1
|
Guo P, Qi A, Shang W, Cai Z, Hu S, Dai P, Chen Z, Sun M, Wang Z, Tong Z, Hou D, Wang Z, Du Y, Tian J, Xu W. Targeting tumour surface collage with hydrogel probe: a new strategy to enhance intraoperative imaging sensitivity and stability of bladder cancer. Eur J Nucl Med Mol Imaging 2024; 51:4165-4176. [PMID: 39060372 DOI: 10.1007/s00259-024-06848-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 07/14/2024] [Indexed: 07/28/2024]
Abstract
PURPOSE The incomplete resection of non-muscle invasive bladder cancer (NMIBC) augments the risk of disease recurrence. Imaging-guided surgery by molecular probes represents a pivotal strategy for mitigating postoperative recurrence. Traditional optical molecular probes, primarily composed of antibodies/peptides targeting tumour cells and fluorescent groups, are challenged by the high heterogeneity of NMIBC cells, leading to inadequate probe sensitivity. We have developed a collagen-adhesive probe (CA-P) to target the collagen within the tumour microenvironment, aiming to address the issue of insufficient imaging sensitivity. METHODS The distribution characteristics of collagen in animal bladder cancer models and human bladder cancer tissues were explored. The synthesis and properties of CA-P were validated. In animal models, the imaging performance of CA-P was tested and compared with our previously reported near-infrared probe PLSWT7-DMI. The clinical translational potential of CA-P was assessed using human ex vivo bladder tissues. RESULTS The distribution of collagen on the surface of tumour cells is distinct from its expression in normal urothelium. In vitro studies have demonstrated the ability of the CA-P to undergo a "sol-gel" transition upon interaction with collagen. In animal models and human ex vivo bladder specimens, CA-P exhibits superior imaging performance compared to PLSWT7-DMI. The sensitivity of this probe is 94.1%, with a specificity of 81%. CONCLUSION CA-P demonstrates the capability to overcome tumour cell heterogeneity and enhance imaging sensitivity, exhibiting favorable imaging outcomes in preclinical models. These findings provide a theoretical basis for the application of CA-P in intraoperative navigation for NMIBC.
Collapse
Affiliation(s)
- Pengyu Guo
- Department of Urology, Harbin Medical University Cancer Hospital, Harbin, 150081, China
- NHC and CAMS Key Laboratory of Molecular Probe and Targeted Theranostics, Harbin Medical University, Harbin, 150001, China
- Heilongjiang Key Laboratory of Scientific Research in Urology, Harbin, 150001, China
- CAS Key Laboratory of Molecular Imaging, Beijing Key Laboratory of Molecular Imaging, State Key Laboratory of Management and Control for Complex Systems, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China
| | - Ao Qi
- NHC and CAMS Key Laboratory of Molecular Probe and Targeted Theranostics, Harbin Medical University, Harbin, 150001, China
- Heilongjiang Key Laboratory of Scientific Research in Urology, Harbin, 150001, China
- Department of Urology, the First Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
| | - Wenting Shang
- CAS Key Laboratory of Molecular Imaging, Beijing Key Laboratory of Molecular Imaging, State Key Laboratory of Management and Control for Complex Systems, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China
| | - Zehao Cai
- Department of Urology, Harbin Medical University Cancer Hospital, Harbin, 150081, China
- NHC and CAMS Key Laboratory of Molecular Probe and Targeted Theranostics, Harbin Medical University, Harbin, 150001, China
- Heilongjiang Key Laboratory of Scientific Research in Urology, Harbin, 150001, China
| | - Sheng Hu
- Department of Urology, Harbin Medical University Cancer Hospital, Harbin, 150081, China
- NHC and CAMS Key Laboratory of Molecular Probe and Targeted Theranostics, Harbin Medical University, Harbin, 150001, China
- Heilongjiang Key Laboratory of Scientific Research in Urology, Harbin, 150001, China
| | - Peng Dai
- Department of Urology, Harbin Medical University Cancer Hospital, Harbin, 150081, China
- NHC and CAMS Key Laboratory of Molecular Probe and Targeted Theranostics, Harbin Medical University, Harbin, 150001, China
- Heilongjiang Key Laboratory of Scientific Research in Urology, Harbin, 150001, China
| | - Ziyin Chen
- Department of Urology, Harbin Medical University Cancer Hospital, Harbin, 150081, China
- NHC and CAMS Key Laboratory of Molecular Probe and Targeted Theranostics, Harbin Medical University, Harbin, 150001, China
- Heilongjiang Key Laboratory of Scientific Research in Urology, Harbin, 150001, China
| | - Mingwei Sun
- Department of Urology, Harbin Medical University Cancer Hospital, Harbin, 150081, China
- NHC and CAMS Key Laboratory of Molecular Probe and Targeted Theranostics, Harbin Medical University, Harbin, 150001, China
- Heilongjiang Key Laboratory of Scientific Research in Urology, Harbin, 150001, China
| | - Zixing Wang
- Department of Urology, Harbin Medical University Cancer Hospital, Harbin, 150081, China
- NHC and CAMS Key Laboratory of Molecular Probe and Targeted Theranostics, Harbin Medical University, Harbin, 150001, China
- Heilongjiang Key Laboratory of Scientific Research in Urology, Harbin, 150001, China
| | - Zhichao Tong
- Department of Urology, Harbin Medical University Cancer Hospital, Harbin, 150081, China
- NHC and CAMS Key Laboratory of Molecular Probe and Targeted Theranostics, Harbin Medical University, Harbin, 150001, China
- Heilongjiang Key Laboratory of Scientific Research in Urology, Harbin, 150001, China
- Department of Urology, the First Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
| | - Dayong Hou
- Department of Urology, Harbin Medical University Cancer Hospital, Harbin, 150081, China
- NHC and CAMS Key Laboratory of Molecular Probe and Targeted Theranostics, Harbin Medical University, Harbin, 150001, China
- Heilongjiang Key Laboratory of Scientific Research in Urology, Harbin, 150001, China
| | - Ziqi Wang
- Department of Urology, Harbin Medical University Cancer Hospital, Harbin, 150081, China.
- NHC and CAMS Key Laboratory of Molecular Probe and Targeted Theranostics, Harbin Medical University, Harbin, 150001, China.
- Heilongjiang Key Laboratory of Scientific Research in Urology, Harbin, 150001, China.
| | - Yang Du
- CAS Key Laboratory of Molecular Imaging, Beijing Key Laboratory of Molecular Imaging, State Key Laboratory of Management and Control for Complex Systems, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China.
| | - Jie Tian
- CAS Key Laboratory of Molecular Imaging, Beijing Key Laboratory of Molecular Imaging, State Key Laboratory of Management and Control for Complex Systems, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China.
| | - Wanhai Xu
- Department of Urology, Harbin Medical University Cancer Hospital, Harbin, 150081, China.
- NHC and CAMS Key Laboratory of Molecular Probe and Targeted Theranostics, Harbin Medical University, Harbin, 150001, China.
- Heilongjiang Key Laboratory of Scientific Research in Urology, Harbin, 150001, China.
| |
Collapse
|
2
|
Han H, Santos HA. Nano- and Micro-Platforms in Therapeutic Proteins Delivery for Cancer Therapy: Materials and Strategies. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2409522. [PMID: 39263818 DOI: 10.1002/adma.202409522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 08/26/2024] [Indexed: 09/13/2024]
Abstract
Proteins have emerged as promising therapeutics in oncology due to their great specificity. Many treatment strategies are developed based on protein biologics, such as immunotherapy, starvation therapy, and pro-apoptosis therapy, while some protein biologics have entered the clinics. However, clinical translation is severely impeded by instability, short circulation time, poor transmembrane transportation, and immunogenicity. Micro- and nano-particles-based drug delivery platforms are designed to solve those problems and enhance protein therapeutic efficacy. This review first summarizes the different types of therapeutic proteins in clinical and research stages, highlighting their administration limitations. Next, various types of micro- and nano-particles are described to demonstrate how they can overcome those limitations. The potential of micro- and nano-particles are then explored to enhance the therapeutic efficacy of proteins by combinational therapies. Finally, the challenges and future directions of protein biologics carriers are discussed for optimized protein delivery.
Collapse
Affiliation(s)
- Huijie Han
- Department of Biomaterials and Biomedical Technology, The Personalized Medicine Research Institute (PRECISION), University Medical Center Groningen (UMCG), University of Groningen, Ant. Deusinglaan 1, Groningen, 9713 AV, The Netherlands
| | - Hélder A Santos
- Department of Biomaterials and Biomedical Technology, The Personalized Medicine Research Institute (PRECISION), University Medical Center Groningen (UMCG), University of Groningen, Ant. Deusinglaan 1, Groningen, 9713 AV, The Netherlands
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki, FI-00014, Finland
| |
Collapse
|
3
|
Wang B, Hu S, Teng Y, Chen J, Wang H, Xu Y, Wang K, Xu J, Cheng Y, Gao X. Current advance of nanotechnology in diagnosis and treatment for malignant tumors. Signal Transduct Target Ther 2024; 9:200. [PMID: 39128942 PMCID: PMC11323968 DOI: 10.1038/s41392-024-01889-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 05/04/2024] [Accepted: 06/02/2024] [Indexed: 08/13/2024] Open
Abstract
Cancer remains a significant risk to human health. Nanomedicine is a new multidisciplinary field that is garnering a lot of interest and investigation. Nanomedicine shows great potential for cancer diagnosis and treatment. Specifically engineered nanoparticles can be employed as contrast agents in cancer diagnostics to enable high sensitivity and high-resolution tumor detection by imaging examinations. Novel approaches for tumor labeling and detection are also made possible by the use of nanoprobes and nanobiosensors. The achievement of targeted medication delivery in cancer therapy can be accomplished through the rational design and manufacture of nanodrug carriers. Nanoparticles have the capability to effectively transport medications or gene fragments to tumor tissues via passive or active targeting processes, thus enhancing treatment outcomes while minimizing harm to healthy tissues. Simultaneously, nanoparticles can be employed in the context of radiation sensitization and photothermal therapy to enhance the therapeutic efficacy of malignant tumors. This review presents a literature overview and summary of how nanotechnology is used in the diagnosis and treatment of malignant tumors. According to oncological diseases originating from different systems of the body and combining the pathophysiological features of cancers at different sites, we review the most recent developments in nanotechnology applications. Finally, we briefly discuss the prospects and challenges of nanotechnology in cancer.
Collapse
Affiliation(s)
- Bilan Wang
- Department of Pharmacy, Evidence-based Pharmacy Center, Children's Medicine Key Laboratory of Sichuan Province, West China Second University Hospital, Sichuan University, Chengdu, 610041, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, 610041, P.R. China
| | - Shiqi Hu
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, 610041, P.R. China
- Department of Gynecology and Obstetrics, Development and Related Diseases of Women and Children Key Laboratory of Sichuan Province, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, 610041, P.R. China
| | - Yan Teng
- Institute of Laboratory Medicine, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, P.R. China
| | - Junli Chen
- West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, 610041, China
| | - Haoyuan Wang
- Department of Neurosurgery and Institute of Neurosurgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Yezhen Xu
- Department of Neurosurgery and Institute of Neurosurgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Kaiyu Wang
- Department of Neurosurgery and Institute of Neurosurgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Jianguo Xu
- Department of Neurosurgery and Institute of Neurosurgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Yongzhong Cheng
- Department of Neurosurgery and Institute of Neurosurgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China.
| | - Xiang Gao
- Department of Neurosurgery and Institute of Neurosurgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China.
| |
Collapse
|
4
|
Li Y, Ren W, Li S, Zheng J, Gu H, Gao L, Zhi K. The clinicopathological significance and prognostic value of PD-L1 in oral squamous cell carcinoma. Oral Dis 2024. [PMID: 39092614 DOI: 10.1111/odi.15096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 05/22/2024] [Accepted: 07/23/2024] [Indexed: 08/04/2024]
Abstract
OBJECTIVE To investigate the relationship between the expression of PD-L1 in OSCC and the clinicopathological features and prognosis of patients. METHODS We retrospectively analyzed the clinicopathological data and prognosis of 381 OSCC patients. Immunohistochemical staining was performed on OSCC tumor specimens, and the expression level of PD-L1 was evaluated according to the combined positive score (CPS). Kaplan-Meier analysis was used to identify the effect of PD-L1 expression and clinicopathological features on the prognosis of patients. Univariate and multivariate Cox regression analyses were conducted to determine the hazard factors affecting the prognosis of patients. RESULTS PD-L1 overexpression was significantly associated with cervical lymph node metastasis (p = 0.018), worse clinical stage (p = 0.022), worse tumor differentiation (p = 0.046), and worse depth of invasion (DOI) (p = 0.003). Poorer clinical stage and degree of tumor differentiation were significantly associated with poorer OS and DSS in patients. PD-L1 expression was not associated with prognosis in patients with OSCC. CONCLUSIONS High PD-L1 expression was significantly associated with higher tumor malignancy in OSCC patients. Poorer clinical stage and degree of tumor differentiation were associated with poor prognosis in OSCC patients. Our results may help clinicians develop more appropriate individualized treatment strategies for their patients, thus improving their outcomes.
Collapse
Affiliation(s)
- Yizhan Li
- Department of Oral and Maxillofacial Reconstruction, The Affiliated Hospital of Qingdao University, Qingdao, China
- School of Stomatology, Qingdao University, Qingdao, China
- Key Lab of Oral Clinical Medicine, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Wenhao Ren
- Department of Oral and Maxillofacial Reconstruction, The Affiliated Hospital of Qingdao University, Qingdao, China
- Key Lab of Oral Clinical Medicine, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Shaoming Li
- Department of Oral and Maxillofacial Reconstruction, The Affiliated Hospital of Qingdao University, Qingdao, China
- School of Stomatology, Qingdao University, Qingdao, China
- Key Lab of Oral Clinical Medicine, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Jingjing Zheng
- Department of Stomatology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Haiyan Gu
- Department of Pathology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Ling Gao
- Department of Oral and Maxillofacial Reconstruction, The Affiliated Hospital of Qingdao University, Qingdao, China
- School of Stomatology, Qingdao University, Qingdao, China
- Key Lab of Oral Clinical Medicine, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Keqian Zhi
- Department of Oral and Maxillofacial Reconstruction, The Affiliated Hospital of Qingdao University, Qingdao, China
- School of Stomatology, Qingdao University, Qingdao, China
- Key Lab of Oral Clinical Medicine, The Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
5
|
Yi L, Jiang X, Zhou Z, Xiong W, Xue F, Liu Y, Xu H, Fan B, Li Y, Shen J. A Hybrid Nanoadjuvant Simultaneously Depresses PD-L1/TGF-β1 and Activates cGAS-STING Pathway to Overcome Radio-Immunotherapy Resistance. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2304328. [PMID: 38229577 DOI: 10.1002/adma.202304328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 12/10/2023] [Indexed: 01/18/2024]
Abstract
Currently, certain cancer patients exhibit resistance to radiotherapy due to reduced DNA damage under hypoxic conditions and acquired immune tolerance triggered by transforming growth factor-β1 (TGF-β1) and membrane-localized programmed death ligand-1 (PD-L1). Meanwhile, cytoplasm-distributed PD-L1 induces radiotherapy resistance through accelerating DNA damage repair (DDR). However, the disability of clinically used PD-L1 antibodies in inhibiting cytoplasm-distributed PD-L1 limits their effectiveness. Therefore, a nanoadjuvant is developed to sensitize cancer to radiotherapy via multi-level immunity activation through depressing PD-L1 and TGF-β1 by triphenylphosphine-derived metformin, and activating the cGAS-STING pathway by generating Mn2+ from MnO2 and producing more dsDNA via reversing tumor hypoxia and impairing DDR. Thus, Tpp-Met@MnO2@Alb effectively enhances the efficiency of radiotherapy to inhibit the progression of irradiated local and abscopal tumors and tumor lung metastases, offering a long-term memory of antitumor immunity without discernible side effects. Overall, Tpp-Met@MnO2@Alb has the potential to be clinically applied for overcoming radio-immunotherapy resistance.
Collapse
Affiliation(s)
- Lei Yi
- Department of Urology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Xin Jiang
- Department of Urology, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Zaigang Zhou
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Wei Xiong
- Department of Urology, The Third Xiangya Hospital, Central South University, Changsha, 410013, China
| | - Fei Xue
- Department of Radiotherapy, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Yu Liu
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Haozhe Xu
- Department of Urology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Bo Fan
- Department of Urology, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Yuan Li
- Department of Urology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Jianliang Shen
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
- Zhejiang Engineering Research Center for Tissue Repair Materials, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang, 325001, China
| |
Collapse
|
6
|
Sztandera K, Rodríguez-García JL, Ceña V. In Vivo Applications of Dendrimers: A Step toward the Future of Nanoparticle-Mediated Therapeutics. Pharmaceutics 2024; 16:439. [PMID: 38675101 PMCID: PMC11053723 DOI: 10.3390/pharmaceutics16040439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 03/17/2024] [Accepted: 03/20/2024] [Indexed: 04/28/2024] Open
Abstract
Over the last few years, the development of nanotechnology has allowed for the synthesis of many different nanostructures with controlled sizes, shapes, and chemical properties, with dendrimers being the best-characterized of them. In this review, we present a succinct view of the structure and the synthetic procedures used for dendrimer synthesis, as well as the cellular uptake mechanisms used by these nanoparticles to gain access to the cell. In addition, the manuscript reviews the reported in vivo applications of dendrimers as drug carriers for drugs used in the treatment of cancer, neurodegenerative diseases, infections, and ocular diseases. The dendrimer-based formulations that have reached different phases of clinical trials, including safety and pharmacokinetic studies, or as delivery agents for therapeutic compounds are also presented. The continuous development of nanotechnology which makes it possible to produce increasingly sophisticated and complex dendrimers indicates that this fascinating family of nanoparticles has a wide potential in the pharmaceutical industry, especially for applications in drug delivery systems, and that the number of dendrimer-based compounds entering clinical trials will markedly increase during the coming years.
Collapse
Affiliation(s)
- Krzysztof Sztandera
- Unidad Asociada Neurodeath, Instituto de Nanociencia Molecular, Universidad de Castilla-La Mancha, 02006 Albacete, Spain;
- Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas, Instituto de Salud Carlos III, 28029 Madrid, Spain
| | | | - Valentín Ceña
- Unidad Asociada Neurodeath, Instituto de Nanociencia Molecular, Universidad de Castilla-La Mancha, 02006 Albacete, Spain;
- Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas, Instituto de Salud Carlos III, 28029 Madrid, Spain
| |
Collapse
|
7
|
Chen Z, Wang X, Zhao N, Chen H, Guo G. Advancements in pH-responsive nanocarriers: enhancing drug delivery for tumor therapy. Expert Opin Drug Deliv 2023; 20:1623-1642. [PMID: 38059646 DOI: 10.1080/17425247.2023.2292678] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 12/05/2023] [Indexed: 12/08/2023]
Abstract
INTRODUCTION Tumors pose a significant global economic and health burden, with conventional cancer treatments lacking tumor specificity, leading to limited efficiency and undesirable side effects. Targeted tumor therapy is imminent. Tumor cells produce lactate and hydrogen ions (H+) by Warburg effect, forming an acidic tumor microenvironment (TME), which can be employed to design targeted tumor therapy. Recently, progress in nanotechnology has led to the development of pH-responsive nanocarriers, which have gathered significant attention. Under acidic tumor conditions, they exhibit targeted accumulation within tumor sites and controlled release profiles of therapeutic reagents, enabling precise tumor therapy. AREAS COVERED This review comprehensively summarize the principles underlying pH-responsive features, discussing various types of pH-responsive nanocarriers, their advantages, and limitations. Innovative therapeutic drugs are also examined, followed by an exploration of recent advancements in applying various pH-responsive nanocarriers as delivery systems for enhanced tumor therapy. EXPERT OPINIONS pH-responsive nanocarriers have garnered significant attention for their capability to achieve targeted accumulation of therapeutic agents at tumor sites and controlled drug delivery profiles, ultimately increasing the efficiency of tumor eradication. It is anticipated that the employment of pH-responsive nanocarriers will elevate the effectiveness and safety of tumor therapy, contributing to improved overall outcomes.
Collapse
Affiliation(s)
- Zhouyun Chen
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, China
| | - Xiaoxiao Wang
- West China School of Stomatology, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Na Zhao
- School of Pharmacy, Shihezi University, Shihezi, China
| | - Haifeng Chen
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, China
| | - Gang Guo
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|