1
|
Han J, Sun J, Chen S, Zhang S, Qi L, Husile A, Guan J. Structure-Activity Relationships in Oxygen Electrocatalysis. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024:e2408139. [PMID: 39344559 DOI: 10.1002/adma.202408139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 09/03/2024] [Indexed: 10/01/2024]
Abstract
Oxygen electrocatalysis, as the pivotal circle of many green energy technologies, sets off a worldwide research boom in full swing, while its large kinetic obstacles require remarkable catalysts to break through. Here, based on summarizing reaction mechanisms and in situ characterizations, the structure-activity relationships of oxygen electrocatalysts are emphatically overviewed, including the influence of geometric morphology and chemical structures on the electrocatalytic performances. Subsequently, experimental/theoretical research is combined with device applications to comprehensively summarize the cutting-edge oxygen electrocatalysts according to various material categories. Finally, future challenges are forecasted from the perspective of catalyst development and device applications, favoring researchers to promote the industrialization of oxygen electrocatalysis at an early date.
Collapse
Affiliation(s)
- Jingyi Han
- Institute of Physical Chemistry, College of Chemistry, Jilin University, 2519 Jiefang Road, Changchun, 130021, P. R. China
| | - Jingru Sun
- Institute of Physical Chemistry, College of Chemistry, Jilin University, 2519 Jiefang Road, Changchun, 130021, P. R. China
| | - Siyu Chen
- Institute of Physical Chemistry, College of Chemistry, Jilin University, 2519 Jiefang Road, Changchun, 130021, P. R. China
| | - Siying Zhang
- Institute of Physical Chemistry, College of Chemistry, Jilin University, 2519 Jiefang Road, Changchun, 130021, P. R. China
| | - Luoluo Qi
- Institute of Physical Chemistry, College of Chemistry, Jilin University, 2519 Jiefang Road, Changchun, 130021, P. R. China
| | - Anaer Husile
- Institute of Physical Chemistry, College of Chemistry, Jilin University, 2519 Jiefang Road, Changchun, 130021, P. R. China
| | - Jingqi Guan
- Institute of Physical Chemistry, College of Chemistry, Jilin University, 2519 Jiefang Road, Changchun, 130021, P. R. China
| |
Collapse
|
2
|
Li Y, Huang A, Zhou L, Li B, Zheng M, Zhuang Z, Chen C, Chen C, Kang F, Lv R. Main-group element-boosted oxygen electrocatalysis of Cu-N-C sites for zinc-air battery with cycling over 5000 h. Nat Commun 2024; 15:8365. [PMID: 39333097 PMCID: PMC11436649 DOI: 10.1038/s41467-024-52494-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 09/10/2024] [Indexed: 09/29/2024] Open
Abstract
Developing highly active and durable air cathode catalysts is crucial yet challenging for rechargeable zinc-air batteries. Herein, a size-adjustable, flexible, and self-standing carbon membrane catalyst encapsulating adjacent Cu/Na dual-atom sites is prepared using a solution blow spinning technique combined with a pyrolysis strategy. The intrinsic activity of the Cu-N4 site is boosted by the neighboring Na-containing functional group, which enhances O2 adsorption and optimizes the rate-determining step of O2 activation (*O2 → *OOH) during the oxygen reduction reaction process. Meanwhile, the Cu-N4 sites are encapsulated within carbon nanofibers and anchored by the carbon matrix to form a C2-Cu-N4 configuration, thereby reinforcing the stability of the Cu centers. Moreover, the introduction of Na-containing functional groups on the carbon atoms significantly reduces the positive charge on their outer shell C atoms, rendering the carbon skeletons less susceptible to corrosion by oxygen species and further preventing the dissolution of Cu centers. Under these multi-type regulations, the zinc-air battery with Cu/Na-carbon membrane catalyst as the air cathode demonstrates long-term discharge/charge cycle stability of over 5000 h. This considerable stability improvement represents a critical step towards developing Cu-N4 active sites modified with the neighboring main-group metal-containing functional groups to overcome the durability barriers of zinc-air batteries for future practical applications.
Collapse
Affiliation(s)
- Yifan Li
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing, China
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Canada
| | - Aijian Huang
- Engineering Research Center of Advanced Rare Earth Materials, Department of Chemistry, Tsinghua University, Beijing, China
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA, USA
| | - Lingxi Zhou
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing, China
| | - Bohan Li
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing, China
| | - Muyun Zheng
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing, China
| | - Zewen Zhuang
- College of Materials Science and Engineering, Fuzhou University, Fuzhou, China
| | - Chang Chen
- Engineering Research Center of Advanced Rare Earth Materials, Department of Chemistry, Tsinghua University, Beijing, China.
| | - Chen Chen
- Engineering Research Center of Advanced Rare Earth Materials, Department of Chemistry, Tsinghua University, Beijing, China.
| | - Feiyu Kang
- Key Laboratory of Advanced Materials (MOE), School of Materials Science and Engineering, Tsinghua University, Beijing, China
- Guangdong Provincial Key Laboratory of Thermal Management Engineering and Materials and Institute of Materials Research, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, China
| | - Ruitao Lv
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing, China.
- Key Laboratory of Advanced Materials (MOE), School of Materials Science and Engineering, Tsinghua University, Beijing, China.
| |
Collapse
|
3
|
Fu K, Ma B, Liu J, Zhou M, Xing Y, Wei X, Meng F, Liu J. In situ green architecture of the 3D FeZn-N-C based electrocatalyst for efficient oxygen reduction. Chem Commun (Camb) 2024; 60:10366-10369. [PMID: 39219488 DOI: 10.1039/d4cc02697g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
We prepared a 3D FeZn-N-C based catalyst by green in situ growth of 1D Fe-N-C carbon nanotubes by introducing ferrocyanide ions on the surface of 2D exfoliated MOF-5. The 1D/2D FeZn-N-C based electrocatalyst is conducive to O2 diffusion and ionic/electron transfer, exhibiting an excellent ORR catalytic performance and a peak power density of 294 mW cm-2 for Zn-air batteries.
Collapse
Affiliation(s)
- Kui Fu
- Future Energy Laboratory, School of Materials Science and Engineering, Hefei University of Technology, Hefei 230009, China.
| | - Biao Ma
- Future Energy Laboratory, School of Materials Science and Engineering, Hefei University of Technology, Hefei 230009, China.
| | - Jianling Liu
- Future Energy Laboratory, School of Materials Science and Engineering, Hefei University of Technology, Hefei 230009, China.
| | - Meng Zhou
- Future Energy Laboratory, School of Materials Science and Engineering, Hefei University of Technology, Hefei 230009, China.
| | - Yihai Xing
- Future Energy Laboratory, School of Materials Science and Engineering, Hefei University of Technology, Hefei 230009, China.
| | - Xiangfeng Wei
- Future Energy Laboratory, School of Materials Science and Engineering, Hefei University of Technology, Hefei 230009, China.
| | - Fancheng Meng
- Future Energy Laboratory, School of Materials Science and Engineering, Hefei University of Technology, Hefei 230009, China.
| | - Jiehua Liu
- Future Energy Laboratory, School of Materials Science and Engineering, Hefei University of Technology, Hefei 230009, China.
- Key Laboratory of Advanced Functional Materials and Devices of Anhui Province, Engineering Research Center of High-Performance Copper Alloy Materials and Processing, Ministry of Education, Hefei 230009, China
| |
Collapse
|
4
|
Zhu J, Lu XF, Luan D, Lou XWD. Metal-Organic Frameworks Derived Carbon-Supported Metal Electrocatalysts for Energy-Related Reduction Reactions. Angew Chem Int Ed Engl 2024; 63:e202408846. [PMID: 39031731 DOI: 10.1002/anie.202408846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 06/20/2024] [Accepted: 06/20/2024] [Indexed: 07/22/2024]
Abstract
Electrochemical reduction reactions, as cathodic processes in many energy-related devices, significantly impact the overall efficiency determined mainly by the performance of electrocatalysts. Metal-organic frameworks (MOFs) derived carbon-supported metal materials have become one of star electrocatalysts due to their tunable structure and composition through ligand design and metal screening. However, for different electroreduction reactions, the required active metal species vary in phase component, electronic state, and catalytic center configuration, hence requiring effective customization. From this perspective, this review comprehensively analyzes the structural design principles, metal loading strategies, practical electroreduction performance, and complex catalytic mechanisms, thereby providing insights and guidance for the future rational design of such electroreduction catalysts.
Collapse
Affiliation(s)
- Jiawei Zhu
- Department of Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, 999077, China
- Hong Kong Branch of National Precious Metals Material Engineering Research Center, City University of Hong Kong, Hong Kong, 999077, China
| | - Xue Feng Lu
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350108, China
| | - Deyan Luan
- Department of Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, 999077, China
| | - Xiong Wen David Lou
- Department of Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, 999077, China
| |
Collapse
|
5
|
Gu J, Zhang Y, Shi Y, Jin Y, Chen H, Sun X, Wang Y, Zhan L, Du Z, Yang S, Li M. Heteroatom Immobilization Engineering toward High-Performance Metal Anodes. ACS NANO 2024. [PMID: 39261016 DOI: 10.1021/acsnano.4c08831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/13/2024]
Abstract
Heteroatom immobilization engineering (HAIE) is becoming a forefront approach in materials science and engineering, focusing on the precise control and manipulation of atomic-level interactions within heterogeneous systems. HAIE has emerged as an efficient strategy to fabricate single-atom sites for enhancing the performance of metal-based batteries. Despite the significant progress achieved through HAIE in metal anodes for metal-based batteries, several critical challenges such as metal dendrites, side reactions, and sluggish reaction kinetics are still present. In this review, we delve into the fundamental principles underlying heteroatom immobilization engineering in metal anodes, aiming to elucidate its role in enhancing the electrochemical performance in batteries. We systematically investigate how HAIE facilitates uniform nucleation of metal in anodes, how HAIE inhibits side reactions at the metal anode-electrolyte interface, and the role of HAIE in promoting the desolvation of metal ions and accelerating reaction kinetics within metal-based batteries. Finally, we discuss various strategies for implementing HAIE in electrode materials, such as high-temperature pyrolysis, vacancy reduction, and molten-salt etching and anchoring. These strategies include selecting appropriate heteroatoms, optimizing immobilization methods, and constructing material architectures. They can be utilized to further refine the performance to enhance the capabilities of HAIE and facilitate its widespread application in next-generation metal-based battery technologies.
Collapse
Affiliation(s)
- Jianan Gu
- State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources, School of New Energy, North China Electric Power University, 100096 Beijing, China
| | - Yongzheng Zhang
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, 200237 Shanghai, China
| | - Yu Shi
- School of Materials Science and Engineering, Beihang University, 100191 Beijing, China
| | - Yilong Jin
- State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources, School of New Energy, North China Electric Power University, 100096 Beijing, China
| | - Hao Chen
- School of Materials Science and Engineering, Beihang University, 100191 Beijing, China
| | - Xin Sun
- State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources, School of New Energy, North China Electric Power University, 100096 Beijing, China
| | - Yanhong Wang
- State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources, School of New Energy, North China Electric Power University, 100096 Beijing, China
| | - Liang Zhan
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, 200237 Shanghai, China
| | - Zhiguo Du
- School of Materials Science and Engineering, Beihang University, 100191 Beijing, China
| | - Shubin Yang
- School of Materials Science and Engineering, Beihang University, 100191 Beijing, China
| | - Meicheng Li
- State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources, School of New Energy, North China Electric Power University, 100096 Beijing, China
| |
Collapse
|
6
|
Zong L, Li M, Li P, Fan K, Wang L. Rigid Ligand Confined Synthesis of Carbon Supported Dimeric Fe Sites with High-Performance Oxygen Reduction Reaction Activity for Quasi-Solid-State Rechargeable Zn-Air Batteries. Angew Chem Int Ed Engl 2024:e202413933. [PMID: 39255510 DOI: 10.1002/anie.202413933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 08/31/2024] [Accepted: 09/08/2024] [Indexed: 09/12/2024]
Abstract
Dimeric metal sites (DiMSs) in carbon-based single atom catalysts (SACs) offer distinct advantages in optimizing the adsorption energies of the catalytic intermediates and reaction pathways over single atom sites, which inspires the investigations on the rational design of DiMSs-based SACs and the accurate discernment of catalytic mechanisms. Here, dimeric Fe sites on carbon blacks (DiFe-N/CBs) are prepared using the precursor of metal-organic complex with a controlled structure, and the rigid ligand confinement secures the preservation of dimeric Fe sites during the thermal treatment. DiFe-N/CBs shows excellent electrocatalytic performance for oxygen reduction reaction (ORR) with a high half-wave potential of 0.917 V, and excellent durability with negligible activity decay. Theoretical studies reveal that the dimeric Fe sites have an optimal adsorption of OOH* with the Yeager-type binding, illustrating the advantages of DiMSs over SAs in catalyzing ORR. The rechargeable aqueous and quasi-solid-state Zn-air batteries assembled using DiFe-N/CBs-based air cathodes achieve small voltage gaps after long term charge/discharge test, showing great promises for practical applications. This synthetic strategy serves a novel platform to produce a scope of catalysts incorporating multimeric metal sites, and studies on the catalytic mechanism lay the foundation for establishing cooperative effect for multidentate adsorption reactions.
Collapse
Affiliation(s)
- Lingbo Zong
- International Cooperation United Laboratory of Eco-chemical Engineering and Green Manufacturing, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Mengke Li
- International Cooperation United Laboratory of Eco-chemical Engineering and Green Manufacturing, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Ping Li
- International Cooperation United Laboratory of Eco-chemical Engineering and Green Manufacturing, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Kaicai Fan
- International Cooperation United Laboratory of Eco-chemical Engineering and Green Manufacturing, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Lei Wang
- International Cooperation United Laboratory of Eco-chemical Engineering and Green Manufacturing, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| |
Collapse
|
7
|
Pei Z, Li Y, Fan G, Guo Y, Luan D, Gu X, Lou XWD. Low-Coordinated Conductive ZnCu Metal-Organic Frameworks for Highly Selective H 2O 2 Electrosynthesis. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2403808. [PMID: 38770988 DOI: 10.1002/smll.202403808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Indexed: 05/22/2024]
Abstract
Direct electrosynthesis of hydrogen peroxide (H2O2) with high production rate and high selectivity through the two-electron oxygen reduction reaction (2e-ORR) offers a sustainable alternative to the energy-intensive anthraquinone technology but remains a challenge. Herein, a low-coordinated, 2D conductive Zn/Cu metal-organic framework supported on hollow nanocube structures (ZnCu-MOF (H)) is rationally designed and synthesized. The as-prepared ZnCu-MOF (H) catalyst exhibits substantially boosted electrocatalytic kinetics, enhanced H2O2 selectivity, and ultra-high Faradaic efficiency for 2e-ORR process in both alkaline and neutral conditions. Electrochemical measurements, operando/quasi in situ spectroscopy, and theoretical calculation demonstrate that the introduction of Cu atoms with low-coordinated structures induces the transformation of active sites, resulting in the beneficial electron transfer and the optimized energy barrier, thereby improving the electrocatalytic activity and selectivity.
Collapse
Affiliation(s)
- Zhihao Pei
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 62 Nanyang Drive, Singapore, 637459, Singapore
| | - Yunxiang Li
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 62 Nanyang Drive, Singapore, 637459, Singapore
- Department of Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Hong Kong, Kowloon, 999077, China
| | - Guilan Fan
- School of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, 010021, China
| | - Yan Guo
- School of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, 010021, China
| | - Deyan Luan
- Department of Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Hong Kong, Kowloon, 999077, China
| | - Xiaojun Gu
- School of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, 010021, China
| | - Xiong Wen David Lou
- Department of Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Hong Kong, Kowloon, 999077, China
| |
Collapse
|
8
|
Li J, Jiang B, Yang L, Sun Y, Li H, Shen H, Dou H, Xiao X, Xu M, Zhai Y, Zhang C, Zhang L, Chen Z. Customized Heteronuclear Dual Single-Atom and Cluster Assemblies via D-Band Orchestration for Oxygen Reduction Reaction. Angew Chem Int Ed Engl 2024:e202412566. [PMID: 39198218 DOI: 10.1002/anie.202412566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 08/13/2024] [Accepted: 08/27/2024] [Indexed: 09/01/2024]
Abstract
Advanced oxygen reduction reaction (ORR) catalysts, integrating with well-dispersed single atom (SA) and atomic cluster (AC) sites, showcase potential in bolstering catalytic activity. However, the precise structural modulation and in-depth investigation of their catalytic mechanisms pose ongoing challenges. Herein, a proactive cluster lockdown strategy is introduced, relying on the confinement of trinuclear clusters with metal atom exchange in the covalent organic polymers, enabling the targeted synthesis of a series of multicomponent ensembles featuring FeCo (Fe or Co) dual-single-atom (DSA) and atomic cluster (AC) configurations (FeCo-DSA/AC) via thermal pyrolysis. The designed FeCo-DSA/AC surpasses Fe- and Co-derived counterparts by 18 mV and 49 mV in ORR half-wave potential, whilst exhibiting exemplary performance in Zn-air batteries. Comprehensive analysis and theoretical simulation elucidate the enhanced activity stems from adeptly orchestrating dz 2-dxz and O 2p orbital hybridization proximate to the Fermi level, fine-tuning the antibonding states to expedite OH* desorption and OOH* formation, thereby augmenting catalytic activity. This work elucidates the synergistic potentiation of active sites in hybrid electrocatalysts, pioneering innovative targeted design strategies for single-atom-cluster electrocatalysts.
Collapse
Affiliation(s)
- Jingshuai Li
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Bin Jiang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Liu Yang
- Power Battery & Systems Research Center, State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Yongli Sun
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Haojie Li
- School of Chemistry and Chemical Engineering, State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, Shihezi, 832003, China
| | - Haochen Shen
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Haozhen Dou
- Power Battery & Systems Research Center, State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Xiaoming Xiao
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Mi Xu
- Power Battery & Systems Research Center, State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Yong Zhai
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Congcong Zhang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Luhong Zhang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Zhongwei Chen
- Power Battery & Systems Research Center, State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| |
Collapse
|
9
|
He J, Xu L, Qin C, Zhang J, Liu D, Li Q, Feng Z, Wang J, Liu P, Li H, Yang Z. Electron Reservoir Effect of Adjacent Fe Nanoclusters Boosts Atomic Fe Active Sites on Porous Carbon for the Both Electrocatalytic Oxygen Reduction and CO 2 Reduction Reaction. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024:e2405157. [PMID: 39126174 DOI: 10.1002/smll.202405157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 07/28/2024] [Indexed: 08/12/2024]
Abstract
Electrochemical oxygen reduction reaction (ORR) and carbon dioxide reduction reaction (CO2RR) are greatly significant in renewable energy-related devices and carbon-neutral closed cycle, while the development of robust and highly efficient electrocatalysts has remained challenges. Herein, a hybrid electrocatalyst, featuring axial N-coordinated Fe single atom sites on hierarchically N, P-codoped porous carbon support and Fe nanoclusters as electron reservoir (FeNCs/FeSAs-NPC), is fabricated via in situ thermal transformation of the precursor of a supramolecular polymer initiated by intermolecular hydrogen bonds co-assembly. The FeNCs/FeSAs-NPC catalyst manifests superior oxygen reduction activity with a half-wave potential of 0.91 V in alkaline solution, as well as high CO2 to CO Faraday efficiency (FE) of surpassing 90% in a wide potential window from -0.40 to -0.85 V, along with excellent electrochemical durability. Theoretical calculations indicate that the electron reservoir effect of Fe nanoclusters can trigger the electron redistribution of the atomic Fe moieties, facilitating the activation of O2 and CO2 molecules, lowering the energy barriers for rate-determining step, and thus contributing to the accelerated ORR and CO2RR kinetics. This work offers an effective design of electron coupling catalysts that have advanced single atoms coexisting with nanoclusters for efficient ORR and CO2RR.
Collapse
Affiliation(s)
- Jiaxin He
- Institutes of Physical Science and Information Technology, Anhui Graphene Carbon Fiber Materials Research Center, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei, 230601, China
| | - Li Xu
- Institutes of Physical Science and Information Technology, Anhui Graphene Carbon Fiber Materials Research Center, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei, 230601, China
| | - Chenchen Qin
- Institutes of Physical Science and Information Technology, Anhui Graphene Carbon Fiber Materials Research Center, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei, 230601, China
| | - Jian Zhang
- Institutes of Physical Science and Information Technology, Anhui Graphene Carbon Fiber Materials Research Center, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei, 230601, China
| | - Daomeng Liu
- Institutes of Physical Science and Information Technology, Anhui Graphene Carbon Fiber Materials Research Center, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei, 230601, China
| | - Qingyi Li
- Institutes of Physical Science and Information Technology, Anhui Graphene Carbon Fiber Materials Research Center, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei, 230601, China
| | - Ziyi Feng
- Institutes of Physical Science and Information Technology, Anhui Graphene Carbon Fiber Materials Research Center, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei, 230601, China
| | - Junzhong Wang
- Institutes of Physical Science and Information Technology, Anhui Graphene Carbon Fiber Materials Research Center, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei, 230601, China
| | - Peigen Liu
- National Synchrotron Radiation Laboratory (NSRL), University of Science and Technology of China, Hefei, Anhui, 230029, P. R. China
| | - Hongbao Li
- Institutes of Physical Science and Information Technology, Anhui Graphene Carbon Fiber Materials Research Center, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei, 230601, China
| | - Zhengkun Yang
- Institutes of Physical Science and Information Technology, Anhui Graphene Carbon Fiber Materials Research Center, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei, 230601, China
| |
Collapse
|
10
|
Feng Y, Li X, Ma Z, Liu K, Li Y, Li C, Li C, Sun Y, Yang Z. Robust bifunctionality in an oxygen electrode via core-shell heterostructure construction. Chem Commun (Camb) 2024; 60:8407-8410. [PMID: 39028223 DOI: 10.1039/d4cc02967d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
A Co-CoSe core-shell heterostructure encapsulated into nitrogen-doped carbon nanotubes enables superior zinc air battery performance (172 mW cm-2) and stability (970 h). The enhanced bifunctionality and stability originates from the modulated d band center and confinement effect, respectively.
Collapse
Affiliation(s)
- Yumei Feng
- State Key Laboratory of New Textile Materials & Advanced Processing Technology, College of Materials Science and Engineering, Wuhan Textile University, Wuhan 430200, China.
- Faculty of Materials Science and Chemistry, China University of Geosciences Wuhan, 388 Lumo RD, Wuhan 430074, China.
| | - Xianwei Li
- State Key Laboratory of New Textile Materials & Advanced Processing Technology, College of Materials Science and Engineering, Wuhan Textile University, Wuhan 430200, China.
- Faculty of Materials Science and Chemistry, China University of Geosciences Wuhan, 388 Lumo RD, Wuhan 430074, China.
| | - Zhiyong Ma
- Shaanxi Coal Chemical Industry Technology Research Institute Co., Ltd, Xi'an 710065, China
| | - Kaiyi Liu
- Shaanxi Coal Chemical Industry Technology Research Institute Co., Ltd, Xi'an 710065, China
| | - Yi Li
- Shaanxi Coal Chemical Industry Technology Research Institute Co., Ltd, Xi'an 710065, China
| | - Chen Li
- State Key Laboratory of New Textile Materials & Advanced Processing Technology, College of Materials Science and Engineering, Wuhan Textile University, Wuhan 430200, China.
| | - Chunsheng Li
- School of Chemistry and Life Sciences, Suzhou University of Science and Technology, Suzhou City, Jiangsu Province 215009, China.
- Key Laboratory of Advanced Electrode Materials for Novel Solar Cells for Petroleum and Chemical Industry of China, Suzhou University of Science and Technology, Suzhou City, Jiangsu Province 215009, China
| | - Yan Sun
- School of Chemistry and Life Sciences, Suzhou University of Science and Technology, Suzhou City, Jiangsu Province 215009, China.
- Key Laboratory of Advanced Electrode Materials for Novel Solar Cells for Petroleum and Chemical Industry of China, Suzhou University of Science and Technology, Suzhou City, Jiangsu Province 215009, China
| | - Zehui Yang
- Faculty of Materials Science and Chemistry, China University of Geosciences Wuhan, 388 Lumo RD, Wuhan 430074, China.
| |
Collapse
|
11
|
Hu H, Xu Z, Zhang Z, Yan X, Zhu Y, Attfield JP, Yang M. Electrocatalytic Oxygen Reduction Using Metastable Zirconium Suboxide. Angew Chem Int Ed Engl 2024; 63:e202404374. [PMID: 38726699 DOI: 10.1002/anie.202404374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Indexed: 06/19/2024]
Abstract
Strategies for discovery of high-performance electrocatalysts are important to advance clean energy technologies. Metastable phases such as low temperature or interfacial structures that are difficult to access in bulk may offer such catalytically active surfaces. We report here that the suboxide Zr3O, which is formed at Zr-ZrO2 interfaces but does not appear in the experimental Zr-O phase diagram exhibits outstanding oxygen reduction reaction (ORR) performance surpassing that of benchmark Pt/C and most transition metal-based catalysts. Addition of Fe3C nanoparticles to give a Zr-Zr3O-Fe3C/NC catalyst (NC=nitrogen-doped carbon) gives a half-wave potential (E1/2) of 0.914 V, outperforming Pt/C and showing only a 3 mV decrease after 20,000 electrochemical cycles. A zinc-air battery (ZAB) using this cathode material has a high power density of 241.1 mW cm-2 and remains stable for over 50 days of continuous cycling, demonstrating potential for practical applications. Zr3O demonstrates that interfacial or other phases that are difficult to stabilize may offer new directions for the discovery of high-performance electrocatalysts.
Collapse
Affiliation(s)
- Huashuai Hu
- School of Environmental Science and Technology, Dalian University of Technology, No.2 Linggong Road, Ganjingzi District, Dalian, 116024, China
| | - Zhihang Xu
- Department of Applied Physics, Research Institute for Smart Energy, The Hong Kong Polytechnic University Hung Hom, Kowloon, Hong Kong, 999077, China
| | - Zhaorui Zhang
- School of Environmental Science and Technology, Dalian University of Technology, No.2 Linggong Road, Ganjingzi District, Dalian, 116024, China
| | - Xiaohui Yan
- School of Environmental Science and Technology, Dalian University of Technology, No.2 Linggong Road, Ganjingzi District, Dalian, 116024, China
| | - Ye Zhu
- Department of Applied Physics, Research Institute for Smart Energy, The Hong Kong Polytechnic University Hung Hom, Kowloon, Hong Kong, 999077, China
| | - J Paul Attfield
- Centre for Science at Extreme Conditions and School of Chemistry, University of Edinburgh, King's Buildings, Mayfield Road, Edinburgh, EH9 3JZ, UK
| | - Minghui Yang
- School of Environmental Science and Technology, Dalian University of Technology, No.2 Linggong Road, Ganjingzi District, Dalian, 116024, China
| |
Collapse
|
12
|
Jiang Y, Liu S, Huan Y, He Y, Cheng Q, Yuan X, Liu J, Wang M, Yan C, Qian T. Rare-Earth Lanthanum-Evoked Amorphization and Optimization to Boost Ambient Nitrogen Fixation over Single-Atom Catalysts. J Phys Chem Lett 2024; 15:5495-5500. [PMID: 38748898 DOI: 10.1021/acs.jpclett.4c00921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/24/2024]
Abstract
Single-atom catalysts (SACs) have been widely studied in a variety of electrocatalysis. However, its application in the electrocatalytic nitrogen reduction reaction (NRR) field still suffers from unsatisfactory performance, due to the sluggish mass transfer and significant kinetic barriers. Herein, a novel rare-earth-lanthanum-evoked optimization strategy is proposed to boost ambient NRR over SACs. The incorporation of La with a large atomic radius tends to break the atomic long-range order and trigger the amorphization of SACs, endowing a greater density of dangling bonds that could modify affinity for reactants and adsorbates. Moreover, with unique 5d16s2 valence-electron configurations, its presence could further enrich the electron density and enhance the intrinsic activity of single-metal center via the valence orbital coupling. As expected, the La-modified catalyst presents excellent activity toward the electrochemical NRR, delivering a maximum ammonia yield rate of 33.91 μg h-1 mg-1 and a remarkable Faradaic efficiency of 53.82%.
Collapse
Affiliation(s)
- Yuzhuo Jiang
- School of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, China
| | - Sisi Liu
- School of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, China
| | - Yunfei Huan
- School of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, China
| | - Yanzheng He
- School of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, China
- College of Energy, Key Laboratory of Core Technology of High Specific Energy Battery and Key Materials for Petroleum and Chemical Industry, Soochow University, Suzhou 215006, China
| | - Qiyang Cheng
- School of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, China
- College of Energy, Key Laboratory of Core Technology of High Specific Energy Battery and Key Materials for Petroleum and Chemical Industry, Soochow University, Suzhou 215006, China
| | - Xiaolei Yuan
- School of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, China
| | - Jie Liu
- School of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, China
| | - Mengfan Wang
- College of Energy, Key Laboratory of Core Technology of High Specific Energy Battery and Key Materials for Petroleum and Chemical Industry, Soochow University, Suzhou 215006, China
| | - Chenglin Yan
- College of Energy, Key Laboratory of Core Technology of High Specific Energy Battery and Key Materials for Petroleum and Chemical Industry, Soochow University, Suzhou 215006, China
- School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| | - Tao Qian
- School of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, China
| |
Collapse
|
13
|
Li Z, Zhong X, Gao L, Hu J, Peng W, Wang X, Zhou G, Xu B. Asymmetric Coordination of Bimetallic Fe-Co Single-Atom Pairs toward Enhanced Bifunctional Activity for Rechargeable Zinc-Air Batteries. ACS NANO 2024; 18:13006-13018. [PMID: 38736197 DOI: 10.1021/acsnano.4c01342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2024]
Abstract
The advancement of rechargeable zinc-air batteries (RZABs) faces challenges from the pronounced polarization and sluggish kinetics of oxygen reduction and evolution reactions (ORR and OER). Single-atom catalysts offer an effective solution, yet their insufficient or singular catalytic activity hinders their development. In this work, a dual single-atom catalyst, FeCo-SAs, was fabricated, featuring atomically dispersed N3-Fe-Co-N4 sites on N-doped graphene nanosheets for bifunctional activity. Introducing Co into Fe single-atoms and secondary pyrolysis altered Fe coordination with N, creating an asymmetric environment that promoted charge transfer and increased the density of states near the Fermi level. This catalyst achieved a narrow potential gap of 0.616 V, with a half-wave potential of 0.884 V for ORR (vs the reversible hydrogen electrode) and a low OER overpotential of 270 mV at 10 mA cm-2. Owing to the superior activity of FeCo-SAs, RZABs exhibited a peak power density of 203.36 mW cm-2 and an extended cycle life of over 550 h, exceeding the commercial Pt/C + IrO2 catalyst. Furthermore, flexible RZABs with FeCo-SAs demonstrated the promising future of bimetallic pairs in wearable energy storage devices.
Collapse
Affiliation(s)
- Zhitong Li
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Xiongwei Zhong
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Leyi Gao
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Junjie Hu
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Wenbo Peng
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Xingzhu Wang
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Guangmin Zhou
- Shenzhen Geim Graphene Center, Tsinghua-Berkeley Shenzhen Institute & Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Baomin Xu
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| |
Collapse
|
14
|
Jin H, Yu R, Ji P, Zeng W, Li Z, He D, Mu S. Sharply expanding single-atomically dispersed Fe-N active sites through bidirectional coordination for oxygen reduction. Chem Sci 2024; 15:7259-7268. [PMID: 38756823 PMCID: PMC11095370 DOI: 10.1039/d4sc01329h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 04/16/2024] [Indexed: 05/18/2024] Open
Abstract
For Fe-NC systems, high-density Fe-N sites are the basis for high-efficiency oxygen reduction reaction (ORR), and P doping can further lower the reaction energy barrier, especially in the form of metal-P bonding. However, limited to the irregular agglomeration of metal atoms at high temperatures, Fe-P bonds and high-density Fe-N cannot be guaranteed simultaneously. Here, to escape the random and violent agglomeration of Fe species during high-temperature carbonization, triphenylphosphine and 2-methylimidazole with a strong metal coordination capability are introduced together to confine Fe growth. With the aid of such bidirectional coordination, the high-density Fe-N site with Fe-P bonds is realized by in situ phosphorylation of Fe in an Fe-NC system (Fe-P-NC) at high temperatures. Impressively, the content of single-atomically dispersed Fe sites for Fe-P-NC dramatically increases from 2.8% to 65.3% compared with that of pure Fe-NC, greatly improving the ORR activity in acidic and alkaline electrolytes. The theoretical calculation results show that the generated Fe2P can simultaneously facilitate the adsorption of intermediates to Fe-N4 sites and the electron transfer, thereby reducing the reaction energy barrier and obtaining superior ORR activity.
Collapse
Affiliation(s)
- Huihui Jin
- National Engineering Laboratory for Fiber Optic Sensing Technology, Wuhan University of Technology Wuhan 430070 China
- School of Information Engineering, Wuhan University of Technology Wuhan 430070 China
- Hubei Engineering Research Center of RF-Microwave Technology and Application, School of Science, Wuhan University of Technology Wuhan 430070 China
| | - Ruohan Yu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology Wuhan 430070 China
| | - Pengxia Ji
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology Wuhan 430070 China
| | - Weihao Zeng
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology Wuhan 430070 China
| | - Zhengying Li
- National Engineering Laboratory for Fiber Optic Sensing Technology, Wuhan University of Technology Wuhan 430070 China
- School of Information Engineering, Wuhan University of Technology Wuhan 430070 China
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology Wuhan 430070 China
| | - Daping He
- Hubei Engineering Research Center of RF-Microwave Technology and Application, School of Science, Wuhan University of Technology Wuhan 430070 China
| | - Shichun Mu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology Wuhan 430070 China
| |
Collapse
|
15
|
Wang M, Liu B, Zhang H, Lu Z, Xie J, Cao Y. High quality bifunctional cathode for rechargeable zinc-air batteries using N-doped carbon nanotubes constrained CoFe alloy. J Colloid Interface Sci 2024; 661:681-689. [PMID: 38320404 DOI: 10.1016/j.jcis.2024.01.180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/28/2023] [Accepted: 01/25/2024] [Indexed: 02/08/2024]
Abstract
Building efficient and stable bifunctional electrocatalysts toward oxygen evolution reaction (OER) and oxygen reduction reaction (ORR) is crucial for the advancement of rechargeable zinc-air batteries (ZABs). Here, a convenient in situ strategy is reported to controllably encapsulate CoFe alloy nanoparticles within N-doped carbon nanotubes (CoFe@NCNT). The abundant Co(Fe)-Nx active sites and the synergistic interaction between CoFe alloys and carbon nanotubes facilitate mass transfer and interfacial charge transfer, resulting in excellent dual functional electrocatalytic activity of OER/ORR with minor potential difference (ΔE = 0.73 V). Thus, the corresponding rechargeable ZAB displays high power density (194 mW cm-2), excellent specific capacity (795 mAh gZn-1), and favorable stability (900 cycles@5 mA cm-2). This work provides an approach for establishing low-cost bultifunctional electrocatalysts with excellent performance of non-noble metal nanoalloys.
Collapse
Affiliation(s)
- Min Wang
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830017, Xinjiang, PR China
| | - Baolin Liu
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830017, Xinjiang, PR China
| | - Hongyu Zhang
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830017, Xinjiang, PR China
| | - Zhenjiang Lu
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830017, Xinjiang, PR China
| | - Jing Xie
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830017, Xinjiang, PR China
| | - Yali Cao
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830017, Xinjiang, PR China.
| |
Collapse
|
16
|
Liu M, Wang X, Cao S, Lu X, Li W, Li N, Bu XH. Ferredoxin-Inspired Design of S-Synergized Fe-Fe Dual-Metal Center Catalysts for Enhanced Electrocatalytic Oxygen Reduction Reaction. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2309231. [PMID: 38345181 DOI: 10.1002/adma.202309231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 01/25/2024] [Indexed: 02/21/2024]
Abstract
Dual-metal center catalysts (DMCs) have shown the ability to enhance the oxygen reduction reaction (ORR) owing to their distinctive structural configurations. However, the precise modulation of electronic structure and the in-depth understanding of synergistic mechanisms between dual metal sites of DMCs at the atomic level remain challenging. Herein, mimicking the ferredoxin, Fe-based DMCs (Fe2N6-S) are strategically designed and fabricated, in which additional Fe and S sites are synchronously installed near the Fe sites and serve as "dual modulators" for coarse- and fine-tuning of the electronic modulation, respectively. The as-prepared Fe2N6-S catalyst exhibits enhanced ORR activity and outstanding Zinc-air (Zn-air) battery performance compared to the conventional single Fe site catalysts. The theoretical and experimental results reveal that introducing the second metal Fe creates a dual adsorption site that alters the O2 adsorption configuration and effectively activates the O─O bond, while the synergistic effect of dual Fe sites results in the downward shift of the d-band center, facilitating the release of OH*. Additionally, local electronic engineering of heteroatom S for Fe sites further facilitates the formation of the rate-determining step OOH*, thus accelerating the reaction kinetics.
Collapse
Affiliation(s)
- Ming Liu
- School of Materials Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Xuemin Wang
- School of Materials Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Shoufu Cao
- School of Materials Science and Engineering, China University of Petroleum, Qingdao, 266580, China
| | - Xiaoqing Lu
- School of Materials Science and Engineering, China University of Petroleum, Qingdao, 266580, China
| | - Wei Li
- School of Materials Science and Engineering, Nankai University, Tianjin, 300350, China
- Tianjin Key Laboratory of Metal and Molecule-Based Material Chemistry, Nankai University, Tianjin, 300350, China
| | - Na Li
- Tianjin Key Laboratory of Metal and Molecule-Based Material Chemistry, Nankai University, Tianjin, 300350, China
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Xian-He Bu
- School of Materials Science and Engineering, Nankai University, Tianjin, 300350, China
- Tianjin Key Laboratory of Metal and Molecule-Based Material Chemistry, Nankai University, Tianjin, 300350, China
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, China
| |
Collapse
|
17
|
Tang T, Bai X, Wang Z, Guan J. Structural engineering of atomic catalysts for electrocatalysis. Chem Sci 2024; 15:5082-5112. [PMID: 38577377 PMCID: PMC10988631 DOI: 10.1039/d4sc00569d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 03/05/2024] [Indexed: 04/06/2024] Open
Abstract
As a burgeoning category of heterogeneous catalysts, atomic catalysts have been extensively researched in the field of electrocatalysis. To satisfy different electrocatalytic reactions, single-atom catalysts (SACs), diatomic catalysts (DACs) and triatomic catalysts (TACs) have been successfully designed and synthesized, in which microenvironment structure regulation is the core to achieve high-efficiency catalytic activity and selectivity. In this review, the effect of the geometric and electronic structure of metal active centers on catalytic performance is systematically introduced, including substrates, central metal atoms, and the coordination environment. Then theoretical understanding of atomic catalysts for electrocatalysis is innovatively discussed, including synergistic effects, defect coupled spin state change and crystal field distortion spin state change. In addition, we propose the challenges to optimize atomic catalysts for electrocatalysis applications, including controlled synthesis, increasing the density of active sites, enhancing intrinsic activity, and improving the stability. Moreover, the structure-function relationships of atomic catalysts in the CO2 reduction reaction, nitrogen reduction reaction, oxygen reduction reaction, hydrogen evolution reaction, and oxygen evolution reaction are highlighted. To facilitate the development of high-performance atomic catalysts, several technical challenges and research orientations are put forward.
Collapse
Affiliation(s)
- Tianmi Tang
- Institute of Physical Chemistry, College of Chemistry, Jilin University Changchun 130021 PR China
| | - Xue Bai
- Institute of Physical Chemistry, College of Chemistry, Jilin University Changchun 130021 PR China
| | - Zhenlu Wang
- Institute of Physical Chemistry, College of Chemistry, Jilin University Changchun 130021 PR China
| | - Jingqi Guan
- Institute of Physical Chemistry, College of Chemistry, Jilin University Changchun 130021 PR China
| |
Collapse
|
18
|
Yu Z, Tang J, Gao Y, Wu D, Chen S, Zeng Y, Tang D, Liu X. Domain-Limited Sub-Nanometer Co Nanoclusters in Defective Nitrogen Doped Carbon Structures for Non-Invasive Drug Monitoring. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2309264. [PMID: 38010948 DOI: 10.1002/smll.202309264] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 11/07/2023] [Indexed: 11/29/2023]
Abstract
In this work, sub-nanometer Co clusters anchored on porous nitrogen-doped carbon (C─N─Co NCs) are successfully prepared by high-temperature annealing and pre-fabricated template strategies for non-invasive sensing of clozapine (CLZ) as an efficient substrate adsorption and electrocatalyst. The introduction of Co sub-nanoclusters (Co NCs) provides enhanced electrochemical performance and better substrate adsorption potential compared to porous and nitrogen-doped carbon structures. Combined with ab initio calculations, it is found that the favorable CLZ catalytic performance with C─N─Co NCs is mainly attributed to possessing a more stable CLZ adsorption structure and lower conversion barriers of CLZ to oxidized state CLZ. An electrochemical sensor for CLZ detection is conceptualized with a wide operating range and high sensitivity, with monitoring capabilities validated in a variety of body fluid environments. Based on the developed CLZ sensing system, the CLZ correlation between blood and saliva and the accuracy of the sensor are investigated by the gold standard method and the rat model of drug administration, paving the way for non-invasive drug monitoring. This work provides new insights into the development of efficient electrocatalysts to enable drug therapy and administration monitoring in personalized healthcare systems.
Collapse
Affiliation(s)
- Zhichao Yu
- Key Laboratory for Analytical Science of Food Safety and Biology (MOE & Fujian Province), Department of Chemistry, Fuzhou University, Fuzhou, 350108, China
| | - Juan Tang
- Key Laboratory for Green Chemistry of Jiangxi Province, Department of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, 330022, China
| | - Yuan Gao
- Key Laboratory for Analytical Science of Food Safety and Biology (MOE & Fujian Province), Department of Chemistry, Fuzhou University, Fuzhou, 350108, China
| | - Di Wu
- Key Laboratory for Analytical Science of Food Safety and Biology (MOE & Fujian Province), Department of Chemistry, Fuzhou University, Fuzhou, 350108, China
| | - Shuyun Chen
- Key Laboratory for Analytical Science of Food Safety and Biology (MOE & Fujian Province), Department of Chemistry, Fuzhou University, Fuzhou, 350108, China
| | - Yongyi Zeng
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, 350025, China
| | - Dianping Tang
- Key Laboratory for Analytical Science of Food Safety and Biology (MOE & Fujian Province), Department of Chemistry, Fuzhou University, Fuzhou, 350108, China
| | - Xiaolong Liu
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, 350025, China
| |
Collapse
|
19
|
Lu K, Ding T, Zhu M, Chen J, Yue D, Liu X, Fang X, Xia J, Qin Z, Wu M, Shi G. Double pyramid stacked CoO nano-crystals induced by graphene at low temperatures as highly efficient Fenton-like catalysts. Phys Chem Chem Phys 2024; 26:8681-8686. [PMID: 38441213 DOI: 10.1039/d4cp00334a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2024]
Abstract
Transition metal oxides are widely used as Fenton-like catalysts in the treatment of organic pollutants, but their synthesis usually requires a high temperature. Herein, an all-solid-state synthesis method controlled by graphene was used to prepare a double pyramid stacked CoO nano-crystal at a low temperature. The preparation temperature decreased by 200 °C (over 30% reduction) due to the introduction of graphene, largely reducing the reaction energy barrier. Interestingly, the corresponding degradation rate constants (kobs) of this graphene-supported pyramid CoO nano-crystals for organic molecules after their adsorption were over 2.5 and 35 times higher than that before adsorption and that of free CoO, respectively. This high catalytic efficiency is attributed to the adsorption of pollutants at the surface by supporting graphene layers, while free radicals activated by CoO can directly and rapidly contact and degrade them. These findings provide a new strategy to prepare low carbon-consuming transition metal oxides for highly efficient Fenton-like catalysts.
Collapse
Affiliation(s)
- Kui Lu
- Shanghai Applied Radiation Institute, State Key Lab. Advanced Special Steel, Shanghai University, Shanghai 200444, P. R. China.
- Shanghai Jingyu Environmental Engineering Co. Ltd., Xiner Road, Shanghai 200439, P. R. China
| | - Tao Ding
- Shanghai Applied Radiation Institute, State Key Lab. Advanced Special Steel, Shanghai University, Shanghai 200444, P. R. China.
| | - Mengxiang Zhu
- Shanghai Applied Radiation Institute, State Key Lab. Advanced Special Steel, Shanghai University, Shanghai 200444, P. R. China.
| | - Junjie Chen
- Shanghai Applied Radiation Institute, State Key Lab. Advanced Special Steel, Shanghai University, Shanghai 200444, P. R. China.
| | - Dongting Yue
- Shanghai Applied Radiation Institute, State Key Lab. Advanced Special Steel, Shanghai University, Shanghai 200444, P. R. China.
| | - Xing Liu
- Shanghai Applied Radiation Institute, State Key Lab. Advanced Special Steel, Shanghai University, Shanghai 200444, P. R. China.
| | - Xiaoqin Fang
- Shanghai Jingyu Environmental Engineering Co. Ltd., Xiner Road, Shanghai 200439, P. R. China
| | - Junfang Xia
- Shanghai Jingyu Environmental Engineering Co. Ltd., Xiner Road, Shanghai 200439, P. R. China
| | - Zhiyuan Qin
- Shanghai Jingyu Environmental Engineering Co. Ltd., Xiner Road, Shanghai 200439, P. R. China
| | - Minghong Wu
- Shanghai Applied Radiation Institute, State Key Lab. Advanced Special Steel, Shanghai University, Shanghai 200444, P. R. China.
| | - Guosheng Shi
- Shanghai Applied Radiation Institute, State Key Lab. Advanced Special Steel, Shanghai University, Shanghai 200444, P. R. China.
| |
Collapse
|
20
|
Lian Y, Xu J, Zhou W, Lin Y, Bai J. Research Progress on Atomically Dispersed Fe-N-C Catalysts for the Oxygen Reduction Reaction. Molecules 2024; 29:771. [PMID: 38398523 PMCID: PMC10892989 DOI: 10.3390/molecules29040771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 01/31/2024] [Accepted: 02/05/2024] [Indexed: 02/25/2024] Open
Abstract
The efficiency and performance of proton exchange membrane fuel cells (PEMFCs) are primarily influenced by ORR electrocatalysts. In recent years, atomically dispersed metal-nitrogen-carbon (M-N-C) catalysts have gained significant attention due to their high active center density, high atomic utilization, and high activity. These catalysts are now considered the preferred alternative to traditional noble metal electrocatalysts. The unique properties of M-N-C catalysts are anticipated to enhance the energy conversion efficiency and lower the manufacturing cost of the entire system, thereby facilitating the commercialization and widespread application of fuel cell technology. This article initially delves into the origin of performance and degradation mechanisms of Fe-N-C catalysts from both experimental and theoretical perspectives. Building on this foundation, the focus shifts to strategies aimed at enhancing the activity and durability of atomically dispersed Fe-N-C catalysts. These strategies encompass the use of bimetallic atoms, atomic clusters, heteroatoms (B, S, and P), and morphology regulation to optimize catalytic active sites. This article concludes by detailing the current challenges and future prospects of atomically dispersed Fe-N-C catalysts.
Collapse
Affiliation(s)
- Yuebin Lian
- School of Optoelectronic Engineering, Changzhou Institute of Technology, Changzhou 213032, China
| | - Jinnan Xu
- School of Chemistry and Environmental Engineering, Jiangsu University of Technology, Changzhou 213001, China; (J.X.)
| | - Wangkai Zhou
- School of Chemistry and Environmental Engineering, Jiangsu University of Technology, Changzhou 213001, China; (J.X.)
| | - Yao Lin
- Research Center of Secondary Resources and Environment, School of Chemical Engineering and Materials, Changzhou Institute of Technology, Changzhou 213022, China;
| | - Jirong Bai
- Research Center of Secondary Resources and Environment, School of Chemical Engineering and Materials, Changzhou Institute of Technology, Changzhou 213022, China;
| |
Collapse
|
21
|
Zhuang C, Chang Y, Li W, Li S, Xu P, Zhang H, Zhang Y, Zhang C, Gao J, Chen G, Zhang T, Kang Z, Han X. Light-Induced Variation of Lithium Coordination Environment in g-C 3N 4 Nanosheet for Highly Efficient Oxygen Reduction Reactions. ACS NANO 2024. [PMID: 38294412 DOI: 10.1021/acsnano.4c00217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
The structure and electronic state of the active center in a single-atom catalyst undergo noticeable changes during a dynamic catalytic process. The metal atom active center is not well demonstrated in a dynamic manner. This study demonstrated that Li metal atoms, serving as active centers, can migrate on a C3N4 monolayer or between C3N4 monolayers when exposed to light irradiation. This migration alters the local coordination environment of Li in the C3N4 nanosheets, leading to a significant enhancement in photocatalytic activity. The photocatalytic H2O2 process could be maintained for 35 h with a 920 mmol/g record-high yield, corresponding to a 0.4% H2O2 concentration, which is far greater than the value (0.1%) of practical application for wastewater treatment. Density functional theory calculations indicated that dynamic Li-coordinated structures contributed to the superhigh photocatalytic activity.
Collapse
Affiliation(s)
- Chunqiang Zhuang
- Institute of Microstructure and Property of Advanced Materials, Beijing University of Technology, Beijing 100124, People's Republic of China
| | - Yuan Chang
- Laboratory of Materials Modification by Laser Ion and Electron Beams (Dalian University of Technology), Ministry of Education, Dalian 116024, People's Republic of China
| | - Weiming Li
- Institute of Microstructure and Property of Advanced Materials, Beijing University of Technology, Beijing 100124, People's Republic of China
| | - Shijie Li
- Key Laboratory of Health Risk Factors for Seafood of Zhejiang Province, National Engineering Research Center for Marine Aquaculture, College of Marine Science and Technology, Zhejiang Ocean University, Zhoushan 316022, Zhejiang, People's Republic of China
| | - Peng Xu
- National Center for Nanoscience and Technology, Beijing 100190, People's Republic of China
| | - Hang Zhang
- Institute of Microstructure and Property of Advanced Materials, Beijing University of Technology, Beijing 100124, People's Republic of China
| | - Yihong Zhang
- Institute of Microstructure and Property of Advanced Materials, Beijing University of Technology, Beijing 100124, People's Republic of China
| | - Can Zhang
- Institute of Microstructure and Property of Advanced Materials, Beijing University of Technology, Beijing 100124, People's Republic of China
| | - Junfeng Gao
- Laboratory of Materials Modification by Laser Ion and Electron Beams (Dalian University of Technology), Ministry of Education, Dalian 116024, People's Republic of China
| | - Ge Chen
- Beijing Key Laboratory for Green Catalysis and Separation, Faculty of Environment and Life Science, Beijing University of Technology, Beijing 100124, People's Republic of China
| | - Tianyang Zhang
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-based Functional Materials and Devices, Soochow University, Suzhou 215123, People's Republic of China
| | - Zhenhui Kang
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-based Functional Materials and Devices, Soochow University, Suzhou 215123, People's Republic of China
- Macao Institute of Materials Science and Engineering (MIMSE), MUST-SUDA Joint Research Center for Advanced Functional Materials, Macau University of Science and Technology, Taipa 999078, Macao, People's Republic of China
| | - Xiaodong Han
- Institute of Microstructure and Property of Advanced Materials, Beijing University of Technology, Beijing 100124, People's Republic of China
| |
Collapse
|