1
|
Yu X, Sun X, Zhu Z, Li Z. Stabilization Strategies of Buried Interface for Efficient SAM-Based Inverted Perovskite Solar Cells. Angew Chem Int Ed Engl 2025; 64:e202419608. [PMID: 39565169 DOI: 10.1002/anie.202419608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 11/19/2024] [Accepted: 11/19/2024] [Indexed: 11/21/2024]
Abstract
In recent years, self-assembled monolayers (SAMs) anchored on metal oxides (MO) have greatly boosted the performance of inverted (p-i-n) perovskite solar cells (PVSCs) by serving as hole-selective contacts due to their distinct advantages in transparency, hole-selectivity, passivation, cost-effectiveness, and processing efficiency. While the intrinsic monolayer nature of SAMs provides unique advantages, it also makes them highly sensitive to external pressure, posing a significant challenge for long-term device stability. At present, the stability issue of SAM-based PVSCs is gradually attracting attention. In this minireview, we discuss the fundamental stability issues arising from the structural characteristics, operating mechanisms, and roles of SAMs, and highlight representative works on improving their stability. We identify the buried interface stability concerns in three key aspects: 1) SAM/MO interface, 2) SAM inner layer, and 3) SAM/perovskite interface, corresponding to the anchoring group, linker group, and terminal group in the SAMs, respectively. Finally, we have proposed potential strategies for achieving excellent stability in SAM-based buried interfaces, particularly for large-scale and flexible applications. We believe this review will deepen understanding of the relationship between SAM structure and their device performance, thereby facilitating the design of novel SAMs and advancing their eventual commercialization in high-efficiency and stable inverted PVSCs.
Collapse
Affiliation(s)
- Xinyu Yu
- Hubei Key Laboratory of Material Chemistry and Service Failure, Key Laboratory for Material Chemistry of Energy Conversion and Storage, Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Xianglang Sun
- Department of Chemistry, City University of Hong Kong, Kowloon, 999077, Hong Kong
| | - Zonglong Zhu
- Department of Chemistry, City University of Hong Kong, Kowloon, 999077, Hong Kong
| | - Zhong'an Li
- Hubei Key Laboratory of Material Chemistry and Service Failure, Key Laboratory for Material Chemistry of Energy Conversion and Storage, Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
- Shenzhen Huazhong University of Science and Technology Research institute, Shenzhen, 518000, China
| |
Collapse
|
2
|
Zhang W, Liu H, Huang T, Kang L, Ge J, Li H, Zhou X, Zhang W, Shi T, Wang HL. Oriented Molecular Dipole-Enabled Modulation of NiO x/Perovskite Interface for Pb-Sn Mixed Inorganic Perovskite Solar Cells. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025:e2414125. [PMID: 39828596 DOI: 10.1002/adma.202414125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 11/13/2024] [Indexed: 01/22/2025]
Abstract
Nickel oxide (NiOx) is considered as a potential hole transport material in the fabrication of lead-tin (Pb-Sn) perovskite solar cells (PSCs) for tandem applications. However, the energy level mismatch and unfavorable redox reactions between Ni≥3+ species and Sn2+ at the NiOx/perovskite interface pose challenges. Herein, high-performance Pb-Sn-based inorganic PSCs are demonstrated by modulating the NiOx/perovskite interface with a multifunctional 4-aminobenzenesulfonic acid (4-ABSA) interlayer. The 4-ABSA interlayer induces the formation of an oriented dipole moment directed from NiOx to perovskite, effectively elevating the valance band maximum of the NiOx film, thus balancing the energy level difference and promoting charge carrier extraction of the device. Moreover, the 4-ABSA molecules interact with both NiOx and perovskite, suppressing the reaction of highly active Ni≥3+ species with perovskites while regulating perovskite crystallization. This results in perovskite films with reduced defect density and enlarged grains. Consequently, a remarkable device efficiency of 17.4% is obtained, representing the highest reported value for Pb-Sn-based inorganic PSCs thus far. Furthermore, the 4-ABSA interlayer enhances the UV-radiation and operational stability of the resulting devices, maintaining over 80% and 90% of the initial efficiency after 240 h of UV-light exposure and 480 h of 1 sun illumination, respectively.
Collapse
Affiliation(s)
- Weihai Zhang
- School of New Energy, Ningbo University of Technology, Ningbo, 315336, China
- Department of Materials Science and Engineering, Key University Laboratory of Highly Efficient Utilization of Solar Energy and Sustainable Development of Guangdong, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Heng Liu
- Department of Materials Science and Engineering, Key University Laboratory of Highly Efficient Utilization of Solar Energy and Sustainable Development of Guangdong, Southern University of Science and Technology, Shenzhen, 518055, China
- Institute of Materials, Henan Academy of Sciences, Zhengzhou, 450046, China
| | - Tengcheng Huang
- Siyuan Laboratory, Guangzhou Key Laboratory of Vacuum Coating Technologies and New Energy Materials, Guangdong Provincial Engineering Technology Research Center of Vacuum Coating Technologies and New Energy Materials, Department of Physics, Jinan University, Guangzhou, 510632, China
| | - Lirui Kang
- School of New Energy, Ningbo University of Technology, Ningbo, 315336, China
| | - Junhan Ge
- School of New Energy, Ningbo University of Technology, Ningbo, 315336, China
| | - Hui Li
- School of New Energy, Ningbo University of Technology, Ningbo, 315336, China
| | - Xia Zhou
- School of New Energy, Ningbo University of Technology, Ningbo, 315336, China
| | - Wenjun Zhang
- School of New Energy, Ningbo University of Technology, Ningbo, 315336, China
| | - Tingting Shi
- Siyuan Laboratory, Guangzhou Key Laboratory of Vacuum Coating Technologies and New Energy Materials, Guangdong Provincial Engineering Technology Research Center of Vacuum Coating Technologies and New Energy Materials, Department of Physics, Jinan University, Guangzhou, 510632, China
| | - Hsing-Lin Wang
- Department of Materials Science and Engineering, Key University Laboratory of Highly Efficient Utilization of Solar Energy and Sustainable Development of Guangdong, Southern University of Science and Technology, Shenzhen, 518055, China
| |
Collapse
|
3
|
Chen LY, Sun Q, Xie YM, Fung MK. A review: strategies for reducing the open-circuit voltage loss of wide-bandgap perovskite solar cells. Chem Commun (Camb) 2025; 61:1063-1086. [PMID: 39659275 DOI: 10.1039/d4cc05131a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2024]
Abstract
Perovskite-based tandem solar cells (PTSCs) have made remarkable achievements in recent years, and the highest certified power conversion efficiency (PCE) of 33.9% has been achieved in perovskite/silicon tandem solar cells (PSTSCs), indicating their great commercialization potential. Nevertheless, the performance of PTSCs continues to be hindered by the compromised performance of wide-bandgap perovskite solar cells (WPSCs), particularly the high VOC deficit of WPSCs. Therefore, numerous strategies have been developed to minimize the VOC loss of WPSCs. Herein, we sort to comprehensively review about the reported studies on reducing the VOC deficit of WPSCs, focusing on interface modification, charge transport material (CTM) exploration, and additive engineering, with the aim of providing guidelines for increasing the VOC of WPSCs. Finally, we will provide a conclusive outlook on WPSCs, sharing our perspectives to inspire further advancements in both WPSCs and PTSCs.
Collapse
Affiliation(s)
- Lu-Yao Chen
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, 215123, Jiangsu, P. R. China.
- Institute of Organic Optoelectronics, Jiangsu Industrial Technology Research Institute (JITRI), 1198 Fenhu Dadao, Wujiang, Suzhou 215200, China
| | - Qi Sun
- Macao Institute of Materials Science and Engineering (MIMSE), MUST-SUDA Joint Research Center for Advanced Functional Materials, Zhuhai MUST Science and Technology Research Institute, Macau University of Science and Technology, Taipa 999078, Macau, China
- Institute of Organic Optoelectronics, Jiangsu Industrial Technology Research Institute (JITRI), 1198 Fenhu Dadao, Wujiang, Suzhou 215200, China
| | - Yue-Min Xie
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, 215123, Jiangsu, P. R. China.
- Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, Suzhou, 215123, Jiangsu, P. R. China
- Institute of Organic Optoelectronics, Jiangsu Industrial Technology Research Institute (JITRI), 1198 Fenhu Dadao, Wujiang, Suzhou 215200, China
| | - Man-Keung Fung
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, 215123, Jiangsu, P. R. China.
- Macao Institute of Materials Science and Engineering (MIMSE), MUST-SUDA Joint Research Center for Advanced Functional Materials, Zhuhai MUST Science and Technology Research Institute, Macau University of Science and Technology, Taipa 999078, Macau, China
- Institute of Organic Optoelectronics, Jiangsu Industrial Technology Research Institute (JITRI), 1198 Fenhu Dadao, Wujiang, Suzhou 215200, China
| |
Collapse
|
4
|
Tian J, Zhang H. Enhancing efficiency and stability in perovskite solar cells: innovations in self-assembled monolayers. Front Chem 2025; 12:1519166. [PMID: 39834848 PMCID: PMC11743467 DOI: 10.3389/fchem.2024.1519166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Accepted: 12/13/2024] [Indexed: 01/22/2025] Open
Abstract
Perovskite solar cells (PVSCs) show remarkable potential due to their high-power conversion efficiencies and scalability. However, challenges related to stability and long-term performance remain significant. Self-assembled monolayers (SAMs) have emerged as a crucial solution, enhancing interfacial properties, facilitating hole extraction, and minimizing non-radiative recombination. This review examines recent advancements in SAMs for PVSCs, focusing on three key areas: anchoring groups and interface engineering, electronic structure modulation as well as band alignment, and stability optimization. We emphasize the role of anchoring groups in reducing defects and improving crystallinity, alongside the ability of SAMs to fine-tune energy levels for more effective hole extraction. Additionally, co-adsorbed SAM strategies was discussed which can enhance the durability of PVSCs against thermal and moisture degradation. Overall, SAMs present a promising avenue for addressing both efficiency and stability challenges in PVSCs, paving the way toward commercial viability. Future research should prioritize long-term environmental durability and the scaling up of SAM applications for industrial implementation.
Collapse
Affiliation(s)
| | - Haichang Zhang
- Key laboratory of Rubber-Plastic of Ministry of Education /Shandong Province (QUST), School of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao, China
| |
Collapse
|
5
|
Wang L, Wang N, Wu X, Liu B, Liu Q, Li B, Zhang D, Kalasariya N, Zhang Y, Yan X, Wang J, Zheng P, Yang J, Jin H, Wang C, Qian L, Yang B, Wang Y, Cheng X, Song T, Stolterfoht M, Zeng XC, Zhang X, Xu M, Bai Y, Xu F, Zhou C, Zhu Z. Highly Efficient Monolithic Perovskite/TOPCon Silicon Tandem Solar Cells Enabled by "Halide Locking". ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025:e2416150. [PMID: 39748610 DOI: 10.1002/adma.202416150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 11/27/2024] [Indexed: 01/04/2025]
Abstract
Perovskite/silicon tandem solar cells (TSCs) are promising candidates for commercialization due to their outstanding power conversion efficiencies (PCEs). However, controlling the crystallization process and alleviating the phases/composition inhomogeneity represent a considerable challenge for perovskite layers grown on rough silicon substrates, ultimately limiting the efficiency and stability of TSC. Here, this study reports a "halide locking" strategy that simultaneously modulates the nucleation and crystal growth process of wide bandgap perovskites by introducing a multifunctional ammonium salt, thioacetylacetamide hydrochloride (TAACl), to bind with all types of cations and anions in the mixed halide perovskite precursor. The approach not only enables excellent compositional uniformity in the wet-film stage but also induces preferred orientation along the (001) plane following nucleation, leading to enhanced homogeneity of the perovskite film in both vertical and horizontal directions over long-length scales. The resulting wide-bandgap perovskite solar cells yield exceptional open-circuit voltage-fill factor products (VOC × FF) of 1.074 and 1.040 in small- (0.0414 cm2) and large-area (1.0208 cm2) devices, respectively. Corresponding large-area tandem solar cells based on the Tunnel Oxide Passivated Contact (TOPCon) silicon subcells achieve a record PCE of 31.32% with a remarkable VOC of 1.931 V and FF of 81.54%.
Collapse
Affiliation(s)
- Lina Wang
- Shenzhen Key Laboratory of Ultraintense Laser and Advanced Material Technology, Center for Intense Laser Application Technology (iLaT) and College of Engineering Physics, Shenzhen Technology University, Shenzhen, 518118, China
- Department of Chemistry, City University of Hong Kong, Kowloon, 999077, Hong Kong
| | - Ning Wang
- Department of Chemistry, City University of Hong Kong, Kowloon, 999077, Hong Kong
| | - Xin Wu
- Department of Chemistry, City University of Hong Kong, Kowloon, 999077, Hong Kong
| | - Baoze Liu
- Department of Chemistry, City University of Hong Kong, Kowloon, 999077, Hong Kong
| | - Qi Liu
- Department of Materials Science and Engineering, City University of Hong Kong, Kowloon, 999077, Hong Kong
| | - Bo Li
- Department of Chemistry, City University of Hong Kong, Kowloon, 999077, Hong Kong
| | - Dong Zhang
- Department of Chemistry, City University of Hong Kong, Kowloon, 999077, Hong Kong
| | - Nikhil Kalasariya
- Electronic Engineering Department, The Chinese University of Hong Kong, Shatin, N.T., 999077, Hong Kong
| | - Yuanfang Zhang
- Zhejiang Jinko Solar Co., Ltd., Haining, Zhejiang, 314416, China
| | - Xunlei Yan
- Zhejiang Jinko Solar Co., Ltd., Haining, Zhejiang, 314416, China
| | - Jungan Wang
- Zhejiang Jinko Solar Co., Ltd., Haining, Zhejiang, 314416, China
| | - Peiting Zheng
- Zhejiang Jinko Solar Co., Ltd., Haining, Zhejiang, 314416, China
| | - Jie Yang
- Zhejiang Jinko Solar Co., Ltd., Haining, Zhejiang, 314416, China
| | - Hao Jin
- Zhejiang Jinko Solar Co., Ltd., Haining, Zhejiang, 314416, China
| | - Chenyue Wang
- Shanghai Synchrotron Radiation Facility (SSRF), Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201204, China
| | - Liangchen Qian
- Department of Chemistry, City University of Hong Kong, Kowloon, 999077, Hong Kong
| | - Bin Yang
- Shenzhen Key Laboratory of Ultraintense Laser and Advanced Material Technology, Center for Intense Laser Application Technology (iLaT) and College of Engineering Physics, Shenzhen Technology University, Shenzhen, 518118, China
| | - Yan Wang
- Department of Chemistry, City University of Hong Kong, Kowloon, 999077, Hong Kong
| | - Xuelan Cheng
- Shenzhen Key Laboratory of Ultraintense Laser and Advanced Material Technology, Center for Intense Laser Application Technology (iLaT) and College of Engineering Physics, Shenzhen Technology University, Shenzhen, 518118, China
| | - Tinglu Song
- Experimental Centre for Advanced Materials, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Martin Stolterfoht
- Electronic Engineering Department, The Chinese University of Hong Kong, Shatin, N.T., 999077, Hong Kong
| | - Xiao Cheng Zeng
- Department of Materials Science and Engineering, City University of Hong Kong, Kowloon, 999077, Hong Kong
| | - Xinyu Zhang
- Zhejiang Jinko Solar Co., Ltd., Haining, Zhejiang, 314416, China
| | - Menglei Xu
- Zhejiang Jinko Solar Co., Ltd., Haining, Zhejiang, 314416, China
| | - Yang Bai
- Experimental Centre for Advanced Materials, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Fang Xu
- Shenzhen Key Laboratory of Ultraintense Laser and Advanced Material Technology, Center for Intense Laser Application Technology (iLaT) and College of Engineering Physics, Shenzhen Technology University, Shenzhen, 518118, China
| | - Cangtao Zhou
- Shenzhen Key Laboratory of Ultraintense Laser and Advanced Material Technology, Center for Intense Laser Application Technology (iLaT) and College of Engineering Physics, Shenzhen Technology University, Shenzhen, 518118, China
| | - Zonglong Zhu
- Department of Chemistry, City University of Hong Kong, Kowloon, 999077, Hong Kong
- Shenzhen Research Institute, City University of Hong Kong, Shenzhen, 518057, China
| |
Collapse
|
6
|
Sun X, Zhang C, Gao D, Yu X, Li B, Wu X, Zhang S, He Y, Yu Z, Qian L, Gong J, Li S, Li N, Zhu Z, Li Z. Enhancing Efficiency and Stability of Inverted Perovskite Solar Cells through Solution-Processed and Structurally Ordered Fullerene. Angew Chem Int Ed Engl 2025; 64:e202412819. [PMID: 39259617 DOI: 10.1002/anie.202412819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 09/03/2024] [Accepted: 09/11/2024] [Indexed: 09/13/2024]
Abstract
The electron transporting layer (ETL) used in high performance inverted perovskite solar cells (PSCs) is typically composed of C60, which requires time-consuming and costly thermal evaporation deposition, posing a significant challenge for large-scale production. To address this challenge, herein, we present a novel design of solution-processible electron transporting material (ETM) by grafting a non-fullerene acceptor fragment onto C60. The synthesized BTPC60 exhibits an exceptional solution processability and well-organized molecular stacking pattern, enabling the formation of uniform and structurally ordered film with high electron mobility. When applied as ETL in inverted PSCs, BTPC60 not only exhibits excellent interfacial contact with the perovskite layer, resulting in enhanced electron extraction and transfer efficiency, but also effectively passivates the interfacial defects to suppress non-radiative recombination. Resultant BTPC60-based inverted PSCs deliver an impressive power conversion efficiency (PCE) of 25.3 % and retain almost 90 % of the initial values after aging at 85 °C for 1500 hours in N2. More encouragingly, the solution-processed BTPC60 ETL demonstrates remarkable film thickness tolerance, and enables a high PCE up to 24.8 % with the ETL thickness of 200 nm. Our results highlight BTPC60 as a promising solution-processed fullerene-based ETM, opening an avenue for improving the scalability of efficient and stable inverted PSCs.
Collapse
Affiliation(s)
- Xianglang Sun
- Department of Chemistry, City University of Hong Kong, Kowloon, 999077, Hong Kong
- Key Laboratory for Material Chemistry of Energy Conversion and Storage, Ministry of Education, School of Chemistry and Chemical Engineering, State Key Laboratory of Materials Processing and Die & Mould Technology, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Chunlei Zhang
- Department of Chemistry, City University of Hong Kong, Kowloon, 999077, Hong Kong
- Shenzhen Research Institute, City University of Hong Kong, Shenzhen, 518057, P. R. China
| | - Danpeng Gao
- Department of Chemistry, City University of Hong Kong, Kowloon, 999077, Hong Kong
- Shenzhen Research Institute, City University of Hong Kong, Shenzhen, 518057, P. R. China
| | - Xinyu Yu
- Key Laboratory for Material Chemistry of Energy Conversion and Storage, Ministry of Education, School of Chemistry and Chemical Engineering, State Key Laboratory of Materials Processing and Die & Mould Technology, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Bo Li
- Department of Chemistry, City University of Hong Kong, Kowloon, 999077, Hong Kong
| | - Xin Wu
- Department of Chemistry, City University of Hong Kong, Kowloon, 999077, Hong Kong
| | - Shoufeng Zhang
- Department of Chemistry, City University of Hong Kong, Kowloon, 999077, Hong Kong
| | - Yaxin He
- Key Laboratory for Material Chemistry of Energy Conversion and Storage, Ministry of Education, School of Chemistry and Chemical Engineering, State Key Laboratory of Materials Processing and Die & Mould Technology, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Zexin Yu
- Department of Chemistry, City University of Hong Kong, Kowloon, 999077, Hong Kong
| | - Liangchen Qian
- Department of Chemistry, City University of Hong Kong, Kowloon, 999077, Hong Kong
| | - Jianqiu Gong
- Department of Chemistry, City University of Hong Kong, Kowloon, 999077, Hong Kong
| | - Shuai Li
- Department of Chemistry, City University of Hong Kong, Kowloon, 999077, Hong Kong
| | - Nan Li
- Department of Materials Science and Engineering, City University of Hong Kong, Kowloon, 999077, Hong Kong
| | - Zonglong Zhu
- Department of Chemistry, City University of Hong Kong, Kowloon, 999077, Hong Kong
- Shenzhen Research Institute, City University of Hong Kong, Shenzhen, 518057, P. R. China
| | - Zhong'an Li
- Key Laboratory for Material Chemistry of Energy Conversion and Storage, Ministry of Education, School of Chemistry and Chemical Engineering, State Key Laboratory of Materials Processing and Die & Mould Technology, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| |
Collapse
|
7
|
Wu X, Zhang D, Liu B, Wang Y, Wang X, Liu Q, Gao D, Wang N, Li B, Wang L, Yu Z, Li X, Xiao S, Li N, Stolterfoht M, Lin YH, Yang S, Zeng XC, Zhu Z. Optimization of Charge Extraction and Interconnecting Layers for Highly Efficient Perovskite/Organic Tandem Solar Cells with High Fill Factor. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2410692. [PMID: 39313988 DOI: 10.1002/adma.202410692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 09/10/2024] [Indexed: 09/25/2024]
Abstract
Perovskite/organic tandem solar cells (POTSCs) have garnered significant attention due to their potential for achieving high photovoltaic (PV) performance. However, the reported power conversion efficiencies (PCEs) and fill factors (FFs) are still subpar due to the challenges associated with charge extraction in the organic bulk-heterojunction (BHJ) and significant energy losses in the interconnecting layers (ICLs). Here, a quaternary organic BHJ blend is developed to enhance the charge extraction in the organic subcell, contributing to an increased FF of ≥78% under 1 sun illumination and even more under lower illumination intensities. Meanwhile, energy losses in the ICLs are reduced via the incorporation of a self-assembly monolayer (SAM), (4-(3,6-Dimethyl-9H-carbazol-9-yl)butyl)phosphonic acid (Me-4PACz), in organic BHJ to form a MoOx/SAM interface and the thorough control of the MoOx thickness to suppress parasitic absorption. The resultant POTSCs achieve a remarkable PCE of 25.56% (certified: 24.65%), with a record FF of 83.62%, which is among the highest PCEs of POTSCs and the highest FF of all types of perovskite-based tandem solar cells (TSCs) till now. This work proves the optimization of charge extraction and ICLs are effective strategies to promote the performance of POTSCs to surpass other solution-processed perovskite-based TSCs in the near future.
Collapse
Affiliation(s)
- Xin Wu
- Department of Chemistry, City University of Hong Kong, Kowloon, 999077, Hong Kong
| | - Dong Zhang
- Department of Chemistry, City University of Hong Kong, Kowloon, 999077, Hong Kong
| | - Baoze Liu
- Department of Chemistry, City University of Hong Kong, Kowloon, 999077, Hong Kong
| | - Yan Wang
- Department of Chemistry, City University of Hong Kong, Kowloon, 999077, Hong Kong
| | - Xue Wang
- CAS Key Laboratory of Materials for Energy Conversion, Anhui Laboratory of Advanced Photon Science and Technology, Department of Materials Science and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Qi Liu
- Department of Materials Science and Engineering, City University of Hong Kong, Kowloon, 999077, Hong Kong
| | - Danpeng Gao
- Department of Chemistry, City University of Hong Kong, Kowloon, 999077, Hong Kong
| | - Ning Wang
- Department of Chemistry, City University of Hong Kong, Kowloon, 999077, Hong Kong
| | - Bo Li
- Department of Chemistry, City University of Hong Kong, Kowloon, 999077, Hong Kong
| | - Lina Wang
- Department of Chemistry, City University of Hong Kong, Kowloon, 999077, Hong Kong
| | - Zexin Yu
- Department of Chemistry, City University of Hong Kong, Kowloon, 999077, Hong Kong
| | - Xintong Li
- Department of Chemistry, City University of Hong Kong, Kowloon, 999077, Hong Kong
| | - Shuang Xiao
- Shenzhen Key Laboratory of Ultraintense Laser and Advanced Material Technology, Center for Intense Laser Application Technology (iLaT) and College of Engineering Physics, Shenzhen Technology University, Shenzhen, 518118, China
| | - Nan Li
- Department of Materials Science and Engineering, City University of Hong Kong, Kowloon, 999077, Hong Kong
| | - Martin Stolterfoht
- Electronic Engineering Department, The Chinese University of Hong Kong, Shatin, N.T, Hong Kong, SAR, 999077, Hong Kong
| | - Yen-Hung Lin
- Department of Electronic and Computer Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, 999077, Hong Kong
- State Key Laboratory of Advanced Displays and Optoelectronics Technologies, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, 999077, Hong Kong
| | - Shangfeng Yang
- CAS Key Laboratory of Materials for Energy Conversion, Anhui Laboratory of Advanced Photon Science and Technology, Department of Materials Science and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Xiao Cheng Zeng
- Department of Materials Science and Engineering, City University of Hong Kong, Kowloon, 999077, Hong Kong
| | - Zonglong Zhu
- Department of Chemistry, City University of Hong Kong, Kowloon, 999077, Hong Kong
- Shenzhen Research Institute, City University of Hong Kong, Shenzhen, 518057, China
| |
Collapse
|
8
|
Huang S, Liang C, Lin Z. Application of PACz-Based Self-Assembled Monolayer Materials in Efficient Perovskite Solar Cells. ACS APPLIED MATERIALS & INTERFACES 2024; 16:64424-64446. [PMID: 39548970 DOI: 10.1021/acsami.4c13977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2024]
Abstract
Due to the advantages of low interface resistance, high work function, and high stability, PACz family materials have developed rapidly in p-i-n structure perovskite solar cells (PSCs) in recent years. Numerous studies have shown that PSCs prepared on the basis of PACz family materials or their derivatives as hole transport layers (HTLs) generally exhibit superior performance compared to PSCs prepared on the basis of organic HTL PTAA and inorganic HTL NiOx, especially in terms of stability, demonstrating unparalleled charm. Since the application of PACz-like molecule V1036 as a HTL in PSCs in 2018, research reports on high-performance PSCs based on the PACz family HTL have been widely disseminated. Currently, PSCs based on the PACz HTL exhibit a world record value of 26.7% power conversion efficiency (PCE), breaking the long-standing world record held by n-i-p-structured PSCs, indicating its great potential for application in PSCs. The main problem with using PACz as a HTL is that it exhibits poor wettability toward perovskite precursor solutions, is sensitive to the thickness of the HTL and the roughness of the substrate, has poor thermal stability, and lacks preparation methods, making it difficult to achieve large-area device fabrication. This review summarizes the outstanding achievements of PACz to date, describes the mechanism and unique properties of PACz in PSCs, and looks forward to the future development prospects of PACz.
Collapse
Affiliation(s)
- Suyue Huang
- College of Material Engineering, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350108, People's Republic of China
| | - Chao Liang
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, School of Physics, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, People's Republic of China
| | - Zhichao Lin
- College of Material Engineering, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350108, People's Republic of China
| |
Collapse
|
9
|
Zhang C, Yu Z, Li B, Li X, Gao D, Wu X, Zhu Z. Exploring the Potential and Hurdles of Perovskite Solar Cells with p-i-n Structure. ACS NANO 2024; 18:32299-32314. [PMID: 39540852 DOI: 10.1021/acsnano.4c11866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
The p-i-n architecture within perovskite solar cells (PSCs) is swiftly transitioning from an alternative concept to the forefront of perovskite photovoltaic technology, driven by significant advancements in performance and suitability for tandem solar cell integration. The relentless pursuit to increase efficiencies and understand the factors contributing to instability has yielded notable strategies for enhancing p-i-n PSC performance. Chief among these is the advancement in passivation techniques, including the application of self-assembled monolayers (SAMs), which have proven central to mitigating interface-related inefficiencies. This Perspective delves into a curated selection of recent impactful studies on p-i-n PSCs, focusing on the latest material developments, device architecture refinements, and performance optimization tactics. We particularly emphasize the strides made in passivation and interfacial engineering. Furthermore, we explore the strides and potential of p-i-n structured perovskite tandem solar cells. The Perspective culminates in a discussion of the persistent challenges facing p-i-n PSCs, such as long-term stability, scalability, and the pursuit of environmentally benign solutions, setting the stage for future research directives.
Collapse
Affiliation(s)
- Chunlei Zhang
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong 999077, China
| | - Zexin Yu
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong 999077, China
| | - Bo Li
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong 999077, China
| | - Xintong Li
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong 999077, China
| | - Danpeng Gao
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong 999077, China
| | - Xin Wu
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong 999077, China
| | - Zonglong Zhu
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong 999077, China
- Shenzhen Research Institute, City University of Hong Kong, Shenzhen 518057, China
| |
Collapse
|
10
|
Das Adhikari R, Baishya H, Patel MJ, Yadav D, Iyer PK. Bi-Directional Modification to Quench Detrimental Redox Reactions and Minimize Interfacial Energy Offset for NiO X/Perovskite-Based Solar Cells. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2404588. [PMID: 39126241 DOI: 10.1002/smll.202404588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/21/2024] [Indexed: 08/12/2024]
Abstract
The quality of the buried heterojunction of nickel oxide (NiOX)/perovskite is crucial for efficient charge carrier extraction and minimizing interfacial non-radiative recombination in inverted perovskite solar cells (PSCs). However, NiOX has limitations as a hole transport layer (HTL) due to energy level mismatch, low conduction, and undesirable redox reactions with the perovskite layer, which impede power conversion efficiency (PCE) and long-term stability. In this study, para-amino 2,3,5,6-tetrafluorobenzoic acid (PATFBA) is proposed as a bifacial defect passivator to tailor the NiOX/perovskite interface. The acid group and adjacent fluorine atoms of PATFBA effectively passivate NiOX surface defects, thereby improving its Ni3+/Ni2+ ratio, hole extraction capability, and energy band alignment with perovskite, while also providing active sites for homogenous nucleation. Meanwhile, the amine and adjacent fluorine atomsstabilize the buried perovskite interface by passivating interfacial defects, resulting in higher crystalline perovskite films with supressed non-radaitive recombination. Furthermore, the PATFBA buffer layer prevents redox reactions between Ni3+ and perovskite.These synergistic bi-directional interactions lead to optimized inverted PSCs with a PCE of 20.51% compared to 16.89% for pristine devices and the unencapsulated PATFBA-modified devices exhibit outstanding thermal and long-term stability. This work provides a new engineering approach to buried interfaces through the synergy of functional groups.
Collapse
Affiliation(s)
- Ramkrishna Das Adhikari
- Centre for Nanotechnology, Indian Institute of Technology Guwahati, Guwahati, Assam, 781039, India
| | - Himangshu Baishya
- Centre for Nanotechnology, Indian Institute of Technology Guwahati, Guwahati, Assam, 781039, India
| | - Mayur Jagdishbhai Patel
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, Assam, 781039, India
| | - Deepak Yadav
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, Assam, 781039, India
| | - Parameswar Krishnan Iyer
- Centre for Nanotechnology, Indian Institute of Technology Guwahati, Guwahati, Assam, 781039, India
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, Assam, 781039, India
| |
Collapse
|
11
|
Cao J, Liu C, Xu Y, Loi H, Wang T, Li MG, Liu L, Yan F. High-Performance Ideal Bandgap Sn-Pb Mixed Perovskite Solar Cells Achieved by MXene Passivation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2403920. [PMID: 39148188 PMCID: PMC11579958 DOI: 10.1002/smll.202403920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 08/07/2024] [Indexed: 08/17/2024]
Abstract
Ideal bandgap (1.3-1.4 eV) Sn-Pb mixed perovskite solar cells (PSC) hold the maximum theoretical efficiency given by the Shockley-Queisser limit. However, achieving high efficiency and stable Sn-Pb mixed PSCs remains challenging. Here, piperazine-1,4-diium tetrafluoroborate (PDT) is introduced as spacer for bottom interface modification of ideal bandgap Sn-Pb mixed perovskite. This spacer enhances the quality of the upper perovskite layer and forms better energy band alignment, leading to enhanced charge extraction at the hole transport layer (HTL)/perovskite interface. Then, 2D Ti3C2Tx MXene is incorporated for surface treatment of perovskite, resulting in reduced surface trap density and enhanced interfacial electron transfer. The combinations of double-sided treatment afford the ideal bandgap PSC with a high efficiency of 20.45% along with improved environment stability. This work provides a feasible guideline to prepare high-performance and stable ideal-bandgap PSCs.
Collapse
Affiliation(s)
- Jiupeng Cao
- Department of Applied PhysicsThe Hong Kong Polytechnic UniversityHung HomKowloonHong Kong SAR999077P. R. China
| | - Chun‐ki Liu
- Department of Applied PhysicsThe Hong Kong Polytechnic UniversityHung HomKowloonHong Kong SAR999077P. R. China
| | - Yang Xu
- Division of Integrative Systems and DesignDepartment of Electronic and Computer EngineeringThe Hong Kong University of Science and TechnologyClear Water BayKowloonHong Kong SAR999077P. R. China
| | - Hok‐Leung Loi
- Department of Applied PhysicsThe Hong Kong Polytechnic UniversityHung HomKowloonHong Kong SAR999077P. R. China
| | - Tianyue Wang
- Department of Applied PhysicsThe Hong Kong Polytechnic UniversityHung HomKowloonHong Kong SAR999077P. R. China
| | - Mitch Guijun Li
- Division of Integrative Systems and DesignDepartment of Electronic and Computer EngineeringThe Hong Kong University of Science and TechnologyClear Water BayKowloonHong Kong SAR999077P. R. China
| | - Lixian Liu
- School of Optoelectronic EngineeringXidian UniversityXi'an710071P. R. China
| | - Feng Yan
- Department of Applied PhysicsThe Hong Kong Polytechnic UniversityHung HomKowloonHong Kong SAR999077P. R. China
- Research Institute of Intelligent Wearable SystemsThe Hong Kong Polytechnic UniversityHung HomKowloonHong Kong SAR999077P. R. China
| |
Collapse
|
12
|
Li X, Yu Z, Zhang C, Li B, Wu X, Liu Y, Zhu Z. Advancing Energy Sustainability Through Solar-to-Fuel Technologies: From Materials to Devices and Systems. SMALL METHODS 2024; 8:e2400683. [PMID: 39039980 DOI: 10.1002/smtd.202400683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 07/08/2024] [Indexed: 07/24/2024]
Abstract
To achieve carbon neutrality and sustainable development, innovative solar-to-fuel systems have been designed through the integration of solar energy harvesting and electrochemical devices. Over the last decade, there have been notable advancements in enhancing the efficiency and durability of these solar-to-fuel systems. Despite the advancements, there remains significant potential for further improvements in the performance of systems. Enhancements can be achieved by optimizing electrochemical catalysts, advancing the manufacturing technologies of photovoltaics and electrochemical cells, and refining the overall design of these systems. In the realm of catalyst optimization, the effectiveness of materials can be significantly improved through active site engineering and strategic use of functional groups. Similarly, the performance of electrochemical devices can be enhanced by incorporating specific additives into electrolytes and optimizing gas diffusion electrodes. Improvements in solar harvesting devices are achievable through efficient passivant and self-assembled monolayers, which enhance the overall quality and efficiency of these systems. Additionally, optimizing the energy conversion efficiency involves the strategic use of DC converters, photoelectrodes, and redox media. This review aims to provide a comprehensive overview of the advancements in solar-powered electrochemical energy conversion systems, laying a solid foundation for future research and development in the field of energy sustainability.
Collapse
Affiliation(s)
- Xintong Li
- Department of Chemistry, City University of Hong Kong, Kowloon, 999077, Hong Kong
| | - Zexin Yu
- Department of Chemistry, City University of Hong Kong, Kowloon, 999077, Hong Kong
| | - Chunlei Zhang
- Department of Chemistry, City University of Hong Kong, Kowloon, 999077, Hong Kong
| | - Bo Li
- Department of Chemistry, City University of Hong Kong, Kowloon, 999077, Hong Kong
| | - Xin Wu
- Department of Chemistry, City University of Hong Kong, Kowloon, 999077, Hong Kong
| | - Yizhe Liu
- Department of Chemistry, City University of Hong Kong, Kowloon, 999077, Hong Kong
| | - Zonglong Zhu
- Shenzhen Research Institute, City University of Hong Kong, Shenzhen, 518057, China
| |
Collapse
|
13
|
Wang X, Yang J, Zhong J, Yu J, Pan X. Innovative Materials for High-Performance Tin-Based Perovskite Solar Cells: A Review. Polymers (Basel) 2024; 16:3053. [PMID: 39518262 PMCID: PMC11548353 DOI: 10.3390/polym16213053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 10/24/2024] [Accepted: 10/28/2024] [Indexed: 11/16/2024] Open
Abstract
With the rapid development of lead-based perovskite solar cells, tin-based perovskite solar cells are emerging as a non-toxic alternative. Material engineering has been an effective approach for the fabrication of efficient perovskite solar cells. This paper summarizes the novel materials used in tin-based perovskite solar cells over the past few years and analyzes the roles of various materials in tin-based devices. It is found that self-assembling materials and fullerene derivatives have shown remarkable performance in tin-based perovskite solar cells. Finally, this article discusses design strategies for new materials, providing constructive suggestions for the development of innovative materials in the future.
Collapse
Affiliation(s)
- Xiansheng Wang
- College of Electron and Information, Zhongshan Institute, University of Electronic Science and Technology of China, Zhongshan 528402, China
- School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Jianjun Yang
- College of Electron and Information, Zhongshan Institute, University of Electronic Science and Technology of China, Zhongshan 528402, China
- School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Jian Zhong
- School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Junsheng Yu
- School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Xinjian Pan
- College of Electron and Information, Zhongshan Institute, University of Electronic Science and Technology of China, Zhongshan 528402, China
| |
Collapse
|
14
|
Chen P, Xiao Y, Li S, Jia X, Luo D, Zhang W, Snaith HJ, Gong Q, Zhu R. The Promise and Challenges of Inverted Perovskite Solar Cells. Chem Rev 2024; 124:10623-10700. [PMID: 39207782 DOI: 10.1021/acs.chemrev.4c00073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Recently, there has been an extensive focus on inverted perovskite solar cells (PSCs) with a p-i-n architecture due to their attractive advantages, such as exceptional stability, high efficiency, low cost, low-temperature processing, and compatibility with tandem architectures, leading to a surge in their development. Single-junction and perovskite-silicon tandem solar cells (TSCs) with an inverted architecture have achieved certified PCEs of 26.15% and 33.9% respectively, showing great promise for commercial applications. To expedite real-world applications, it is crucial to investigate the key challenges for further performance enhancement. We first introduce representative methods, such as composition engineering, additive engineering, solvent engineering, processing engineering, innovation of charge transporting layers, and interface engineering, for fabricating high-efficiency and stable inverted PSCs. We then delve into the reasons behind the excellent stability of inverted PSCs. Subsequently, we review recent advances in TSCs with inverted PSCs, including perovskite-Si TSCs, all-perovskite TSCs, and perovskite-organic TSCs. To achieve final commercial deployment, we present efforts related to scaling up, harvesting indoor light, economic assessment, and reducing environmental impacts. Lastly, we discuss the potential and challenges of inverted PSCs in the future.
Collapse
Affiliation(s)
- Peng Chen
- State Key Laboratory for Artificial Microstructure and Mesoscopic Physics, School of Physics, Frontiers Science Center for Nano-optoelectronics & Collaborative Innovation Center of Quantum Matter, Peking University, Beijing 100871, China
| | - Yun Xiao
- State Key Laboratory for Artificial Microstructure and Mesoscopic Physics, School of Physics, Frontiers Science Center for Nano-optoelectronics & Collaborative Innovation Center of Quantum Matter, Peking University, Beijing 100871, China
- Clarendon Laboratory, Department of Physics, University of Oxford, Oxford OX1 3PU, U.K
| | - Shunde Li
- State Key Laboratory for Artificial Microstructure and Mesoscopic Physics, School of Physics, Frontiers Science Center for Nano-optoelectronics & Collaborative Innovation Center of Quantum Matter, Peking University, Beijing 100871, China
| | - Xiaohan Jia
- State Key Laboratory for Artificial Microstructure and Mesoscopic Physics, School of Physics, Frontiers Science Center for Nano-optoelectronics & Collaborative Innovation Center of Quantum Matter, Peking University, Beijing 100871, China
| | - Deying Luo
- International Research Institute for Multidisciplinary Science, Beihang University, Beijing 100191, China
| | - Wei Zhang
- Advanced Technology Institute, Department of Electrical and Electronic Engineering, University of Surrey, Guildford, Surrey GU2 7XH, U.K
- State Centre for International Cooperation on Designer Low-carbon & Environmental Materials (CDLCEM), School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Henry J Snaith
- Clarendon Laboratory, Department of Physics, University of Oxford, Oxford OX1 3PU, U.K
| | - Qihuang Gong
- State Key Laboratory for Artificial Microstructure and Mesoscopic Physics, School of Physics, Frontiers Science Center for Nano-optoelectronics & Collaborative Innovation Center of Quantum Matter, Peking University, Beijing 100871, China
- Peking University Yangtze Delta Institute of Optoelectronics, Nantong, Jiangsu 226010, China
- Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi 030006, China
| | - Rui Zhu
- State Key Laboratory for Artificial Microstructure and Mesoscopic Physics, School of Physics, Frontiers Science Center for Nano-optoelectronics & Collaborative Innovation Center of Quantum Matter, Peking University, Beijing 100871, China
- Peking University Yangtze Delta Institute of Optoelectronics, Nantong, Jiangsu 226010, China
- Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi 030006, China
| |
Collapse
|
15
|
Roe J, Son JG, Park S, Seo J, Song T, Kim J, Oh SO, Jo Y, Lee Y, Shin YS, Jang H, Lee D, Yuk D, Seol JG, Kim YS, Cho S, Kim DS, Kim JY. Synergistic Buried Interface Regulation of Tin-Lead Perovskite Solar Cells via Co-Self-Assembled Monolayers. ACS NANO 2024; 18:24306-24316. [PMID: 39172688 DOI: 10.1021/acsnano.4c06396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2024]
Abstract
Tin-lead (Sn-Pb) perovskite solar cells (PSCs) hold considerable potential for achieving efficiencies near the Shockley-Queisser (S-Q) limit. Notably, the inverted structure stands as the preferred fabrication method for the most efficient Sn-Pb PSCs. In this regard, it is imperative to implement a strategic customization of the hole selective layer to facilitate carrier extraction and refine the quality of perovskite films, which requires effective hole selectivity and favorable interactions with Sn-Pb perovskites. Herein, we propose the development of Co-Self-Assembled Monolayers (Co-SAM) by integrating both [2-(9H-carbazol-9-yl)ethyl]phosphonic acid (2PACz) and glycine at the buried contacts. The one-step deposition process employed in the fabrication of the Co-SAM ensures uniform coverage, resulting in a homogeneous surface potential. This is attributed to the molecular interactions occurring between 2PACz and glycine in the processing solution. Furthermore, the amine (-NH2) and ammonium (-NH3+) groups in glycine effectively passivate Sn4+ defects at the buried interface of Sn-Pb perovskite films, even under thermal stress. Consequently, the synergistic buried interface regulation of Co-SAM leads to a power conversion efficiency (PCE) of 23.46%, which outperforms devices modified with 2PACz or glycine alone. The Co-SAM-modified Sn-Pb PSC demonstrates enhanced thermal stability, maintaining 88% of its initial PCE under 65 °C thermal stress for 590 h.
Collapse
Affiliation(s)
- Jina Roe
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Jung Geon Son
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Sujung Park
- Department of Semiconductor Physics and EHSRC, University of Ulsan, Ulsan 44610, Republic of Korea
| | - Jongdeuk Seo
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Taehee Song
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Jaehyeong Kim
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Si On Oh
- Graduate School of Carbon Neutrality, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Yeowon Jo
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Yeonjeong Lee
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Yun Seop Shin
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
- Graduate School of Carbon Neutrality, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Hyungsu Jang
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Dongmin Lee
- Graduate School of Carbon Neutrality, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Dohun Yuk
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Jin Gyu Seol
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Yung Sam Kim
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Shinuk Cho
- Department of Semiconductor Physics and EHSRC, University of Ulsan, Ulsan 44610, Republic of Korea
| | - Dong Suk Kim
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
- Graduate School of Carbon Neutrality, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Jin Young Kim
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
- Graduate School of Carbon Neutrality, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| |
Collapse
|
16
|
Gao Z, Wang J, Xiao H, Abdel-Shakour M, Liu T, Zhang S, Huang J, Xue DJ, Yang S, Meng X. Adhesion-Controlled Heterogeneous Nucleation of Tin Halide Perovskites for Eco-Friendly Indoor Photovoltaics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2403413. [PMID: 39011771 DOI: 10.1002/adma.202403413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 05/29/2024] [Indexed: 07/17/2024]
Abstract
The rapid development of the Internet of Things (IoT) has accelerated the advancement of indoor photovoltaics (IPVs) that directly power wireless IoT devices. The interest in lead-free perovskites for IPVs stems from their similar optoelectronic properties to high-performance lead halide perovskites, but without concerns about toxic lead leakage in indoor environments. However, currently prevalent lead-free perovskite IPVs, especially tin halide perovskites (THPs), still exhibit inferior performance, arising from their uncontrollable crystallization. Here, a novel adhesive bonding strategy is proposed for precisely regulating heterogeneous nucleation kinetics of THPs by introducing alkali metal fluorides. These ionic adhesives boost the work of adhesion at the buried interface between substrates and perovskite film, subsequently reducing the contact angle and energy barrier for heterogeneous nucleation, resulting in high-quality THP films. The resulting THP solar cells achieve an efficiency of 20.12% under indoor illumination at 1000 lux, exceeding all types of lead-free perovskite IPVs and successfully powering radio frequency identification-based sensors.
Collapse
Affiliation(s)
- Zhen Gao
- School of Optoelectronics, Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Junfang Wang
- School of Optoelectronics, Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hongbin Xiao
- School of Optoelectronics, Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Muhammad Abdel-Shakour
- School of Optoelectronics, Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
- Chemistry Department, Faculty of Science, Assiut University, Assiut, 71516, Egypt
| | - Tianhua Liu
- School of Optoelectronics, Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shiwei Zhang
- School of Optoelectronics, Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Junjie Huang
- School of Optoelectronics, Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ding-Jiang Xue
- Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Shihe Yang
- Guangdong Provincial Key Lab of Nano-Micro Material Research, School of Advanced Materials, Shenzhen Graduate School, Peking University, Shenzhen, 518055, China
| | - Xiangyue Meng
- School of Optoelectronics, Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
17
|
Liu T, Wang J, Liu Y, Min L, Wang L, Yuan Z, Sun H, Huang L, Li L, Meng X. Cyano-Coordinated Tin Halide Perovskites for Wearable Health Monitoring and Weak Light Imaging. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2400090. [PMID: 38433566 DOI: 10.1002/adma.202400090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 02/24/2024] [Indexed: 03/05/2024]
Abstract
Low-toxicity tin halide perovskites with excellent optoelectronic properties are promising candidates for photodetection. However, tin halide perovskite photodetectors have suffered from high dark current owing to uncontrollable Sn2+ oxidation. Here, 2-cyanoethan-1-aminium iodide (CNI) is introduced in CH(NH2)2SnI3 (FASnI3) perovskite films to inhibit Sn2+ oxidation by the strong coordination interaction between the cyano group (C≡N) and Sn2+. Consequently, FASnI3-CNI films exhibit reduced nonradiative recombination and lower trap density. The self-powered photodetector based on FASnI3-CNI exhibits low dark current (1.04 × 10-9 A cm-2), high detectivity (2.2 × 1013 Jones at 785 nm), fast response speed (2.62 µs), and good stability. Mechanism studies show the increase in the activation energy required for thermal emission and generated carriers, leading to a lower dark current in the FASnI3-CNI photodetector. In addition, flexible photodetectors based on FASnI3-CNI, exhibiting high detectivity and fast response speed, are employed in wearable electronics to monitor the human heart rate under weak light and zero bias conditions. Finally, the FASnI3-CNI perovskite photodetectors are integrated with a 32 × 32 thin-film transistor backplane, capable of ultraweak light (170 nW cm-2) real-time imaging with high contrast, and zero power consumption, demonstrating the great potential for image sensor applications.
Collapse
Affiliation(s)
- Tianhua Liu
- School of Optoelectronics, Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Junfang Wang
- School of Optoelectronics, Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yongsi Liu
- School of Materials and Energy, Guangdong University of Technology, Guangzhou, 510006, China
| | - Liangliang Min
- School of Physical Science and Technology, Jiangsu Key Laboratory of Thin Films, Center for Energy Conversion Materials & Physics (CECMP), Soochow University, Suzhou, 215006, China
| | - Lixia Wang
- School of Optoelectronics, Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ziquan Yuan
- School of Optoelectronics, Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Haoxuan Sun
- School of Physical Science and Technology, Jiangsu Key Laboratory of Thin Films, Center for Energy Conversion Materials & Physics (CECMP), Soochow University, Suzhou, 215006, China
| | - Le Huang
- School of Materials and Energy, Guangdong University of Technology, Guangzhou, 510006, China
| | - Liang Li
- School of Physical Science and Technology, Jiangsu Key Laboratory of Thin Films, Center for Energy Conversion Materials & Physics (CECMP), Soochow University, Suzhou, 215006, China
| | - Xiangyue Meng
- School of Optoelectronics, Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
18
|
Wang J, Huang J, Abdel-Shakour M, Liu T, Wang X, Pan Y, Wang L, Cui E, Hu JS, Yang S, Meng X. Colloidal Zeta Potential Modulation as a Handle to Control the Crystallization Kinetics of Tin Halide Perovskites for Photovoltaic Applications. Angew Chem Int Ed Engl 2024; 63:e202317794. [PMID: 38424035 DOI: 10.1002/anie.202317794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 02/13/2024] [Accepted: 02/29/2024] [Indexed: 03/02/2024]
Abstract
Tin halide perovskites (THPs) have demonstrated exceptional potential for various applications owing to their low toxicity and excellent optoelectronic properties. However, the crystallization kinetics of THPs are less controllable than its lead counterpart because of the higher Lewis acidity of Sn2+, leading to THP films with poor morphology and rampant defects. Here, a colloidal zeta potential modulation approach is developed to improve the crystallization kinetics of THP films inspired by the classical Derjaguin-Landau-Verwey-Overbeek (DLVO) theory. After adding 3-aminopyrrolidine dihydro iodate (APDI2) in the precursor solution to change the zeta potential of the pristine colloids, the total interaction potential energy between colloidal particles with APDI2 could be controllably reduced, resulting in a higher coagulation probability and a lower critical nuclei concentration. In situ laser light scattering measurements confirmed the increased nucleation rate of the THP colloids with APDI2. The resulting film with APDI2 shows a pinhole-free morphology with fewer defects, achieving an impressive efficiency of 15.13 %.
Collapse
Affiliation(s)
- Junfang Wang
- School of Optoelectronics, Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Junjie Huang
- School of Optoelectronics, Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Muhammad Abdel-Shakour
- School of Optoelectronics, Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
- Chemistry Department, Faculty of Science, Assiut University, Assiut, 71516, Egypt
| | - Tianhua Liu
- School of Optoelectronics, Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xu Wang
- School of Optoelectronics, Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yongle Pan
- School of Optoelectronics, Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Lixia Wang
- School of Optoelectronics, Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Enhao Cui
- School of Optoelectronics, Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jin-Song Hu
- Beijing National Laboratory for Molecular Sciences. CAS Key Laboratory of Molecular Nanostructure and Nanotechnology, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Shihe Yang
- Guangdong Key Lab of Nano-Micro Material Research, School of Advanced Materials, Shenzhen Graduate School, Peking University, Shenzhen, 518055, China
| | - Xiangyue Meng
- School of Optoelectronics, Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
19
|
Teng TY, Su ZH, Hu F, Chen CH, Chen J, Wang KL, Xue D, Gao XY, Wang ZK. Electronically Manipulated Molecular Strategy Enabling Highly Efficient Tin Perovskite Photovoltaics. Angew Chem Int Ed Engl 2024; 63:e202318133. [PMID: 38168100 DOI: 10.1002/anie.202318133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 12/29/2023] [Accepted: 01/02/2024] [Indexed: 01/05/2024]
Abstract
Buried interface modification can effectively improve the compatibility between interfaces. Given the distinct interface selections in perovskite solar cells (PSCs), the applicability of a singular modification material remains limited. Consequently, in response to this challenge, we devised a tailored molecular strategy based on the electronic effects of specific functional groups. Therefore, we prepared three distinct silane coupling agents, and due to the varying inductive effects of these functional groups, the electronic distribution and molecular dipole moments of the coupling agents are correspondingly altered. Among them, trimethoxy (3,3,3-trifluoropropyl)-silane (F3 -TMOS), which possesses electron-withdrawing groups, generates a molecular dipole moment directed toward the hole transport layer (HTL). This approach changes the work function of the HTL, optimizes the energy level alignment, reduces the open-circuit voltage loss, and facilitates carrier transport. Furthermore, through the buffering effect of the coupling agent, the interface strain and lattice distortion caused by annealing the perovskite are reduced, enhancing the stability of the tin-based perovskite. Encouragingly, tin PSCs treated with F3 -TMOS achieved a champion efficiency of 14.67 %. This strategy provides an expedient avenue for the design of buried interface modification materials, enabling precise molecular adjustments in accordance with distinct interfacial contexts to ameliorate mismatched energetics and enhance carrier dynamics.
Collapse
Affiliation(s)
- Tian-Yu Teng
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, 215123, China
| | - Zhen-Huang Su
- Shanghai Synchrotron Radiation Facility (SSRF), Shanghai Advanced Research Institute, Chinese Academy of Sciences, 239 Zhangheng Road, Shanghai, 201204, China
| | - Fan Hu
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, 215123, China
| | - Chun-Hao Chen
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, 215123, China
| | - Jing Chen
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, 215123, China
| | - Kai-Li Wang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, 215123, China
| | - Di Xue
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, 215123, China
| | - Xing-Yu Gao
- Shanghai Synchrotron Radiation Facility (SSRF), Shanghai Advanced Research Institute, Chinese Academy of Sciences, 239 Zhangheng Road, Shanghai, 201204, China
| | - Zhao-Kui Wang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, 215123, China
| |
Collapse
|