1
|
Xing H, Deng X, Wang X. Alkaline capacity decay induced vacancy-rich LDH for high-performance magnesium ions hybrid supercapacitor. J Colloid Interface Sci 2025; 679:43-53. [PMID: 39357225 DOI: 10.1016/j.jcis.2024.09.216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 09/12/2024] [Accepted: 09/26/2024] [Indexed: 10/04/2024]
Abstract
Transition metal double hydroxides (LDHs) are among the most promising electrode materials in electrochemical energy storage. In this study, we synthesized electrodeposited nickel-cobalt layered double hydroxide (NiCo-LDH) to investigate the significant capacity gap in LDHs at different scan rates in an alkaline electrolyte. Experimental results demonstrate that the degradation of capacity at high scan rates is primarily attributed to the slow ion diffusion and the decreased reversibility of active metal ions. Furthermore, by exploiting the low reversibility of the deprotonation reaction at high scan rates, a NiCo-LDH with enriched hydrogen vacancies (Hv-rich LDH) was obtained. Consequently, the Hv-rich LDH, when used as the cathode in a magnesium ions hybrid supercapacitor (Mg-HSC), exhibits a high specific capacity of 94.97mAh g-1 at a current density of 1 A g-1 and maintains a significant capacity of 41.90 mAh g-1 even at 20 A g-1. Moreover, a Mg-HSC device assembled with an Hv-rich LDH cathode and a VS2 anode delivers a high energy density of 48.44 Wh kg-1 and a power density of 937.49 W kg-1, demonstrating its practical application value. This work not only provides a theoretical basis for the defect design of LDHs but also expands their applicability.
Collapse
Affiliation(s)
- Huan Xing
- Laboratory of Advanced Materials and Energy Electrochemistry, College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, China
| | - Xiaoyang Deng
- Laboratory of Advanced Materials and Energy Electrochemistry, College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, China.
| | - Xiaoguang Wang
- Laboratory of Advanced Materials and Energy Electrochemistry, College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, China; Shanxi Key Laboratory of Gas Energy Efficient and Clean Utilization, Taiyuan, Shanxi 030024, China.
| |
Collapse
|
2
|
Meng X, Xiao N, Gao C, Zhang R, Sun Z, Cheng Y, Zhang N, Li W, Chen B, He C. In Situ Grown Li 2Te Enhanced Lithium Metal Anode Interfacial Kinetics. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024:e2409195. [PMID: 39648548 DOI: 10.1002/smll.202409195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 11/10/2024] [Indexed: 12/10/2024]
Abstract
Lithium metal anode (LMA) is expected to be the ideal anode material for future high-energy-density batteries, but regulating the complex electrolyte-anode interface remains a challenge. In this work, a stable Li2Te coating is formed on the surface of commercial copper mesh (LTCM) using a simple and quick method to improve lithium metal anode interfacial kinetics. Li2Te possesses a strong affinity for both Li+ and TFSI- anions, which reduces the lithium nucleation barrier and guides the formation of inorganic-rich SEI, accelerates the diffusion of Li+, and promotes the growth of lithium metal along the plane. The highly conductive Li2Te and Cu generated by in situ lithiation reaction together constitute an effective electron-conducting network, which synergistically enhances the interfacial kinetics and the cycling stability of LMA. As a result, the LTCM maintains high Coulombic efficiency (98%) even after 2200 cycles at 1 mA cm-2, whereas the symmetric cell has a long cycle life of over 5400 h at 1 mA cm-2. In addition, the full cells with LFP display a high capacity retention ratio (80%) after 480 cycles at 1 C and the corresponding pouch cell can cycle steadily more than 464 cycles at 1 C, which has good application prospects.
Collapse
Affiliation(s)
- Xiao Meng
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), National Industry-Education Platform of Energy Storage, Tianjin University, Tianjin, 300350, P. R. China
| | - Nan Xiao
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), National Industry-Education Platform of Energy Storage, Tianjin University, Tianjin, 300350, P. R. China
| | - Chenglin Gao
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), National Industry-Education Platform of Energy Storage, Tianjin University, Tianjin, 300350, P. R. China
| | - Rui Zhang
- School of Electrical Engineering, Hebei University of Technology, Tianjin, 300130, China
| | - Zongfu Sun
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), National Industry-Education Platform of Energy Storage, Tianjin University, Tianjin, 300350, P. R. China
| | - Yihao Cheng
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), National Industry-Education Platform of Energy Storage, Tianjin University, Tianjin, 300350, P. R. China
| | - Ning Zhang
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), National Industry-Education Platform of Energy Storage, Tianjin University, Tianjin, 300350, P. R. China
| | - Wen Li
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), National Industry-Education Platform of Energy Storage, Tianjin University, Tianjin, 300350, P. R. China
| | - Biao Chen
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), National Industry-Education Platform of Energy Storage, Tianjin University, Tianjin, 300350, P. R. China
| | - Chunnian He
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), National Industry-Education Platform of Energy Storage, Tianjin University, Tianjin, 300350, P. R. China
| |
Collapse
|
3
|
Cheng Y, Wang Y, Chen B, Han X, He F, He C, Hu W, Zhou G, Zhao N. Routes to Bidirectional Cathodes for Reversible Aprotic Alkali Metal-CO 2 Batteries. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2410704. [PMID: 39308193 DOI: 10.1002/adma.202410704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 08/30/2024] [Indexed: 11/16/2024]
Abstract
Aprotic alkali metal-CO2 batteries (AAMCBs) have garnered significant interest owing to fixing CO2 and providing large energy storage capacity. The practical implementation of AAMCBs is constrained by the sluggish kinetics of the CO2 reduction reaction (CO2RR) and the CO2 evolution reaction (CO2ER). Because the CO2ER and CO2RR take place on the cathode, which connects the internal catalyst with the external environment. Building a bidirectional cathode with excellent CO2ER and CO2RR kinetics by optimizing the cathode's internal catalyst and environment has attracted most of the attention to improving the electrochemical performance of AAMCBs. However, there remains a lack of comprehensive understanding. This review aims to give a route to bidirectional cathodes for reversible AAMCBs, by systematically discussing engineering strategies of both the internal catalyst (atomic, nanoscopic, and macroscopic levels) and the external environment (photo, photo-thermal, and force field). The CO2ER and CO2RR mechanisms and the "engineering strategies from internal catalyst to the external environment-cathode properties-CO2RR and CO2ER kinetics and mechanisms-batteries performance" relationship are elucidated by combining computational and experimental approaches. This review establishes a fundamental understanding for designing bidirectional cathodes and gives a route for developing reversible AAMCBs and similar metal-gas battery systems.
Collapse
Affiliation(s)
- Yihao Cheng
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), Tianjin University, Tianjin, 300350, P. R. China
| | - Yuxuan Wang
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), Tianjin University, Tianjin, 300350, P. R. China
| | - Biao Chen
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), Tianjin University, Tianjin, 300350, P. R. China
- National Industry-Education Platform of Energy Storage, Tianjin University, 135 Yaguan Road, Tianjin, 300350, P. R. China
| | - Xiaopeng Han
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), Tianjin University, Tianjin, 300350, P. R. China
- National Industry-Education Platform of Energy Storage, Tianjin University, 135 Yaguan Road, Tianjin, 300350, P. R. China
| | - Fang He
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), Tianjin University, Tianjin, 300350, P. R. China
| | - Chunnian He
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), Tianjin University, Tianjin, 300350, P. R. China
- National Industry-Education Platform of Energy Storage, Tianjin University, 135 Yaguan Road, Tianjin, 300350, P. R. China
| | - Wenbin Hu
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), Tianjin University, Tianjin, 300350, P. R. China
- National Industry-Education Platform of Energy Storage, Tianjin University, 135 Yaguan Road, Tianjin, 300350, P. R. China
| | - Guangmin Zhou
- Tsinghua-Berkeley Shenzhen Institute & Tsinghua, Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, P. R. China
| | - Naiqin Zhao
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), Tianjin University, Tianjin, 300350, P. R. China
- National Industry-Education Platform of Energy Storage, Tianjin University, 135 Yaguan Road, Tianjin, 300350, P. R. China
| |
Collapse
|
4
|
Sui S, Xie H, Chen B, Wang T, Qi Z, Wang J, Sha J, Liu E, Zhu S, Lei K, Zheng S, Zhou G, He C, Hu W, He F, Zhao N. Highly Reversible Sodium-ion Storage in A Bifunctional Nanoreactor Based on Single-atom Mn Supported on N-doped Carbon over MoS 2 Nanosheets. Angew Chem Int Ed Engl 2024; 63:e202411255. [PMID: 38980971 DOI: 10.1002/anie.202411255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 07/05/2024] [Accepted: 07/05/2024] [Indexed: 07/11/2024]
Abstract
Conversion-type electrode materials have gained massive research attention in sodium-ion batteries (SIBs), but their limited reversibility hampers practical use. Herein, we report a bifunctional nanoreactor to boost highly reversible sodium-ion storage, wherein a record-high reversible degree of 85.65 % is achieved for MoS2 anodes. Composed of nitrogen-doped carbon-supported single atom Mn (NC-SAMn), this bifunctional nanoreactor concurrently confines active materials spatially and catalyzes reaction kinetics. In situ/ex situ characterizations including spectroscopy, microscopy, and electrochemistry, combined with theoretical simulations containing density functional theory and molecular dynamics, confirm that the NC-SAMn nanoreactors facilitate the electron/ion transfer, promote the distribution and interconnection of discharging products (Na2S/Mo), and reduce the Na2S decomposition barrier. As a result, the nanoreactor-promoted MoS2 anodes exhibit ultra-stable cycling with a capacity retention of 99.86 % after 200 cycles in the full cell. This work demonstrates the superiority of bifunctional nanoreactors with two-dimensional confined and catalytic effects, providing a feasible approach to improve the reversibility for a wide range of conversion-type electrode materials, thereby enhancing the application potential for long-cycled SIBs.
Collapse
Affiliation(s)
- Simi Sui
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin, 300350, P. R. China E-mails
- Tianjin Key Laboratory of Materials Laminating Fabrication and Interface Control Technology, School of Materials Science and Engineering, Hebei University of Technology, Tianjin, 300401, People's Republic of China
| | - Haonan Xie
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin, 300350, P. R. China E-mails
| | - Biao Chen
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin, 300350, P. R. China E-mails
- National Industry-Education Platform of Energy Storage, Tianjin University, 135 Yaguan Road, Tianjin, 300350, People's Republic of China
| | - Tianshuai Wang
- Xi'an Key Laboratory of Functional Organic Porous Materials, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710129, P. R. China
| | - Zijia Qi
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin, 300350, P. R. China E-mails
| | - Jingyi Wang
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin, 300350, P. R. China E-mails
| | - Junwei Sha
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin, 300350, P. R. China E-mails
| | - Enzuo Liu
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin, 300350, P. R. China E-mails
| | - Shan Zhu
- Tianjin Key Laboratory of Materials Laminating Fabrication and Interface Control Technology, School of Materials Science and Engineering, Hebei University of Technology, Tianjin, 300401, People's Republic of China
| | - Kaixiang Lei
- Tianjin Key Laboratory of Materials Laminating Fabrication and Interface Control Technology, School of Materials Science and Engineering, Hebei University of Technology, Tianjin, 300401, People's Republic of China
| | - Shijian Zheng
- Tianjin Key Laboratory of Materials Laminating Fabrication and Interface Control Technology, School of Materials Science and Engineering, Hebei University of Technology, Tianjin, 300401, People's Republic of China
| | - Guangmin Zhou
- Tsinghua-Berkeley Shenzhen Institute & Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, P. R. China
| | - Chunnian He
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin, 300350, P. R. China E-mails
- National Industry-Education Platform of Energy Storage, Tianjin University, 135 Yaguan Road, Tianjin, 300350, People's Republic of China
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou 350207, P. R. China
| | - Wenbin Hu
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin, 300350, P. R. China E-mails
- National Industry-Education Platform of Energy Storage, Tianjin University, 135 Yaguan Road, Tianjin, 300350, People's Republic of China
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou 350207, P. R. China
| | - Fang He
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin, 300350, P. R. China E-mails
| | - Naiqin Zhao
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin, 300350, P. R. China E-mails
- National Industry-Education Platform of Energy Storage, Tianjin University, 135 Yaguan Road, Tianjin, 300350, People's Republic of China
| |
Collapse
|
5
|
Zhang K, He Y, Zhou J, Wang X, Li Y, Yang F. Effects of external pressure on cycling performance of silicon-based lithium-ion battery: modelling and experimental validation. RSC Adv 2024; 14:29979-29991. [PMID: 39309648 PMCID: PMC11413622 DOI: 10.1039/d4ra05354k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 09/13/2024] [Indexed: 09/25/2024] Open
Abstract
Controlling the stress state of electrodes during electrochemical cycling can have a positive effect on the cycling performance of lithium-ion battery. In this work, we study the cycling performance of silicon-based lithium-ion half cells under the action of pressure in a range of 0.1 to 0.4 MPa. The cycling performance of the silicon-based lithium-ion half cells increases first with increasing the pressure to 0.2 MPa and then decreases with further increasing the pressure. The analysis of the surface morphologies of cycled electrodes reveals that applying a pressure of 0.2 MPa leads to the formation of fine electrode surface with the least surface cracks after the silicon-based lithium-ion half cells are cycled for 50 times, which supports the dependence of the cycling performance of the lithium-ion half cells on the pressure. The numerical results from the single particle model reveal that applying pressure can tune the stress state in a single electrode particle and reduce the tensile stress. However, the numerical results from the two-particle model point to that applying pressure can introduce tensile stress in the electrode particles due to contact deformation. Suitable pressure applied onto a lithium-ion battery is needed in order to improve the cycling performance of the lithium-ion battery without causing detrimental effects.
Collapse
Affiliation(s)
- Kai Zhang
- School of Aerospace Engineering and Applied Mechanics, Tongji University Shanghai 200092 China
| | - Yinan He
- School of Aerospace Engineering and Applied Mechanics, Tongji University Shanghai 200092 China
| | - Junwu Zhou
- School of Aerospace Engineering and Applied Mechanics, Tongji University Shanghai 200092 China
| | - Xinyang Wang
- School of Aerospace Engineering and Applied Mechanics, Tongji University Shanghai 200092 China
| | - Yong Li
- School of Intelligent Manufacturing and Control Engineering, Shanghai Polytechnic University Shanghai 201209 China
| | - Fuqian Yang
- Materials Program, Department of Chemical and Materials Engineering, University of Kentucky Lexington Kentucky 40506 USA
| |
Collapse
|
6
|
Wang H, Ning M, Sun M, Li B, Liang Y, Li Z. Research progress of functional MXene in inhibiting lithium/zinc metal battery dendrites. RSC Adv 2024; 14:26837-26856. [PMID: 39184006 PMCID: PMC11343041 DOI: 10.1039/d4ra05220j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 08/15/2024] [Indexed: 08/27/2024] Open
Abstract
The layered two-dimensional (2D) MXene has great promise for applications in supercapacitors, batteries, and electrocatalysis due to its large layer spacing, excellent electrical conductivity, good chemical stability, good hydrophilicity, and adjustable layer spacing. Since its discovery in 2011, MXene has been widely used to inhibit the growth of anode dendrites of lithium metal. In the past two years, researchers have used MXene and MXene based materials in the anodes of zinc metal batteries and zinc ion hybrid capacitors, respectively, and made a series of important progressive steps in the inhibition of zinc dendrite growth. In this review, we summarize the research progress of functional MXenes in inhibiting the growth of lithium and zinc metal anode dendrites, and provide a brief overview and outlook on the current challenges of MXene materials, which will help researchers to further understand the methods and their mechanisms, thus to develop novel electrochemical energy storage systems to meet the needs of rapidly developing electric vehicles and wearable/portable electronics.
Collapse
Affiliation(s)
- Haiyan Wang
- Academy for Quantum Science and Technology, Zhengzhou University of Light Industry Zhengzhou 450002 PR China
- School of Electronics and Information, Zhengzhou University of Light Industry Zhengzhou 450002 PR China
| | - Mengxin Ning
- School of Electronics and Information, Zhengzhou University of Light Industry Zhengzhou 450002 PR China
| | - Min Sun
- School of Electronics and Information, Zhengzhou University of Light Industry Zhengzhou 450002 PR China
| | - Bin Li
- School of Electronics and Information, Zhengzhou University of Light Industry Zhengzhou 450002 PR China
| | - Yachuan Liang
- Academy for Quantum Science and Technology, Zhengzhou University of Light Industry Zhengzhou 450002 PR China
- School of Electronics and Information, Zhengzhou University of Light Industry Zhengzhou 450002 PR China
| | - Zijiong Li
- School of Electronics and Information, Zhengzhou University of Light Industry Zhengzhou 450002 PR China
| |
Collapse
|
7
|
Deng X, Zhang P, Wan Z, Ma Z, Wang X. Heterostructure Engineering of NiCo-LDHs for Enhanced Energy Storage Performance in Aqueous Zinc-Ion Batteries. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2311332. [PMID: 38431963 DOI: 10.1002/smll.202311332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/31/2024] [Indexed: 03/05/2024]
Abstract
Aqueous zinc-ion batteries (AZIBs) are considered a promising device for next-generation energy storage due to their high safety and low cost. However, developing high-performance cathodes that can be matched with zinc metal anodes remains a challenge in unlocking the full potential of AZIBs. In this study, a typical transition metal layered double hydroxides (NiCo-LDHs) can be in situ reconstructed to NiCo-LDHs/Ni(Co)OOH heterostructure using an electrochemical cycling activation (ECA) method, serving as a novel cathode material for AZIBs. The optimized ECA-NiCo-LDHs cathode demonstrates a high capacity of 181.5 mAh g-1 at 1 A g-1 and retains 75% of initial capacity after 700 cycles at 5 A g-1. The abundant heterointerfaces of the NiCo-LDHs/Ni(Co)OOH material can activate additional active sites for zinc-ion storage and accelerate ion diffusion. Theoretical calculations also suggest the heterostructure can boost charge transfer and regulate ion-adsorption capability, thereby improving the electrochemical performance. Additionally, the flexible AZIBs device exhibits good service performance. This study on interface engineering introduces a new possibility for utilizing LDHs in AZIBs and offers a novel strategy for designing electrode materials.
Collapse
Affiliation(s)
- Xiaoyang Deng
- Laboratory of Advanced Materials and Energy Electrochemistry, Institute of New Carbon Materials, College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan, Shanxi, 030024, China
| | - Pengfei Zhang
- Laboratory of Advanced Materials and Energy Electrochemistry, Institute of New Carbon Materials, College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan, Shanxi, 030024, China
| | - Zihao Wan
- Laboratory of Advanced Materials and Energy Electrochemistry, Institute of New Carbon Materials, College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan, Shanxi, 030024, China
| | - Zizai Ma
- Shanxi Key Laboratory of Gas Energy Efficient and Clean Utilization, Taiyuan, Shanxi, 030024, China
- College of Chemistry, Taiyuan University of Technology, Taiyuan, Shanxi, 030024, China
| | - Xiaoguang Wang
- Laboratory of Advanced Materials and Energy Electrochemistry, Institute of New Carbon Materials, College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan, Shanxi, 030024, China
- Shanxi Key Laboratory of Gas Energy Efficient and Clean Utilization, Taiyuan, Shanxi, 030024, China
| |
Collapse
|
8
|
Liang M, Xie H, Chen B, Qin H, Zhang H, Wang J, Sha J, Ma L, Liu E, Kang J, Shi C, He F, Han X, Hu W, Zhao N, He C. High-Pressure-Field Induced Synthesis of Ultrafine-Sized High-Entropy Compounds with Excellent Sodium-Ion Storage. Angew Chem Int Ed Engl 2024; 63:e202401238. [PMID: 38651232 DOI: 10.1002/anie.202401238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 04/19/2024] [Accepted: 04/22/2024] [Indexed: 04/25/2024]
Abstract
Emerging high entropy compounds (HECs) have attracted huge attention in electrochemical energy-related applications. The features of ultrafine size and carbon incorporation show great potential to boost the ion-storage kinetics of HECs. However, they are rarely reported because high-temperature calcination tends to result in larger crystallites, phase separation, and carbon reduction. Herein, using the NaCl self-assembly template method, by introducing a high-pressure field in the calcination process, the atom diffusion and phase separation are inhibited for the general formation of HECs, and the HEC aggregation is inhibited for obtaining ultrafine size. The general preparation of ultrafine-sized (<10 nm) HECs (nitrides, oxides, sulfides, and phosphates) anchored on porous carbon composites is realized. They are demonstrated by combining advanced characterization technologies with theoretical computations. Ultrafine-sized high entropy sulfides-MnFeCoCuSnMo/porous carbon (HES-MnFeCoCuSnMo/PC) as representative anodes exhibit excellent sodium-ion storage kinetics and capacities (a high rating capacity of 278 mAh g-1 at 10 A g-1 for full cell and a high cycling capacity of 281 mAh g-1 at 20 A g-1 after 6000 cycles for half cell) due to the combining advantages of high entropy effect, ultrafine size, and PC incorporation. Our work provides a new opportunity for designing and fabricating ultrafine-sized HECs.
Collapse
Affiliation(s)
- Ming Liang
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), Tianjin University, Tianjin, 300350, People's Republic of China
| | - Haonan Xie
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), Tianjin University, Tianjin, 300350, People's Republic of China
| | - Biao Chen
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), Tianjin University, Tianjin, 300350, People's Republic of China
- National Industry-Education Platform of Energy Storage, Tianjin University, 135 Yaguan Road, Tianjin, 300350, People's Republic of China
| | - Hongye Qin
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Renewable Energy Conversion and Storage Center, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Hanwen Zhang
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University Binhai New City, Fuzhou, 350207, People's Republic of China
- Department of Physics, National University of Singapore, 2 Science Drive 3, 117542, Singapore, Singapore
| | - Jingyi Wang
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), Tianjin University, Tianjin, 300350, People's Republic of China
| | - Junwei Sha
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), Tianjin University, Tianjin, 300350, People's Republic of China
| | - Liying Ma
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), Tianjin University, Tianjin, 300350, People's Republic of China
| | - Enzuo Liu
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), Tianjin University, Tianjin, 300350, People's Republic of China
| | - Jianli Kang
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), Tianjin University, Tianjin, 300350, People's Republic of China
| | - Chunsheng Shi
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), Tianjin University, Tianjin, 300350, People's Republic of China
| | - Fang He
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), Tianjin University, Tianjin, 300350, People's Republic of China
| | - Xiaopeng Han
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), Tianjin University, Tianjin, 300350, People's Republic of China
- National Industry-Education Platform of Energy Storage, Tianjin University, 135 Yaguan Road, Tianjin, 300350, People's Republic of China
| | - Wenbin Hu
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), Tianjin University, Tianjin, 300350, People's Republic of China
- National Industry-Education Platform of Energy Storage, Tianjin University, 135 Yaguan Road, Tianjin, 300350, People's Republic of China
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University Binhai New City, Fuzhou, 350207, People's Republic of China
| | - Naiqin Zhao
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), Tianjin University, Tianjin, 300350, People's Republic of China
- National Industry-Education Platform of Energy Storage, Tianjin University, 135 Yaguan Road, Tianjin, 300350, People's Republic of China
| | - Chunnian He
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), Tianjin University, Tianjin, 300350, People's Republic of China
- National Industry-Education Platform of Energy Storage, Tianjin University, 135 Yaguan Road, Tianjin, 300350, People's Republic of China
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University Binhai New City, Fuzhou, 350207, People's Republic of China
| |
Collapse
|
9
|
Chen B, Qi Z, Chen B, Liu X, Li H, Han X, Zhou G, Hu W, Zhao N, He C. Room-Temperature Salt Template Synthesis of Nitrogen-Doped 3D Porous Carbon for Fast Metal-Ion Storage. Angew Chem Int Ed Engl 2024; 63:e202316116. [PMID: 37983741 DOI: 10.1002/anie.202316116] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 11/18/2023] [Accepted: 11/20/2023] [Indexed: 11/22/2023]
Abstract
The water-soluble salt-template technique holds great promise for fabricating 3D porous materials. However, an equipment-free and pore-size controllable synthetic approach employing salt-template precursors at room temperature has remained unexplored. Herein, we introduce a green room-temperature antisolvent precipitation strategy for creating salt-template self-assembly precursors to universally produce 3D porous materials with controllable pore size. Through a combination of theoretical simulations and advanced characterization techniques, we unveil the antisolvent precipitation mechanism and provide guidelines for selecting raw materials and controlling the size of precipitated salt. Following the calcination and washing steps, we achieve large-scale and universal production of 3D porous materials and the recycling of the salt templates and antisolvents. The optimized nitrogen-doped 3D porous carbon (N-3DPC) materials demonstrate distinctive structural benefits, facilitating a high capacity for potassium-ion storage along with exceptional reversibility. This is further supported by in situ electrochemical impedance spectra, in situ Raman spectroscopy, and theoretical calculations. The anode shows a high rate capacity of 181 mAh g-1 at 4 A g-1 in the full cell. This study addresses the knowledge gap concerning the room-temperature synthesis of salt-template self-assembly precursors for the large-scale production of porous materials, thereby expanding their potential applications for electrochemical energy conversion and storage.
Collapse
Affiliation(s)
- Bochao Chen
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), Tianjin University, Tianjin, 300350, P. R. China
| | - Zijia Qi
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), Tianjin University, Tianjin, 300350, P. R. China
| | - Biao Chen
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), Tianjin University, Tianjin, 300350, P. R. China
- National Industry-Education Platform of Energy Storage, Tianjin University, 135 Yaguan Road, Tianjin, 300350, P. R. China
| | - Xin Liu
- School of Electrical and Electronic Engineering, Harbin University of Science and Technology, Harbin, 150080, P. R. China
| | - Huan Li
- School of Chemical Engineering and Advanced Materials, The University of Adelaide, Adelaide, South Australia, 5005, Australia
| | - Xiaopeng Han
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), Tianjin University, Tianjin, 300350, P. R. China
- National Industry-Education Platform of Energy Storage, Tianjin University, 135 Yaguan Road, Tianjin, 300350, P. R. China
| | - Guangmin Zhou
- Shenzhen Geim Graphene Center, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| | - Wenbin Hu
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), Tianjin University, Tianjin, 300350, P. R. China
- National Industry-Education Platform of Energy Storage, Tianjin University, 135 Yaguan Road, Tianjin, 300350, P. R. China
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University Binhai New City, Fuzhou, 350207, P. R. China
| | - Naiqin Zhao
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), Tianjin University, Tianjin, 300350, P. R. China
- National Industry-Education Platform of Energy Storage, Tianjin University, 135 Yaguan Road, Tianjin, 300350, P. R. China
| | - Chunnian He
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), Tianjin University, Tianjin, 300350, P. R. China
- National Industry-Education Platform of Energy Storage, Tianjin University, 135 Yaguan Road, Tianjin, 300350, P. R. China
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University Binhai New City, Fuzhou, 350207, P. R. China
| |
Collapse
|