1
|
Shao B, Lu TC, Lu MH, Chen YT, Wu TC, Peng WC, Ko TY, Chen JY, Sun B, Chen CY, Liu R, Hsu FC, Lai YC. Efficient Permeable Monolithic Hybrid Tribo-Piezo-Electromagnetic Nanogenerator Based on Topological-Insulator-Composite. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2408936. [PMID: 39221549 DOI: 10.1002/adma.202408936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 08/21/2024] [Indexed: 09/04/2024]
Abstract
Escalating energy demands of self-independent on-skin/wearable electronics impose challenges on corresponding power sources to offer greater power density, permeability, and stretchability. Here, a high-efficient breathable and stretchable monolithic hybrid triboelectric-piezoelectric-electromagnetic nanogenerator-based electronic skin (TPEG-skin) is reported via sandwiching a liquid metal mesh with two-layer topological insulator-piezoelectric polymer composite nanofibers. TPEG-skin concurrently extracts biomechanical energy (from body motions) and electromagnetic radiations (from adjacent appliances), operating as epidermal power sources and whole-body self-powered sensors. Topological insulators with conductive surface states supply notably enhanced triboelectric and piezoelectric effects, endowing TPEG-skin with a 288 V output voltage (10 N, 4 Hz), ∼3 times that of state-of-the-art devices. Liquid metal meshes serve as breathable electrodes and extract ambient electromagnetic pollution (±60 V, ±1.6 µA cm-2). TPEG-skin implements self-powered physiological and body motion monitoring and system-level human-machine interactions. This study provides compatible energy strategies for on-skin/wearable electronics with high power density, monolithic device integration, and multifunctionality.
Collapse
Affiliation(s)
- Beibei Shao
- Soochow Institute of Energy and Material Innovations, Key Laboratory for Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, Institute of Functional Nano & Soft Materials (FUNSOM) and College of Energy, Soochow University, Suzhou, 215006, P. R. China
- Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, Suzhou, 215123, P. R. China
| | - Tzu-Ching Lu
- Department of Materials Science and Engineering, National Chung Hsing University, Taichung, 40227, Taiwan
- Department of Materials Science and Engineering, National United University, Miaoli, 360, Taiwan
| | - Ming-Han Lu
- Department of Materials Science and Engineering, National Chung Hsing University, Taichung, 40227, Taiwan
| | - Yi-Ting Chen
- Department of Materials Science and Engineering, National Chung Hsing University, Taichung, 40227, Taiwan
| | - Tai-Chen Wu
- Department of Materials Science and Engineering, National Chung Hsing University, Taichung, 40227, Taiwan
| | - Wei-Chen Peng
- Department of Materials Science and Engineering, National Chung Hsing University, Taichung, 40227, Taiwan
| | - Tien-Yu Ko
- Department of Materials Science and Engineering, National Chung Hsing University, Taichung, 40227, Taiwan
| | - Jiann-Yeu Chen
- Innovation and Development Center of Sustainable Agriculture, i-Center for Advanced Science and Technology, National Chung Hsing University, Taichung, 40227, Taiwan
| | - Baoquan Sun
- Soochow Institute of Energy and Material Innovations, Key Laboratory for Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, Institute of Functional Nano & Soft Materials (FUNSOM) and College of Energy, Soochow University, Suzhou, 215006, P. R. China
- Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, Suzhou, 215123, P. R. China
| | - Chih-Yen Chen
- Department of Electrophysics, National Yang Ming Chiao Tung University, Hsinchu, 30010, Taiwan
| | - Ruiyuan Liu
- Soochow Institute of Energy and Material Innovations, Key Laboratory for Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, Institute of Functional Nano & Soft Materials (FUNSOM) and College of Energy, Soochow University, Suzhou, 215006, P. R. China
- Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, Suzhou, 215123, P. R. China
| | - Fang-Chi Hsu
- Department of Materials Science and Engineering, National United University, Miaoli, 360, Taiwan
| | - Ying-Chih Lai
- Department of Materials Science and Engineering, National Chung Hsing University, Taichung, 40227, Taiwan
- Innovation and Development Center of Sustainable Agriculture, i-Center for Advanced Science and Technology, National Chung Hsing University, Taichung, 40227, Taiwan
- Department of Physics, National Chung Hsing University, Taichung, 40227, Taiwan
| |
Collapse
|
2
|
Xia H, Zhou W, Qu X, Wang W, Wang X, Qiao R, Zhang Y, Wu X, Yang C, Ding B, Hu LY, Ran Y, Yu K, Hu S, Li JF, Cheng HM, Qiu H, Yin J, Guo W, Qiu L. Electricity generated by upstream proton diffusion in two-dimensional nanochannels. NATURE NANOTECHNOLOGY 2024; 19:1316-1322. [PMID: 39009756 DOI: 10.1038/s41565-024-01691-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Accepted: 05/06/2024] [Indexed: 07/17/2024]
Abstract
The movement of ions along the pressure-driven water flow in narrow channels, known as downstream ionic transport, has been observed since 1859 to induce a streaming potential and has enabled the creation of various hydrovoltaic devices. In contrast, here we demonstrate that proton movement opposing the water flow in two-dimensional nanochannels of MXene/poly(vinyl alcohol) films, termed upstream proton diffusion, can also generate electricity. The infiltrated water into the channel causes the dissociation of protons from functional groups on the channel surface, resulting in a high proton concentration inside the channel that drives the upstream proton diffusion. Combined with the particularly sluggish water diffusion in the channels, a small water droplet of 5 µl can generate a voltage of ~400 mV for over 330 min. Benefiting from the ultrathin and flexible nature of the film, a wearable device is built for collecting energy from human skin sweat.
Collapse
Affiliation(s)
- Heyi Xia
- Shenzhen Geim Graphene Center, Institute of Materials Research (IMR), Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, People's Republic of China
- Department of Materials Engineering, KU Leuven, Leuven, Belgium
| | - Wanqi Zhou
- State Key Laboratory of Mechanics and Control for Aerospace Structures, Key Laboratory for Intelligent Nano Materials and Devices of the Ministry of Education, Institute for Frontier Science, Nanjing University of Aeronautics and Astronautics, Nanjing, People's Republic of China
| | - Xinyue Qu
- Shenzhen Geim Graphene Center, Institute of Materials Research (IMR), Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, People's Republic of China
| | - Wenbo Wang
- Shenzhen Geim Graphene Center, Institute of Materials Research (IMR), Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, People's Republic of China
| | - Xiao Wang
- State Key Laboratory of Mechanics and Control for Aerospace Structures, Key Laboratory for Intelligent Nano Materials and Devices of the Ministry of Education, Institute for Frontier Science, Nanjing University of Aeronautics and Astronautics, Nanjing, People's Republic of China
| | - Ruixi Qiao
- State Key Laboratory of Mechanics and Control for Aerospace Structures, Key Laboratory for Intelligent Nano Materials and Devices of the Ministry of Education, Institute for Frontier Science, Nanjing University of Aeronautics and Astronautics, Nanjing, People's Republic of China
| | - Yongkang Zhang
- Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Institute of Photonics Technology, Jinan University, Guangzhou, People's Republic of China
| | - Xin Wu
- Shenzhen Geim Graphene Center, Institute of Materials Research (IMR), Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, People's Republic of China
| | - Chuang Yang
- Shenzhen Geim Graphene Center, Institute of Materials Research (IMR), Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, People's Republic of China
| | - Baofu Ding
- Shenzhen Key Lab of Energy Materials for Carbon Neutrality, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, People's Republic of China
| | - Ling-Yun Hu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, People's Republic of China
| | - Yang Ran
- Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Institute of Photonics Technology, Jinan University, Guangzhou, People's Republic of China
| | - Kuang Yu
- Shenzhen Geim Graphene Center, Institute of Materials Research (IMR), Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, People's Republic of China
| | - Sheng Hu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, People's Republic of China
| | - Jian-Feng Li
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, People's Republic of China
| | - Hui-Ming Cheng
- Shenzhen Key Lab of Energy Materials for Carbon Neutrality, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, People's Republic of China
- Faculty of Materials Science and Energy Engineering, Shenzhen University of Advanced Technology, Shenzhen, People's Republic of China
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, People's Republic of China
| | - Hu Qiu
- State Key Laboratory of Mechanics and Control for Aerospace Structures, Key Laboratory for Intelligent Nano Materials and Devices of the Ministry of Education, Institute for Frontier Science, Nanjing University of Aeronautics and Astronautics, Nanjing, People's Republic of China.
| | - Jun Yin
- State Key Laboratory of Mechanics and Control for Aerospace Structures, Key Laboratory for Intelligent Nano Materials and Devices of the Ministry of Education, Institute for Frontier Science, Nanjing University of Aeronautics and Astronautics, Nanjing, People's Republic of China.
| | - Wanlin Guo
- State Key Laboratory of Mechanics and Control for Aerospace Structures, Key Laboratory for Intelligent Nano Materials and Devices of the Ministry of Education, Institute for Frontier Science, Nanjing University of Aeronautics and Astronautics, Nanjing, People's Republic of China.
| | - Ling Qiu
- Shenzhen Geim Graphene Center, Institute of Materials Research (IMR), Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, People's Republic of China.
| |
Collapse
|
3
|
Jang S, Shah SA, Lee J, Cho S, Kam D, Ra Y, Lee D, Khawar MR, Yoo D, Ahmad A, Choi D. Beyond Metallic Electrode: Spontaneous Formation of Fluidic Electrodes from Operational Liquid in Highly Functional Droplet-Based Electricity Generator. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2403090. [PMID: 38695508 DOI: 10.1002/adma.202403090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/14/2024] [Indexed: 07/03/2024]
Abstract
The droplet-based electricity generator (DEG) has facilitated efficient droplet energy harvesting, yet diversifying its applications necessitates the incorporation of various to the DEG. This study first proposes a methodology for advancing the DEG by substituting its conventional metallic electrode with electrically conductive water electrode (WE), which is spontaneously generated during the operation of the DEG with operating liquid. Due to the inherent conductive and fluidic nature of water, the introduction of the WE maintains the electrical output performance of the DEG while imparting functionalities such as high transparency and flexibility. So, the resultant WE applied DEG (WE-DEG) exhibits high optical transmittance (≈99%) and retains its electricity-generating capability under varying deformations, including bending and stretching. This innovation expands the versatility of the DEG, and especially, a sun-raindrop dual-mode energy harvester is demonstrated by hybridizing the WE-DEG and photovoltaic (PV) cell. This hybridization effectively addresses the weather-dependent limitations inherent in each energy harvester and enhances the temperature-induced inefficiencies typically observed in PV cells, thereby enhancing the overall efficiency. The introduction of the WE will be poised to catalyze new developments in DEG research, paving the way for broader applicability and enhanced efficiency in droplet energy harvesting technologies.
Collapse
Affiliation(s)
- Sunmin Jang
- Department of Mechanical Engineering (Integrated Engineering Program), Kyung Hee University, 1732, Deogyeong-daero, Giheung-gu, Yongin-si, Gyeonggi-do, 17104, Republic of Korea
| | - Soban Ali Shah
- Department of Mechanical Engineering (Integrated Engineering Program), Kyung Hee University, 1732, Deogyeong-daero, Giheung-gu, Yongin-si, Gyeonggi-do, 17104, Republic of Korea
| | - Jaehyun Lee
- Department of Mechanical Engineering (Integrated Engineering Program), Kyung Hee University, 1732, Deogyeong-daero, Giheung-gu, Yongin-si, Gyeonggi-do, 17104, Republic of Korea
| | - Sumin Cho
- Department of Mechanical Engineering (Integrated Engineering Program), Kyung Hee University, 1732, Deogyeong-daero, Giheung-gu, Yongin-si, Gyeonggi-do, 17104, Republic of Korea
| | - Dongik Kam
- Department of Mechanical Engineering (Integrated Engineering Program), Kyung Hee University, 1732, Deogyeong-daero, Giheung-gu, Yongin-si, Gyeonggi-do, 17104, Republic of Korea
| | - Yoonsang Ra
- Department of Mechanical Engineering (Integrated Engineering Program), Kyung Hee University, 1732, Deogyeong-daero, Giheung-gu, Yongin-si, Gyeonggi-do, 17104, Republic of Korea
| | - Donghan Lee
- Department of Mechanical Engineering (Integrated Engineering Program), Kyung Hee University, 1732, Deogyeong-daero, Giheung-gu, Yongin-si, Gyeonggi-do, 17104, Republic of Korea
| | - Muhammad Ramzan Khawar
- Department of Mechanical Engineering (Integrated Engineering Program), Kyung Hee University, 1732, Deogyeong-daero, Giheung-gu, Yongin-si, Gyeonggi-do, 17104, Republic of Korea
| | - Donghyeon Yoo
- Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Awais Ahmad
- Department of Chemistry, University of Lahore, Lahore, 54590, Pakistan
| | - Dongwhi Choi
- Department of Mechanical Engineering (Integrated Engineering Program), Kyung Hee University, 1732, Deogyeong-daero, Giheung-gu, Yongin-si, Gyeonggi-do, 17104, Republic of Korea
| |
Collapse
|
4
|
Wang C, Seo E, Park J. Surface-dominant micro/nanofluidics for efficient green energy conversion. BIOMICROFLUIDICS 2024; 18:011503. [PMID: 38370510 PMCID: PMC10869172 DOI: 10.1063/5.0190934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Accepted: 01/20/2024] [Indexed: 02/20/2024]
Abstract
Green energy conversion in aqueous systems has attracted considerable interest owing to the sustainable clean energy demand resulting from population and economic growth and urbanization, as well as the significant potential energy from water resources and other regenerative sources coupled with fluids. In particular, molecular motion based on intrinsic micro/nanofluidic phenomena at the liquid-solid interface (LSI) is crucial for efficient and sustainable green energy conversion. The electrical double layer is the main factor affecting transport, interaction between molecules and surfaces, non-uniform ion distribution, synthesis, stimulated reactions, and motion by external renewable resources in both closed nanoconfinement and open surfaces. In this review, we summarize the state-of-the-art progress in physical and chemical reaction-based green energy conversion in LSI, including nanoscale fabrication, key mechanisms, applications, and limitations for practical implementation. The prospects for resolving critical challenges in this field and inspiring other promising research areas in the infancy stage (studying chemical and biological dynamics at the single-molecule level and nanofluidic neuromorphic computing) are also discussed.
Collapse
Affiliation(s)
- Cong Wang
- School of Mechanical Engineering and Electronic Information, China University of Geosciences (Wuhan), 388 Lumo Road, Wuhan 430074, China
| | - Eunseok Seo
- Department of Mechanical Engineering, Sogang University, 35 Baekbeom-ro (Sinsu-dong), Mapo-gu, Seoul 04107, Republic of Korea
| | - Jungyul Park
- Department of Mechanical Engineering, Sogang University, 35 Baekbeom-ro (Sinsu-dong), Mapo-gu, Seoul 04107, Republic of Korea
| |
Collapse
|