1
|
Gao T, Xia X, Watanabe T, Ke CY, Suzuki R, Yamamoto T, Li F, Isono T, Satoh T. Toward Fully Controllable Monomers Sequence: Binary Organocatalyzed Polymerization from Epoxide/Aziridine/Cyclic Anhydride Monomer Mixture. J Am Chem Soc 2024; 146:25067-25077. [PMID: 39086123 DOI: 10.1021/jacs.4c08009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2024]
Abstract
The sequence of monomers within a polymer chain plays a pivotal role in determining the physicochemical properties of the polymer. In the copolymerization of two or more monomers, the arrangement of monomers within the resulting polymer is primarily dictated by the intrinsic reactivity of the monomers. Precisely controlling the monomer sequence in copolymerization, particularly through the manipulation of catalysts, is a subject of intense interest and poses significant challenges. In this study, we report the catalyst-controlled copolymerization of epoxides, N-tosyl aziridine (TAz), and cyclic anhydrides. To achieve this, a binary catalyst system comprising a Lewis acid, triethylborane, and Brønsted base, t-BuP1, was utilized. This system was utilized to regulate the selectivity between two catalytic reactions: ring-opening alternating copolymerization (ROAC) of epoxides/cyclic anhydrides and ROAC of TAz/cyclic anhydrides. Changing the catalyst ratio made it possible to continuously modulate the resulting poly(ester-amide ester) from ABA-type real block copolymers to gradient, random-like, reversed gradient, and reversed BAB-type block-like copolymers. A range of epoxides and anhydrides was investigated, demonstrating the versatility of this polymerization system. Additionally, density functional theory calculations were conducted to enhance our mechanistic understanding of the process. This synthetic method not only provides a versatile means for producing copolymers with comparable chemical compositions but also facilitates the exploration of the intricate relationship between monomer sequences and the resultant polymer properties, offering valuable insights for advancements in polymer science.
Collapse
Affiliation(s)
- Tianle Gao
- Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo 060-8628, Japan
| | - Xiaochao Xia
- Division of Applied Chemistry, Faculty of Engineering, Hokkaido University, Sapporo 060-8628, Japan
- School of Materials Science and Engineering, Chongqing University of Technology, Chongqing 400054, China
| | - Tomohisa Watanabe
- Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo 060-8628, Japan
| | - Chun-Yao Ke
- Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo 060-8628, Japan
- Institute of Polymer Science and Engineering, National Taiwan University, No.1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan
| | - Ryota Suzuki
- Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo 060-8628, Japan
| | - Takuya Yamamoto
- Division of Applied Chemistry, Faculty of Engineering, Hokkaido University, Sapporo 060-8628, Japan
| | - Feng Li
- Division of Applied Chemistry, Faculty of Engineering, Hokkaido University, Sapporo 060-8628, Japan
| | - Takuya Isono
- Division of Applied Chemistry, Faculty of Engineering, Hokkaido University, Sapporo 060-8628, Japan
| | - Toshifumi Satoh
- Division of Applied Chemistry, Faculty of Engineering, Hokkaido University, Sapporo 060-8628, Japan
- List Sustainable Digital Transformation Catalyst Collaboration Research Platform, Institute for Chemical Reaction Design and Discovery, Hokkaido University, Sapporo 001-0021, Japan
| |
Collapse
|
2
|
Poon KC, Segal M, Bahnick AJ, Chan YM, Gao C, Becker ML, Williams CK. Digital Light Processing to Afford High Resolution and Degradable CO 2-Derived Copolymer Elastomers. Angew Chem Int Ed Engl 2024; 63:e202407794. [PMID: 38896057 DOI: 10.1002/anie.202407794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 06/11/2024] [Accepted: 06/17/2024] [Indexed: 06/21/2024]
Abstract
Vat photopolymerization 3D printing has proven very successful for the rapid additive manufacturing (AM) of polymeric parts at high resolution. However, the range of materials that can be printed and their resulting properties remains narrow. Herein, we report the successful AM of a series of poly(carbonate-b-ester-b-carbonate) elastomers, derived from carbon dioxide and bio-derived ϵ-decalactone. By employing a highly active and selective Co(II)Mg(II) polymerization catalyst, an ABA triblock copolymer (Mn=6.3 kg mol-1, ÐM=1.26) was synthesized, formulated into resins which were 3D printed using digital light processing (DLP) and a thiol-ene-based crosslinking system. A series of elastomeric and degradable thermosets were produced, with varying thiol cross-linker length and poly(ethylene glycol) content, to produce complex triply periodic geometries at high resolution. Thermomechanical characterization of the materials reveals printing-induced microphase separation and tunable hydrophilicity. These findings highlight how utilizing DLP can produce sustainable materials from low molar mass polyols quickly and at high resolution. The 3D printing of these functional materials may help to expedite the production of sustainable plastics and elastomers with potential to replace conventional petrochemical-based options.
Collapse
Affiliation(s)
- Kam C Poon
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford, OX1 3TA, U.K
| | - Maddison Segal
- Thomas Lord Department of Mechanical Engineering & Materials Science, Duke University, Durham, NC 27708, USA
| | | | - Yin Mei Chan
- Department of Chemistry, Duke University, Durham, NC 27708, USA
| | - Chang Gao
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford, OX1 3TA, U.K
| | - Matthew L Becker
- Thomas Lord Department of Mechanical Engineering & Materials Science, Duke University, Durham, NC 27708, USA
- Department of Chemistry, Duke University, Durham, NC 27708, USA
- Departments of Biomedical Engineering and Orthopaedic Surgery, Duke University, Durham, NC 27708, USA
| | - Charlotte K Williams
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford, OX1 3TA, U.K
| |
Collapse
|
3
|
Zhao Y, Zhang X, Li Z, Li Z, Tang S. Functional and Degradable Polyester- co-polyethers from CO 2, Butadiene, and Epoxides. ACS Macro Lett 2024; 13:315-321. [PMID: 38382063 DOI: 10.1021/acsmacrolett.4c00071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
Carbon dioxide (CO2), as a renewable and nontoxic C1 feedstock, has been recognized as an ideal comonomer to prepare sustainable materials. In this regard, substantial focus has been dedicated to the ring-opening copolymerization of CO2 and epoxides, which results in the creation of aliphatic polycarbonates in most cases. Here, we report an unprecedented strategy to synthesize functional and degradable polyester-co-polyethers from CO2, butadiene, and epoxides via a CO2/butadiene-derived δ-valerolactone intermediate (EVP). Utilizing a chromium salen complex as the catalyst, the copolymerization of EVP and epoxides was successfully achieved to produce CO2/butadiene/epoxide terpolymers. The obtained polyester-co-polyethers with varied 39-93 mol % EVP content (equal to 18-28 wt % CO2 incorporation) show high thermal stability, tunable glass-transition temperatures, on-demand functionality, and good chemical degradability. This method extends the potential to access functional CO2-based polymers.
Collapse
Affiliation(s)
- Yajun Zhao
- Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xiaohui Zhang
- Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zhuang Li
- Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zhaokun Li
- Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Shan Tang
- Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
4
|
Yeo H, Gregory GL, Gao H, Yiamsawat K, Rees GJ, McGuire T, Pasta M, Bruce PG, Williams CK. Alternatives to fluorinated binders: recyclable copolyester/carbonate electrolytes for high-capacity solid composite cathodes. Chem Sci 2024; 15:2371-2379. [PMID: 38362415 PMCID: PMC10866336 DOI: 10.1039/d3sc05105f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 12/18/2023] [Indexed: 02/17/2024] Open
Abstract
Optimising the composite cathode for next-generation, safe solid-state batteries with inorganic solid electrolytes remains a key challenge towards commercialisation and cell performance. Tackling this issue requires the design of suitable polymer binders for electrode processability and long-term solid-solid interfacial stability. Here, block-polyester/carbonates are systematically designed as Li-ion conducting, high-voltage stable binders for cathode composites comprising of single-crystal LiNi0.8Mn0.1Co0.1O2 cathodes, Li6PS5Cl solid electrolyte and carbon nanofibres. Compared to traditional fluorinated polymer binders, improved discharge capacities (186 mA h g-1) and capacity retention (96.7% over 200 cycles) are achieved. The nature of the new binder electrolytes also enables its separation and complete recycling after use. ABA- and AB-polymeric architectures are compared where the A-blocks are mechanical modifiers, and the B-block facilitates Li-ion transport. This reveals that the conductivity and mechanical properties of the ABA-type are more suited for binder application. Further, catalysed switching between CO2/epoxide A-polycarbonate (PC) synthesis and B-poly(carbonate-r-ester) formation employing caprolactone (CL) and trimethylene carbonate (TMC) identifies an optimal molar mass (50 kg mol-1) and composition (wPC 0.35). This polymer electrolyte binder shows impressive oxidative stability (5.2 V), suitable ionic conductivity (2.2 × 10-4 S cm-1 at 60 °C), and compliant viscoelastic properties for fabrication into high-performance solid composite cathodes. This work presents an attractive route to optimising polymer binder properties using controlled polymerisation strategies combining cyclic monomer (CL, TMC) ring-opening polymerisation and epoxide/CO2 ring-opening copolymerisation. It should also prompt further examination of polycarbonate/ester-based materials with today's most relevant yet demanding high-voltage cathodes and sensitive sulfide-based solid electrolytes.
Collapse
Affiliation(s)
- Holly Yeo
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory 12 Mansfield Road Oxford OX1 3TA UK
| | - Georgina L Gregory
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory 12 Mansfield Road Oxford OX1 3TA UK
| | - Hui Gao
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory 12 Mansfield Road Oxford OX1 3TA UK
- Department of Materials, University of Oxford Oxford OX1 3PH UK
- The Faraday Institution, Quad One, Harwell Science and Innovation Campus Didcot OX11 0RA UK
| | - Kanyapat Yiamsawat
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory 12 Mansfield Road Oxford OX1 3TA UK
| | - Gregory J Rees
- Department of Materials, University of Oxford Oxford OX1 3PH UK
- The Faraday Institution, Quad One, Harwell Science and Innovation Campus Didcot OX11 0RA UK
| | - Thomas McGuire
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory 12 Mansfield Road Oxford OX1 3TA UK
| | - Mauro Pasta
- Department of Materials, University of Oxford Oxford OX1 3PH UK
- The Faraday Institution, Quad One, Harwell Science and Innovation Campus Didcot OX11 0RA UK
| | - Peter G Bruce
- Department of Materials, University of Oxford Oxford OX1 3PH UK
- The Faraday Institution, Quad One, Harwell Science and Innovation Campus Didcot OX11 0RA UK
| | - Charlotte K Williams
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory 12 Mansfield Road Oxford OX1 3TA UK
| |
Collapse
|
5
|
Wei P, Bhat GA, Darensbourg DJ. Enabling New Approaches: Recent Advances in Processing Aliphatic Polycarbonate-Based Materials. Angew Chem Int Ed Engl 2023; 62:e202307507. [PMID: 37534963 DOI: 10.1002/anie.202307507] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 08/02/2023] [Accepted: 08/03/2023] [Indexed: 08/04/2023]
Abstract
Aliphatic polycarbonates (aPCs) have become increasingly popular as functional materials due to their biocompatibility and capacity for on-demand degradation. Advances in polymerization techniques and the introduction of new functional monomers have expanded the library of aPCs available, offering a diverse range of chemical compositions and structures. To accommodate the emerging requirements of new applications in biomedical and energy-related fields, various manufacturing techniques have been adopted for processing aPC-based materials. However, a summary of these techniques has yet to be conducted. The aim of this paper is to enrich the toolbox available to researchers, enabling them to select the most suitable technique for their materials. In this paper, a concise review of the recent progress in processing techniques, including controlled self-assembly, electrospinning, additive manufacturing, and other techniques, is presented. We also highlight the specific challenges and opportunities for the sustainable growth of this research area and the successful integration of aPCs in industrial applications.
Collapse
Affiliation(s)
- Peiran Wei
- Soft Matter Facility, Texas A&M University, 1313 Research Parkway, College Station, TX, 77845, USA
| | - Gulzar A Bhat
- Centre for Interdisciplinary Research and Innovations, University of Kashmir, Srinagar, Jammu and Kashmir, 190006, India
| | - Donald J Darensbourg
- Department of Chemistry, Texas A&M University, 3255 TAMU, College Station, TX, 77843, USA
| |
Collapse
|