1
|
Hao QQ, Cai ZP, Zhao XH, Wang LY, Wang KX, Chen JS. Boosting the Efficiency and Stability of Li-CO 2 Batteries via a Ruthenium-Based Olefin-Metathesis Catalyst. J Am Chem Soc 2024; 146:27802-27808. [PMID: 39320037 DOI: 10.1021/jacs.4c10024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/26/2024]
Abstract
The practical application of Li-CO2 batteries is significantly hindered by high charge potential and short lifespan, mainly due to sluggish reaction kinetics and inadequate reaction reversibility. Homogeneous catalysts added to the electrolyte provide a promising strategy to address these issues. In this work, the third-generation Grubbs catalyst (G-III), which is efficient for olefin metathesis reactions, has been adopted as a homogeneous catalyst for Li-CO2 batteries. Batteries with G-III exhibited a low overpotential of 0.86 V and a lifespan of 1300 h at a current density of 300 mA g-1. Even at a high current density of 2000 mA g-1, the batteries remained stable for over 300 cycles, with an initial overpotential of 1.11 V. A two-step discharge/charge reaction involving Li2C2O4 as an intermediate was well illustrated, attributed to both low overpotentials and high specific capacity. These findings provide insights into catalyst selection and mechanism analysis for Li-CO2 batteries, offering practical strategies for Li-CO2 battery performance enhancement and practical applications.
Collapse
Affiliation(s)
- Qian-Qian Hao
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zhi-Peng Cai
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xing-He Zhao
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Liang-Yu Wang
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Kai-Xue Wang
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jie-Sheng Chen
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
2
|
Chen Y, Li J, Lu B, Liu Y, Mao R, Song Y, Li H, Yu X, Gao Y, Peng Q, Qi X, Zhou G. Activated Co in Thiospinel Boosting Li 2CO 3 Decomposition in Li-CO 2 Batteries. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2406856. [PMID: 39177199 DOI: 10.1002/adma.202406856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 07/31/2024] [Indexed: 08/24/2024]
Abstract
Catalytic reactions mainly depend on the adsorption properties of reactants on the catalyst, which provides a perspective for the design of reversible lithium-carbon dioxide (Li-CO2) batteries including CO2 reduction (CO2RR) and CO2 evolution (CO2ER) reactions. However, due to the complex reaction process, the relationship between the adsorption configuration and CO2RR/CO2ER catalytic activity is still unclear in Li─CO2 batteries. Herein, taking Co3S4 as a model system, nickel (Ni substitution in the tetrahedral site to activate cobalt (Co) atom for forming multiatom catalytic domains in NiCo2S4 is utilized. Benefiting from the special geometric and electronic structures, NiCo2S4 exhibits an optimized adsorption configuration of lithium carbonate (Li2CO3), promoting its effective activation and decomposition. As a result, the Li-CO2 batteries with NiCo2S4 cathode exhibit remarkable electrochemical performance in terms of low potential gap of 0.42 V and high energy efficiency of 88.7%. This work provides a unique perspective for the development of highly efficient catalysts in Li-CO2 batteries.
Collapse
Affiliation(s)
- Yanli Chen
- Tsinghua-Berkeley Shenzhen Institute & Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
- College of Physics, Guizhou University, Guiyang, 550025, China
| | - Junfeng Li
- Tsinghua-Berkeley Shenzhen Institute & Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| | - Bingyi Lu
- Tsinghua-Berkeley Shenzhen Institute & Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| | - Yingqi Liu
- Tsinghua-Berkeley Shenzhen Institute & Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| | - Rui Mao
- Tsinghua-Berkeley Shenzhen Institute & Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| | - Yanze Song
- Tsinghua-Berkeley Shenzhen Institute & Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| | - Hongtai Li
- Tsinghua-Berkeley Shenzhen Institute & Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| | - Xinqian Yu
- College of Physics, Guizhou University, Guiyang, 550025, China
| | - Yongzheng Gao
- College of Physics, Guizhou University, Guiyang, 550025, China
| | - Qiong Peng
- College of Physics, Guizhou University, Guiyang, 550025, China
| | - Xiaosi Qi
- College of Physics, Guizhou University, Guiyang, 550025, China
| | - Guangmin Zhou
- Tsinghua-Berkeley Shenzhen Institute & Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| |
Collapse
|
3
|
Pan Q, Ma X, Wang H, Shu Y, Liu H, Yang L, Li W, Liu J, Wu Y, Mao Y, Xie J, Zou G, Hou H, Deng W, Ji X. Approaching Splendid Catalysts for Li-CO 2 Battery from the Theory to Practical Designing: A Review. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2406905. [PMID: 39081118 DOI: 10.1002/adma.202406905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 07/02/2024] [Indexed: 10/04/2024]
Abstract
Lithium carbon dioxide (Li-CO2) batteries, noted for their high discharge voltage of approximately 2.8 V and substantial theoretical specific energy of 1876 Wh kg-1, represent a promising avenue for new energy sources and CO2 emission reduction. However, the practical application of these batteries faces significant hurdles, particularly at high current densities and over extended cycle lives, due to their complex reaction mechanisms and slow kinetics. This paper delves into the recent advancements in cathode catalysts for Li-CO2 batteries, with a specific focus on the designing philosophy from composition, geometry, and homogeneity of the catalysts to the proper test conditions and real-world application. It surveys the possible catalytic mechanisms, giving readers a brief introduction of how the energy is stored and released as well as the critical exploration of the relationship between material properties and performances. Specifically, optimization and standardization of test conditions for Li-CO2 battery research is highlighted to enhance data comparability, which is also critical to facilitate the practical application of Li-CO2 batteries. This review aims to bring up inspiration from previous work to advance the design of more effective and sustainable cathode catalysts, tailored to meet the practical demands of Li-CO2 batteries.
Collapse
Affiliation(s)
- Qing Pan
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410006, China
| | - Xianpeng Ma
- Light Alloy Research Institute, Central South University, Changsha, 410006, China
| | - Haoji Wang
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410006, China
| | - Yuming Shu
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410006, China
| | - Huaxin Liu
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410006, China
| | - Lu Yang
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410006, China
| | - Wenyuan Li
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410006, China
| | - Jintao Liu
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410006, China
| | - Yancheng Wu
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410006, China
| | - Ya Mao
- State Key Laboratory of Space Power Sources, Shanghai Institute of Space Power Sources, Shanghai, 200245, China
| | - Jingying Xie
- State Key Laboratory of Space Power Sources, Shanghai Institute of Space Power Sources, Shanghai, 200245, China
| | - Guoqiang Zou
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410006, China
| | - Hongshuai Hou
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410006, China
| | - Wentao Deng
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410006, China
| | - Xiaobo Ji
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410006, China
| |
Collapse
|
4
|
Lu B, Wu X, Zhang M, Xiao X, Chen B, Liu Y, Mao R, Song Y, Zeng XX, Yang J, Zhou G. Steering the Orbital Hybridization to Boost the Redox Kinetics for Efficient Li-CO 2 Batteries. J Am Chem Soc 2024. [PMID: 39031086 DOI: 10.1021/jacs.4c04641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/22/2024]
Abstract
The sluggish CO2 reduction and evolution reaction kinetics are thorny problems for developing high-performance Li-CO2 batteries. For the complicated multiphase reactions and multielectron transfer processes in Li-CO2 batteries, exploring efficient cathode catalysts and understanding the interplay between structure and activity are crucial to couple with these pendent challenges. In this work, we applied the CoS as a model catalyst and adjusted its electronic structure by introducing sulfur vacancies to optimize the d-band and p-band centers, which steer the orbital hybridization and boost the redox kinetics between Li and CO2, thus improving the discharge platform of Li-CO2 batteries and altering the deposition behavior of discharge products. As a result, a highly efficient bidirectional catalyst exhibits an ultrasmall overpotential of 0.62 V and a high energy efficiency of 82.8% and circulates stably for nearly 600 h. Meanwhile, density functional theory calculations and multiphysics simulations further elucidate the mechanism of bidirectional activity. This work not only provides a proof of concept to design a remarkably efficient catalyst but also sheds light on promoting the reversible Li-CO2 reaction by tailoring the electronic structure.
Collapse
Affiliation(s)
- Bingyi Lu
- Tsinghua-Berkeley Shenzhen Institute & Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
- Shenzhen Key Laboratory of Energy Electrocatalytic Materials, Guangdong Provincial Key Laboratory of New Energy Materials Service Safety, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China
| | - Xinru Wu
- Tsinghua-Berkeley Shenzhen Institute & Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Mengtian Zhang
- Tsinghua-Berkeley Shenzhen Institute & Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Xiao Xiao
- Tsinghua-Berkeley Shenzhen Institute & Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Biao Chen
- School of Materials Science and Engineering and Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin 300350, China
| | - Yingqi Liu
- Tsinghua-Berkeley Shenzhen Institute & Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Rui Mao
- Tsinghua-Berkeley Shenzhen Institute & Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Yanze Song
- Tsinghua-Berkeley Shenzhen Institute & Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Xian-Xiang Zeng
- School of Chemistry and Materials Science, Hunan Agricultural University, Changsha 410128, China
| | - Jinlong Yang
- Shenzhen Key Laboratory of Energy Electrocatalytic Materials, Guangdong Provincial Key Laboratory of New Energy Materials Service Safety, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China
| | - Guangmin Zhou
- Tsinghua-Berkeley Shenzhen Institute & Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| |
Collapse
|
5
|
Wu J, Chen J, Chen X, Liu Y, Hu Z, Lou F, Chou S, Qiao Y. Cross-linked K 0.5MnO 2 nanoflower composites for high rate and low overpotential Li-CO 2 batteries. Chem Sci 2024; 15:9591-9598. [PMID: 38939144 PMCID: PMC11206224 DOI: 10.1039/d4sc01799d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 05/14/2024] [Indexed: 06/29/2024] Open
Abstract
Rechargeable Li-CO2 batteries are deemed to be attractive energy storage systems, as they can effectively inhale and fix carbon dioxide and possess an extremely high energy density. Unfortunately, the irreversible decomposition of the insoluble and insulating Li2CO3 results in awful electrochemical performance and inferior energy efficiency of Li-CO2 batteries. Furthermore, the low energy efficiency will exacerbate the extra waste of resources. Therefore, it is vital to design novel and efficient catalysts to enhance the battery performance. Herein, a facile, one-step strategy is introduced to design cross-linked, ultrathin K0.5MnO2 nanoflowers combined with CNTs (K0.5MnO2/CNT) as a highly efficient cathode for Li-CO2 batteries. Impressively, the Li-CO2 battery based on the K0.5MnO2/CNT cathode achieves a low overpotential (1.05 V) and a high average energy efficiency (87.95%) at a current density of 100 mA g-1. Additionally, the K0.5MnO2/CNT cathode can steadily run for over 100 cycles (overpotential < 1.20 V). Moreover, a low overpotential of 1.47 V can be obtained even at a higher current density of 1000 mA g-1, indicating the superior rate performance of K0.5MnO2/CNT. This strategy offers new insight and guidance for the development of low-cost and high-performance Li-CO2 batteries.
Collapse
Affiliation(s)
- Jiawei Wu
- School of Chemistry and Chemical Engineering, Henan Normal University Xinxiang Henan 453007 China
- Sinopec Petroleum Engineering Zhongyuan Co. Ltd, Natural Gas Technology Center Zhengzhou Henan 450000 China
| | - Jian Chen
- School of Environment and Chemical Engineering, Shanghai University Shanghai 200444 China
| | - Xiaoyang Chen
- School of Environment and Chemical Engineering, Shanghai University Shanghai 200444 China
| | - Yang Liu
- School of Chemistry and Chemical Engineering, Henan Normal University Xinxiang Henan 453007 China
- School of Environment and Chemical Engineering, Shanghai University Shanghai 200444 China
| | - Zhe Hu
- College of Materials Science and Engineering, Shenzhen University Shenzhen 518055 China
| | - Feijian Lou
- School of Chemistry and Chemical Engineering, Henan Normal University Xinxiang Henan 453007 China
| | - Shulei Chou
- Institute for Carbon Neutralization, College of Chemistry and Materials Engineering, Wenzhou University Wenzhou Zhejiang 325035 China
| | - Yun Qiao
- School of Chemistry and Chemical Engineering, Henan Normal University Xinxiang Henan 453007 China
- School of Environment and Chemical Engineering, Shanghai University Shanghai 200444 China
| |
Collapse
|
6
|
Liu L, Shen S, Zhao N, Zhao H, Wang K, Cui X, Wen B, Wang J, Xiao C, Hu X, Su Y, Ding S. Revealing the Indispensable Role of In Situ Electrochemically Reconstructed Mn(II)/Mn(III) in Improving the Performance of Lithium-Carbon Dioxide Batteries. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2403229. [PMID: 38598727 DOI: 10.1002/adma.202403229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 04/02/2024] [Indexed: 04/12/2024]
Abstract
Li-CO2 batteries are regarded as promising high-energy-density energy conversion and storage devices, but their practicability is severely hindered by the sluggish CO2 reduction/evolution reaction (CORR/COER) kinetics. Due to the various crystal structures and unique electronic configuration, Mn-based cathode catalysts have shown considerable competition to facilitate CORR/COER. However, the specific active sites and regulation principle of Mn-based catalysts remain ambiguous and limited. Herein, this work designs novel Mn dual-active sites (MOC) supported on N-doped carbon nanofibers and conduct a comprehensive investigation into the underlying relationship between different Mn active sites and their electrochemical performance in Li-CO2 batteries. Impressively, this work finds that owing to the in situ generation and stable existence of Mn(III), MOC undergoes obvious electrochemical reconstruction during battery cycling. Moreover, a series of characterizations and theoretical calculations demonstrate that the different electronic configurations and coordination environments of Mn(II) and Mn(III) are conducive to promoting CORR and COER, respectively. Benefiting from such a modulating behavior, the Li-CO2 batteries deliver a high full discharge capacity of 10.31 mAh cm-2, and ultra-long cycle life (327 cycles/1308 h). This fundamental understanding of MOC reconstruction and the electrocatalytic mechanisms provides a new perspective for designing high-performance multivalent Mn-integrated hybrid catalysts for Li-CO2 batteries.
Collapse
Affiliation(s)
- Limin Liu
- School of Chemistry, Engineering Research Center of Energy Storage Materials and Devices of Ministry of Education, State Key Laboratory for Mechanical Behavior of Materials, and National Innovation Platform (Center) for Industry-Education Integration of Energy Storage Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Shenyu Shen
- School of Chemistry, Engineering Research Center of Energy Storage Materials and Devices of Ministry of Education, State Key Laboratory for Mechanical Behavior of Materials, and National Innovation Platform (Center) for Industry-Education Integration of Energy Storage Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Ning Zhao
- School of Chemistry, Engineering Research Center of Energy Storage Materials and Devices of Ministry of Education, State Key Laboratory for Mechanical Behavior of Materials, and National Innovation Platform (Center) for Industry-Education Integration of Energy Storage Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Hongyang Zhao
- School of Chemistry, Engineering Research Center of Energy Storage Materials and Devices of Ministry of Education, State Key Laboratory for Mechanical Behavior of Materials, and National Innovation Platform (Center) for Industry-Education Integration of Energy Storage Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Ke Wang
- School of Chemistry, Engineering Research Center of Energy Storage Materials and Devices of Ministry of Education, State Key Laboratory for Mechanical Behavior of Materials, and National Innovation Platform (Center) for Industry-Education Integration of Energy Storage Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Xiaofeng Cui
- School of Chemistry, Engineering Research Center of Energy Storage Materials and Devices of Ministry of Education, State Key Laboratory for Mechanical Behavior of Materials, and National Innovation Platform (Center) for Industry-Education Integration of Energy Storage Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Bo Wen
- School of Chemistry, Engineering Research Center of Energy Storage Materials and Devices of Ministry of Education, State Key Laboratory for Mechanical Behavior of Materials, and National Innovation Platform (Center) for Industry-Education Integration of Energy Storage Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Jiuhong Wang
- School of Instrument Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Chunhui Xiao
- School of Chemistry, Engineering Research Center of Energy Storage Materials and Devices of Ministry of Education, State Key Laboratory for Mechanical Behavior of Materials, and National Innovation Platform (Center) for Industry-Education Integration of Energy Storage Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Xiaofei Hu
- School of Chemistry, Engineering Research Center of Energy Storage Materials and Devices of Ministry of Education, State Key Laboratory for Mechanical Behavior of Materials, and National Innovation Platform (Center) for Industry-Education Integration of Energy Storage Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Yaqiong Su
- School of Chemistry, Engineering Research Center of Energy Storage Materials and Devices of Ministry of Education, State Key Laboratory for Mechanical Behavior of Materials, and National Innovation Platform (Center) for Industry-Education Integration of Energy Storage Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Shujiang Ding
- School of Chemistry, Engineering Research Center of Energy Storage Materials and Devices of Ministry of Education, State Key Laboratory for Mechanical Behavior of Materials, and National Innovation Platform (Center) for Industry-Education Integration of Energy Storage Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| |
Collapse
|
7
|
Sun L, Yuwono JA, Zhang S, Chen B, Li G, Jin H, Johannessen B, Mao J, Zhang C, Zubair M, Bedford N, Guo Z. High Entropy Alloys Enable Durable and Efficient Lithium-Mediated CO 2 Redox Reactions. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2401288. [PMID: 38558119 DOI: 10.1002/adma.202401288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 03/15/2024] [Indexed: 04/04/2024]
Abstract
Designing electrocatalysts with high activity and durability for multistep reduction and oxidation reactions is challenging. High-entropy alloys (HEAs) are intriguing due to their tunable geometric and electronic structure through entropy effects. However, understanding the origin of their exceptional performance and identifying active centers is hindered by the diverse microenvironment in HEAs. Herein, NiFeCoCuRu HEAs designed with an average diameter of 2.17 nm, featuring different adsorption capacities for various reactants and intermediates in Li-mediated CO2 redox reactions, are introduced. The electronegativity-dependent nature of NiFeCoCuRu HEAs induces significant charge redistribution, shifting the d-band center closer to Fermi level and forming highly active clusters of Ru, Co, and Ni for Li-based compounds adsorptions. This lowers energy barriers and simultaneously stabilizes *LiCO2 and LiCO3+CO intermediates, enhancing the efficiency of both CO2 reduction and Li2CO3 decomposition over extended periods. This work provides insights into specific active site interactions with intermediates, highlighting the potential of HEAs as promising catalysts for intricate CO2 redox reactions.
Collapse
Affiliation(s)
- Liang Sun
- School of Chemical Engineering, The University of Adelaide, Adelaide, 5000, Australia
| | - Jodie A Yuwono
- School of Chemical Engineering, The University of Adelaide, Adelaide, 5000, Australia
| | - Shilin Zhang
- School of Chemical Engineering, The University of Adelaide, Adelaide, 5000, Australia
| | - Biao Chen
- School of Materials Science and Engineering and Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin, 300350, China
| | - Guanjie Li
- School of Chemical Engineering, The University of Adelaide, Adelaide, 5000, Australia
| | - Huanyu Jin
- School of Chemical Engineering, The University of Adelaide, Adelaide, 5000, Australia
| | - Bernt Johannessen
- Australian Synchrotron, Clayton, 3168, Australia
- Institute for Superconducting & Electronic Materials, University of Wollongong, Wollongong, NSW, 2500, Australia
| | - Jianfeng Mao
- School of Chemical Engineering, The University of Adelaide, Adelaide, 5000, Australia
| | - Chaofeng Zhang
- Institutes of Physical Science and Information Technology, Anhui University, Hefei, 230601, China
| | - Muhammad Zubair
- School of Chemical Engineering, UNSW Sydney, Sydney, 2052, Australia
| | - Nicholas Bedford
- School of Chemical Engineering, UNSW Sydney, Sydney, 2052, Australia
| | - Zaiping Guo
- School of Chemical Engineering, The University of Adelaide, Adelaide, 5000, Australia
| |
Collapse
|
8
|
Zhang X, Luo T, Wang Y, Li Y. Mechanistic Insights into the Discharge Processes of Li-CO 2 Batteries. Chemistry 2024; 30:e202400414. [PMID: 38454788 DOI: 10.1002/chem.202400414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 03/01/2024] [Accepted: 03/08/2024] [Indexed: 03/09/2024]
Abstract
Li-CO2 batteries facilitate renewable energy storage in a cost-effective, eco-friendly manner. However, an inadequate understanding of their reaction mechanism severely impedes their development. Here we outline recent mechanistic advances in the discharge processes of Li-CO2 batteries, particularly in terms of the theoretical aspect. First, the vital factors affecting the formation of discharge intermediates are highlighted, and a surface lithiation mechanism predominantly applicable to catalysts with weak CO2 adsorption is proposed. Subsequently, the modeling of the chemical potential of Li++e-, which is crucial for the evaluation of the theoretical limiting voltage, is detailed. Finally, challenges and future directions pertaining to the further development of Li-CO2 are discussed. In essence, this concept article seeks to inspire future experimental and theoretical studies in advancing the development of Li-CO2 electrochemical technology.
Collapse
Affiliation(s)
- Xinxin Zhang
- Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| | - Tingting Luo
- Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| | - Yu Wang
- Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| | - Yafei Li
- Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| |
Collapse
|
9
|
Ji X, Liu Y, Zhang Z, Cui J, Fan Y, Qiao Y. Carbon nanotubes with CoNi alloy nanoparticles growing on porous carbon substrate as cathode for Li-CO 2 batteries. J Colloid Interface Sci 2024; 655:693-698. [PMID: 37976742 DOI: 10.1016/j.jcis.2023.11.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 10/30/2023] [Accepted: 11/06/2023] [Indexed: 11/19/2023]
Abstract
The over-exploitation of fossil fuels and rapid industrialization has released a large number of carbon dioxide. As a major greenhouse gas, it can induce the increasing global temperature and result in environmental issues. It is an urgent necessity to reduce carbon dioxide emission and increase carbon capture, utilization and storage. Li-CO2 battery can be used for the fixation and conversion of carbon dioxide to electrochemical energy. However, it is necessary to explore and design efficient catalysts, due to the low electronic conductivity and sluggish decomposition kinetics for lithium carbonate as the discharge product. Herein, carbon nanotubes with CoNi alloy nanoparticles growing on porous carbon substrate (PC/CoNi-CNTs) is designed by immersing porous melamine formaldehyde sponge into cobalt nitrate and nickel chloride solution with the subsequent carbonization. The porous structure of carbon substrate facilitates the electrolyte infiltration and carbon dioxide diffusion. The carbon nanotubes and CoNi alloy catalysts can efficiently enhance the reversible deposition and decomposition of lithium carbonate and carbon, taking advantage of their synergistic effect. At a current density of 0.05 mA cm-2, the terminal discharge and charge voltages are 2.76 and 4.23 V with a limited specific capacity of 0.2 mA h cm-2, respectively. These results demonstrat that the design of carbon nanotubes with alloy nanoparticles on porous carbon substrate as cathode can enhance the electrochemical performances of Li-CO2 battery.
Collapse
Affiliation(s)
- Xu Ji
- School of Chemistry and Chemical Engineering, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Normal University, Xinxiang, Henan 453007, China
| | - Yang Liu
- School of Chemistry and Chemical Engineering, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Normal University, Xinxiang, Henan 453007, China; School of Environment and Chemical Engineering, Shanghai University, Shanghai, 200444, China.
| | - Zhuxi Zhang
- School of Chemistry and Chemical Engineering, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Normal University, Xinxiang, Henan 453007, China
| | - Jiabao Cui
- School of Chemistry and Chemical Engineering, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Normal University, Xinxiang, Henan 453007, China.
| | - Yangyang Fan
- School of Chemistry and Chemical Engineering, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Normal University, Xinxiang, Henan 453007, China
| | - Yun Qiao
- School of Environment and Chemical Engineering, Shanghai University, Shanghai, 200444, China.
| |
Collapse
|
10
|
Lu B, Wu X, Xiao X, Chen B, Zeng W, Liu Y, Lao Z, Zeng XX, Zhou G, Yang J. Energy Band Engineering Guided Design of Bidirectional Catalyst for Reversible Li-CO 2 Batteries. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2308889. [PMID: 37960976 DOI: 10.1002/adma.202308889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 11/08/2023] [Indexed: 11/15/2023]
Abstract
Li-CO2 batteries arouse great interest in the context of carbon neutralization, but their practicability is severely hindered by the sluggish CO2 redox reaction kinetics at the cathode, which brings about formidable challenges such as high overpotential and low Coulombic efficiency. For the complex multi-electron transfer process, the design of catalysts at the molecular or atomic level and the understanding of the relationship between electron state and performance are essential for the CO2 redox. However, little attention is paid to it. In this work, using Co3 S4 as a model system, density functional theory (DFT) calculations reveal that the adjusted d-band and p-band centers of Co3 S4 with the introduction of Cu and sulfur vacancies are hybridized between CO2 and Li species, respectively, which is conducive to the adsorption of reactants and the decomposition of Li2 CO3 , and the experimental results further verify the effectiveness of energy band engineering. As a result, a highly efficient bidirectional catalyst is produced and shows an ultra-small voltage gap of 0.73 V and marvelous Coulombic efficiency of 92.6%, surpassing those of previous catalysts under similar conditions. This work presents an effective catalyst design and affords new insight into the high-performance cathode catalyst materials for Li-CO2 batteries.
Collapse
Affiliation(s)
- Bingyi Lu
- Shenzhen Key Laboratory of Energy Electrocatalytic Materials, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China
- College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, China
- Tsinghua-Berkeley Shenzhen Institute & Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| | - Xinru Wu
- Tsinghua-Berkeley Shenzhen Institute & Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| | - Xiao Xiao
- Tsinghua-Berkeley Shenzhen Institute & Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| | - Biao Chen
- School of Materials Science and Engineering and Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin, 300350, China
| | - Weihao Zeng
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, China
| | - Yingqi Liu
- Tsinghua-Berkeley Shenzhen Institute & Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| | - Zhoujie Lao
- Tsinghua-Berkeley Shenzhen Institute & Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| | - Xian-Xiang Zeng
- School of Chemistry and Materials Science, Hunan Agricultural University, Changsha, 410128, China
| | - Guangmin Zhou
- Tsinghua-Berkeley Shenzhen Institute & Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| | - Jinlong Yang
- Shenzhen Key Laboratory of Energy Electrocatalytic Materials, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China
| |
Collapse
|