry of EducationSun Yat‐sen UniversityGuangzhou510275China
| | - Yingjuan Sun
- School of Chemical Engineering and Light IndustryGuangdong University of TechnologyGuangzhou510006P. R. China
- Guangdong Provincial Laboratory of Chemistry and Fine Chemical Engineering Jieyang CenterJieyang515200China
| | - Wenjing Lin
- School of Chemical Engineering and Light IndustryGuangdong University of TechnologyGuangzhou510006P. R. China
- Guangdong Provincial Laboratory of Chemistry and Fine Chemical Engineering Jieyang CenterJieyang515200China
| | - Guobin Yi
- School of Chemical Engineering and Light IndustryGuangdong University of TechnologyGuangzhou510006P. R. China
- Guangdong Provincial Laboratory of Chemistry and Fine Chemical Engineering Jieyang CenterJieyang515200China
| | - Quan Li
- Institute of Advanced Materials and School of Chemistry and Chemical EngineeringSoutheast UniversityNanjing211189China
- Materials Science Graduate ProgramKent State UniversityKentOH44242USA
| |
Collapse
|
2
|
Wang Z, Wang H, Wang P, Shao Y. Robust Optical Physical Unclonable Function Based on Total Internal Reflection for Portable Authentication. ACS APPLIED MATERIALS & INTERFACES 2024; 16:27926-27935. [PMID: 38743936 DOI: 10.1021/acsami.4c03283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Physical unclonable functions (PUFs) utilize uncontrollable manufacturing randomness to yield cryptographic primitives. Currently, the fabrication of the most generally employed optical PUFs mainly depends on fluorescent, Raman, or plasmonic materials, which suffer inherent robustness issues. Herein, we construct an optical PUF with high environmental stability via total internal reflection (TIR-PUF) perturbed by randomly distributed polymer microspheres. The response image is transformed into encoded keys via an iterative binning procedure. The concentration of the polymer solution is optimized to debias the bit nonuniformity and maximize encoding capacity. The constructed TIR-PUF shows significantly high encoding capacity (2370) and markedly low total authentication error probability (1.614 × 10-23). The intra-Hamming distance is as low as 0.068, indicating the excellent readout reliability of TIR-PUF. The environmental stability of TIR-PUF has demonstrated promising results under a range of challenging conditions such as ultrasonic washing, high temperature, ultraviolet irradiation, and severe chemical environments. Moreover, the challenge-response pairs of our TIR-PUFs are demonstrated on an authentication system with low-power dissipation, lightweight components, and wireless imaging capture, rendering the possibility of portable authentication for practical applications.
Collapse
Affiliation(s)
- Zhiyuan Wang
- Laboratory of Thin Film Optics, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
- Key Laboratory of Materials for High-Power Laser, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, P. R. China
| | - Hu Wang
- Laboratory of Thin Film Optics, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
- Key Laboratory of Materials for High-Power Laser, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, P. R. China
| | - Pengxiang Wang
- Laboratory of Thin Film Optics, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
- Key Laboratory of Materials for High-Power Laser, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, P. R. China
| | - Yuchuan Shao
- Laboratory of Thin Film Optics, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
- Key Laboratory of Materials for High-Power Laser, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, P. R. China
- Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, P. R. China
| |
Collapse
|
3
|
Im H, Yoon J, So B, Choi J, Park DH, Kim S, Park W. Four-Dimensional Physical Unclonable Functions and Cryptographic Applications Based on Time-Varying Chaotic Phosphorescent Patterns. ACS NANO 2024; 18:11703-11716. [PMID: 38651359 DOI: 10.1021/acsnano.3c12432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
Physical unclonable functions (PUFs) have attracted interest in demonstrating authentication and cryptographic processes for Internet of Things (IoT) devices. We demonstrated four-dimensional PUFs (4D PUFs) to realize time-varying chaotic phosphorescent randomness on MoS2 atomic seeds. By forming hybrid states involving more than one emitter with distinct lifetimes in 4D PUFs, irregular lifetime distribution throughout patterns functions as a time-varying disorder that is impossible to replicate. Moreover, we established a bit extraction process incorporating multiple 64 bit-stream challenges and experimentally obtained physical features of 4D PUFs, producing countless random 896 bit-stream responses. Furthermore, the weak and strong PUF models were conceptualized and demonstrated based on 4D PUFs, exhibiting superior cryptological performances, including randomness, uniqueness, degree of freedom, and independent bit ratio. Finally, the data encryption and decryption in pictures were performed by a single 4D PUF. Therefore, 4D PUFs could enhance the counterfeiting deterrent of existing optical PUFs and be used as an anticounterfeiting security strategy for advanced authentication and cryptographic processes of IoT devices.
Collapse
Affiliation(s)
- Healin Im
- School of Advanced Materials Science and Engineering, Sungkyunkwan University, Suwon-Si, Gyeonggi-do 16419, Republic of Korea
- Department of Materials Science and Engineering, University of California, Berkeley, California 94720, United States of America
| | - Jinsik Yoon
- Institute for Wearable Convergence Electronics, Department of Electronics and Information Convergence Engineering, Kyung Hee University, Yongin-si, Gyeonggi-do 17104, Republic of Korea
| | - Byungjun So
- School of Advanced Materials Science and Engineering, Sungkyunkwan University, Suwon-Si, Gyeonggi-do 16419, Republic of Korea
| | - Jinho Choi
- Department of Chemical Engineering, Program in Biomedical Science and Engineering, Inha University, Incheon 22212, Republic of Korea
| | - Dong Hyuk Park
- Department of Chemical Engineering, Program in Biomedical Science and Engineering, Inha University, Incheon 22212, Republic of Korea
| | - Sunkook Kim
- School of Advanced Materials Science and Engineering, Sungkyunkwan University, Suwon-Si, Gyeonggi-do 16419, Republic of Korea
| | - Wook Park
- Institute for Wearable Convergence Electronics, Department of Electronics and Information Convergence Engineering, Kyung Hee University, Yongin-si, Gyeonggi-do 17104, Republic of Korea
| |
Collapse
|
4
|
Li Y, Li Y, Yang J, Chen Z, Feng M, Liu L, Song F, Huang W. Dual Challenge-Response Systems of a Three-Dimensional "Bionic" Fluorescent Physically Unclonable Function Label. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 38703103 DOI: 10.1021/acsami.4c01534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2024]
Abstract
Inspired by the light and dark variations observed in natural cloud clusters under sunlight, we propose a three-dimensional (3D) "bionic" fluorescent physically unclonable function (PUF) label. The minimalist preparation process eliminates the need for expensive traditional instruments, thus offering new insight into the widespread adoption of 3D PUF labels. The Eu(CCA)3(H2O)2 powder, which is the first to propose its secondary building unit, was chosen as the fluorescent material. Its 3D morphology is preserved in the resin to mimic cloud-like structures. Furthermore, the luminescent properties are elucidated through experimental tests and first-principles calculations. To overcome the coding capacity limitation of traditional two-dimensional (2D) fluorescent PUF labels, a dual challenge-response system model is proposed. The shallow and deep models provide anticounterfeiting information from macro and micro perspectives, respectively. This successfully increases the encoding capacity from 210×10 to 2100×10000 for a 10 × 10 pixel binary code. Therefore, 3D "bionic" fluorescent PUF labels strike a balance between the simple usage of PUF labels and enhanced label security.
Collapse
Affiliation(s)
- Yan Li
- School of Physics and Key Laboratory of Weak Light Nonlinear Photonics, Ministry of Education, Nankai University, Tianjin 300071, People's Republic of China
| | - Yang Li
- School of Physics and Key Laboratory of Weak Light Nonlinear Photonics, Ministry of Education, Nankai University, Tianjin 300071, People's Republic of China
| | - Jiaxin Yang
- School of Physics and Key Laboratory of Weak Light Nonlinear Photonics, Ministry of Education, Nankai University, Tianjin 300071, People's Republic of China
| | - Ziyu Chen
- School of Electronic Information, Huzhou College, Huzhou, Zhejiang 313000, People's Republic of China
| | - Ming Feng
- School of Physics and Key Laboratory of Weak Light Nonlinear Photonics, Ministry of Education, Nankai University, Tianjin 300071, People's Republic of China
| | - Lisa Liu
- School of Physics and Key Laboratory of Weak Light Nonlinear Photonics, Ministry of Education, Nankai University, Tianjin 300071, People's Republic of China
| | - Feng Song
- School of Physics and Key Laboratory of Weak Light Nonlinear Photonics, Ministry of Education, Nankai University, Tianjin 300071, People's Republic of China
- Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi 030006, People's Republic of China
| | - Wei Huang
- School of Physics and Key Laboratory of Weak Light Nonlinear Photonics, Ministry of Education, Nankai University, Tianjin 300071, People's Republic of China
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing, Jiangsu 211816, People's Republic of China
| |
Collapse
|
5
|
Park SM, Yoon DK. Evaporation-induced self-assembly of liquid crystal biopolymers. MATERIALS HORIZONS 2024; 11:1843-1866. [PMID: 38375871 DOI: 10.1039/d3mh01585h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2024]
Abstract
Evaporation-induced self-assembly (EISA) is a process that has gained significant attention in recent years due to its fundamental science and potential applications in materials science and nanotechnology. This technique involves controlled drying of a solution or dispersion of materials, forming structures with specific shapes and sizes. In particular, liquid crystal (LC) biopolymers have emerged as promising candidates for EISA due to their highly ordered structures and biocompatible properties after deposition. This review provides an overview of recent progress in the EISA of LC biopolymers, including DNA, nanocellulose, viruses, and other biopolymers. The underlying self-assembly mechanisms, the effects of different processing conditions, and the potential applications of the resulting structures are discussed.
Collapse
Affiliation(s)
- Soon Mo Park
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea.
- Department of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY, 14853, USA
| | - Dong Ki Yoon
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea.
| |
Collapse
|
6
|
Wang Z, Wang H, Li F, Gao X, Shao Y. Physical Unclonable Functions Based on Photothermal Effect of Gold Nanoparticles. ACS APPLIED MATERIALS & INTERFACES 2024; 16:17954-17964. [PMID: 38562008 DOI: 10.1021/acsami.3c18270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Physical unclonable functions (PUFs) based on uncontrollable fabrication randomness are promising candidates for anticounterfeiting applications. Currently, the most popular optical PUFs are generally constructed from the scattering, fluorescent, or Raman phenomenon of nanomaterials. To further improve the security level of optical PUFs, advanced functions transparent to the above optical phenomenon have always been perused by researchers. Herein, we propose a new type of PUF based on the photothermal effect of gold nanoparticles, which shows negligible scattering, fluorescent, or Raman responses. The gold nanoparticles are randomly dispersed onto the surface of fused silica, which can enhance the photothermal effect and facilitate high contrast responses. By tuning the areal density of the gold nanoparticles, the optimized encoding capacity (2319) and the total authentication error probability (3.6428 × 10-24) are achieved from our PUF due to excellent bit uniformity (0.519) and inter Hamming distances (0.503). Moreover, the intra-Hamming distance (0.044) indicates the desired reliability. This advanced PUF with invisible features and high contrast responses provides a promising opportunity to implement authentication and identification with high security.
Collapse
Affiliation(s)
- Zhiyuan Wang
- Laboratory of Thin Film Optics, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
- Key Laboratory of Materials for High-Power Laser, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, P. R. China
| | - Hu Wang
- Laboratory of Thin Film Optics, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
- Key Laboratory of Materials for High-Power Laser, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, P. R. China
| | - Fenghua Li
- Laboratory of Thin Film Optics, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, P. R. China
- Key Laboratory of Materials for High-Power Laser, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, P. R. China
| | - Xinyu Gao
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
- Key Laboratory of Materials for High-Power Laser, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, P. R. China
- Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, P. R. China
| | - Yuchuan Shao
- Laboratory of Thin Film Optics, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
- Key Laboratory of Materials for High-Power Laser, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, P. R. China
- Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, P. R. China
| |
Collapse
|
7
|
Zhang J, Tan R, Liu Y, Albino M, Zhang W, Stevens MM, Loeffler FF. Printed smart devices for anti-counterfeiting allowing precise identification with household equipment. Nat Commun 2024; 15:1040. [PMID: 38310090 PMCID: PMC10838302 DOI: 10.1038/s41467-024-45428-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 01/23/2024] [Indexed: 02/05/2024] Open
Abstract
Counterfeiting has become a serious global problem, causing worldwide losses and disrupting the normal order of society. Physical unclonable functions are promising hardware-based cryptographic primitives, especially those generated by chemical processes showing a massive challenge-response pair space. However, current chemical-based physical unclonable function devices typically require complex fabrication processes or sophisticated characterization methods with only binary (bit) keys, limiting their practical applications and security properties. Here, we report a flexible laser printing method to synthesize unclonable electronics with high randomness, uniqueness, and repeatability. Hexadecimal resistive keys and binary optical keys can be obtained by the challenge with an ohmmeter and an optical microscope. These readout methods not only make the identification process available to general end users without professional expertise, but also guarantee device complexity and data capacity. An adopted open-source deep learning model guarantees precise identification with high reliability. The electrodes and connection wires are directly printed during laser writing, which allows electronics with different structures to be realized through free design. Meanwhile, the electronics exhibit excellent mechanical and thermal stability. The high physical unclonable function performance and the widely accessible readout methods, together with the flexibility and stability, make this synthesis strategy extremely attractive for practical applications.
Collapse
Affiliation(s)
- Junfang Zhang
- Max Planck Institute of Colloids and Interfaces, Am Muehlenberg 1, 14476, Potsdam, Germany
- Department of Materials, Department of Bioengineering, and Institute of Biomedical Engineering, Imperial College London, London, SW7 2AZ, United Kingdom
| | - Rong Tan
- Max Planck Institute of Colloids and Interfaces, Am Muehlenberg 1, 14476, Potsdam, Germany
- Soochow University, College of Chemistry, Chemical Engineering and Material Science, Suzhou, 215123, China
| | - Yuxin Liu
- Max Planck Institute of Colloids and Interfaces, Am Muehlenberg 1, 14476, Potsdam, Germany
- Freie Universität Berlin, Department of Chemistry and Biochemistry, Arnimallee 22, 14195, Berlin, Germany
| | - Matteo Albino
- Department of Materials, Department of Bioengineering, and Institute of Biomedical Engineering, Imperial College London, London, SW7 2AZ, United Kingdom
| | - Weinan Zhang
- Department of Materials, Department of Bioengineering, and Institute of Biomedical Engineering, Imperial College London, London, SW7 2AZ, United Kingdom
| | - Molly M Stevens
- Department of Materials, Department of Bioengineering, and Institute of Biomedical Engineering, Imperial College London, London, SW7 2AZ, United Kingdom
| | - Felix F Loeffler
- Max Planck Institute of Colloids and Interfaces, Am Muehlenberg 1, 14476, Potsdam, Germany.
| |
Collapse
|
8
|
Meijs ZC, Yun HS, Fandre P, Park G, Yoon DK, Isa L. Pixelated Physical Unclonable Functions through Capillarity-Assisted Particle Assembly. ACS APPLIED MATERIALS & INTERFACES 2023; 15. [PMID: 37910785 PMCID: PMC10658447 DOI: 10.1021/acsami.3c09386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 10/15/2023] [Accepted: 10/17/2023] [Indexed: 11/03/2023]
Abstract
Recent years have shown the need for trustworthy, unclonable, and durable tokens as proof of authenticity for a large variety of products to combat the economic cost of counterfeits. An excellent solution is physical unclonable functions (PUFs), which are intrinsically random objects that cannot be recreated, even if illegitimate manufacturers have access to the same methods. We propose a robust and simple way to make pixelated PUFs through the deposition of a random mixture of fluorescent colloids in a predetermined lattice using capillarity-assisted particle assembly. As the encoding capacity scales exponentially with the number of deposited particles, we can easily achieve encoding capacities above 10700 for sub millimeter scale samples, where the pixelated nature of the PUFs allows for easy and trustworthy readout. Our method allows for the PUFs to be transferred to, and embedded in, a range of transparent materials to protect them from environmental challenges, leading to improved stability and robustness and allowing their implementation for a large number of different applications.
Collapse
Affiliation(s)
- Zazo Cazimir Meijs
- Laboratory
for Soft Materials and Interfaces, Department of Materials, ETH Zurich, 8093 Zurich, Switzerland
| | - Hee Seong Yun
- Department
of Chemistry, Korea Advanced Institute of
Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Pascal Fandre
- Laboratory
for Soft Materials and Interfaces, Department of Materials, ETH Zurich, 8093 Zurich, Switzerland
| | - Geonhyeong Park
- Department
of Chemistry, Korea Advanced Institute of
Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Dong Ki Yoon
- Department
of Chemistry, Korea Advanced Institute of
Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Lucio Isa
- Laboratory
for Soft Materials and Interfaces, Department of Materials, ETH Zurich, 8093 Zurich, Switzerland
| |
Collapse
|
9
|
Kim K, Kim SU, Choi MY, Saeed MH, Kim Y, Na JH. Voxelated opto-physically unclonable functions via irreplicable wrinkles. LIGHT, SCIENCE & APPLICATIONS 2023; 12:245. [PMID: 37788994 PMCID: PMC10547705 DOI: 10.1038/s41377-023-01285-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 08/30/2023] [Accepted: 09/07/2023] [Indexed: 10/05/2023]
Abstract
The increased prevalence of the Internet of Things (IoT) and the integration of digital technology into our daily lives have given rise to heightened security risks and the need for more robust security measures. In response to these challenges, physical unclonable functions (PUFs) have emerged as promising solution, offering a highly secure method to generate unpredictable and unique random digital values by leveraging inherent physical characteristics. However, traditional PUFs implementations often require complex hardware and circuitry, which can add to the cost and complexity of the system. We present a novel approach using a random wrinkles PUF (rw-PUF) based on an optically anisotropic, facile, simple, and cost-effective material. These wrinkles contain randomly oriented liquid crystal molecules, resulting in a two-dimensional retardation map corresponding to a complex birefringence pattern. Additionally, our proposed technique allows for customization based on specific requirements using a spatial light modulator, enabling fast fabrication. The random wrinkles PUF has the capability to store multiple data sets within a single PUF without the need for physical alterations. Furthermore, we introduce a concept called 'polyhedron authentication,' which utilizes three-dimensional information storage in a voxelated random wrinkles PUF. This approach demonstrates the feasibility of implementing high-level security technology by leveraging the unique properties of the rw-PUF.
Collapse
Affiliation(s)
- Kitae Kim
- Department of Convergence System Engineering, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon, 34134, Republic of Korea
| | - Se-Um Kim
- Department of Electrical and Information Engineering, Seoul National University of Science & Technology, 232 Gongneung-ro, Nowon-gu, Seoul, 01811, Republic of Korea
| | - Moon-Young Choi
- Department of Convergence System Engineering, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon, 34134, Republic of Korea
| | - Mohsin Hassan Saeed
- Department of Electrical, Electronics, and Communication Engineering Education, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon, 34134, Republic of Korea
| | - Youngmin Kim
- Hologram Research Center, Korea Electronics Technology Institute, World Cup buk-ro 54-gil, Mapo-gu, Seoul, 03924, Republic of Korea
| | - Jun-Hee Na
- Department of Convergence System Engineering, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon, 34134, Republic of Korea.
- Department of Electrical, Electronics, and Communication Engineering Education, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon, 34134, Republic of Korea.
| |
Collapse
|