1
|
Li H, Li C, Fu C, Wang Y, Liang T, Wu H, Wu C, Wang C, Sun T, Liu S. Innovative nanoparticle-based approaches for modulating neutrophil extracellular traps in diseases: from mechanisms to therapeutics. J Nanobiotechnology 2025; 23:88. [PMID: 39915767 PMCID: PMC11800495 DOI: 10.1186/s12951-025-03195-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Accepted: 02/02/2025] [Indexed: 02/11/2025] Open
Abstract
Neutrophil extracellular traps (NETs) participate in both host defense and the pathogenesis of various diseases, such as infections, thrombosis, and tumors. While they help capture and eliminate pathogens, NETs' excessive or dysregulated formation can lead to tissue damage and disease progression. Therapeutic strategies targeting NET modulation have shown potential, but challenges remain, particularly in achieving precise drug delivery and maintaining drug stability. Nanoparticle (NP)-based drug delivery systems offer innovative solutions for overcoming the limitations of conventional therapies. This review explores the biological mechanisms of NET formation, their interactions with NPs, and the therapeutic applications of NP-based drug delivery systems for modulating NETs. We discuss how NPs can be designed to either promote or inhibit NET formation and provide a comprehensive analysis of their potential in treating NET-related diseases. Additionally, we address the current challenges and future prospects for NP-based therapies in NET research, aiming to bridge the gap between nanotechnology and NET modulation for the development of novel therapeutic approaches.
Collapse
Affiliation(s)
- Haisong Li
- Cancer Center, The First Hospital, Jilin University, Changchun, Jilin, China
- Department of Neurosurgery, The First Hospital, Jilin University, Changchun, Jilin, China
| | - Can Li
- Department of Hematology, The Second Clinical Medical College of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Cong Fu
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Institute of Immunology, The First Hospital, Jilin University, Changchun, Jilin, China
- National-Local Joint Engineering Laboratory of Animal Models for Human Diseases, Changchun, Jilin, China
| | - Yizhuo Wang
- Cancer Center, The First Hospital, Jilin University, Changchun, Jilin, China
| | - Tingting Liang
- Cancer Center, The First Hospital, Jilin University, Changchun, Jilin, China
| | - Haitao Wu
- Cancer Center, The First Hospital, Jilin University, Changchun, Jilin, China
| | - Chenxi Wu
- Cancer Center, The First Hospital, Jilin University, Changchun, Jilin, China
| | - Chang Wang
- Cancer Center, The First Hospital, Jilin University, Changchun, Jilin, China.
| | - Tianmeng Sun
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Institute of Immunology, The First Hospital, Jilin University, Changchun, Jilin, China.
- National-Local Joint Engineering Laboratory of Animal Models for Human Diseases, Changchun, Jilin, China.
- International Center of Future Science, Jilin University, Changchun, Jilin, China.
- State Key Laboratory of Supramolecular Structure and Materials, Jilin University, Changchun, Jilin, China.
| | - Shuhan Liu
- Cancer Center, The First Hospital, Jilin University, Changchun, Jilin, China.
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Institute of Immunology, The First Hospital, Jilin University, Changchun, Jilin, China.
- National-Local Joint Engineering Laboratory of Animal Models for Human Diseases, Changchun, Jilin, China.
| |
Collapse
|
2
|
Shi J, Han W, Wang J, Kong X. Anti-Tumor Strategies Targeting Nutritional Deprivation: Challenges and Opportunities. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025:e2415550. [PMID: 39895165 DOI: 10.1002/adma.202415550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Revised: 01/04/2025] [Indexed: 02/04/2025]
Abstract
Higher and richer nutrient requirements are typical features that distinguish tumor cells from AU: cells, ensuring adequate substrates and energy sources for tumor cell proliferation and migration. Therefore, nutrient deprivation strategies based on targeted technologies can induce impaired cell viability in tumor cells, which are more sensitive than normal cells. In this review, nutrients that are required by tumor cells and related metabolic pathways are introduced, and anti-tumor strategies developed to target nutrient deprivation are described. In addition to tumor cells, the nutritional and metabolic characteristics of other cells in the tumor microenvironment (including macrophages, neutrophils, natural killer cells, T cells, and cancer-associated fibroblasts) and related new anti-tumor strategies are also summarized. In conclusion, recent advances in anti-tumor strategies targeting nutrient blockade are reviewed, and the challenges and prospects of these anti-tumor strategies are discussed, which are of theoretical significance for optimizing the clinical application of tumor nutrition deprivation strategies.
Collapse
Affiliation(s)
- Jinsheng Shi
- Qingdao Key Lab of Common Diseases, Qingdao Municipal Hospital, University of Health and Rehabilitation Sciences, Qingdao, Shandong, 266000, China
| | - Wei Han
- Qingdao Key Lab of Common Diseases, Qingdao Municipal Hospital, University of Health and Rehabilitation Sciences, Qingdao, Shandong, 266000, China
| | - Jie Wang
- Pharmacy Department, Qingdao Traditional Chinese Medicine Hospital (Qingdao Hiser Hospital), Qingdao, Shandong, 266000, China
| | - Xiaoying Kong
- Institute of Regenerative Medicine and Laboratory Technology Innovation, Qingdao University, Qingdao, Shandong, 266071, China
| |
Collapse
|
3
|
Zeng F, Shao Y, Wu J, Luo J, Yue Y, Shen Y, Wang Y, Shi Y, Wu D, Cata JP, Yang S, Zhang H, Miao C. Tumor metastasis and recurrence: The role of perioperative NETosis. Cancer Lett 2024; 611:217413. [PMID: 39725150 DOI: 10.1016/j.canlet.2024.217413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 12/11/2024] [Accepted: 12/22/2024] [Indexed: 12/28/2024]
Abstract
Although surgical resection of tumor mass remains the mainstay of curative therapeutic management for solid tumors, accumulating studies suggest that these procedures promote tumor recurrence and metastasis. Regarded as the first immune cells to fight against infectious or inflammatory insults from surgery, neutrophils along with their ability of neutrophil extracellular traps (NETs) production has attracted much attention. A growing body of evidence suggests that NETs promote cancer metastasis by stimulating various stages, including local invasion, colonization, and growth. Therefore, we discussed the mechanism of NETosis induced by surgical stress and tumor cells, and the contribution of NETs on tumor metastasis: aid in the tumor cell migration and proliferation, evasion of immune surveillance, circulating tumor cell adhesion and establishment of a metastatic niche. Lastly, we summarized existing NET-targeting interventions, offering recent insights into potential targets for clinical intervention.
Collapse
Affiliation(s)
- Fu Zeng
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, China; Shanghai Key Laboratory of Perioperative Stress and Protection, Shanghai, China
| | - Yuwen Shao
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, China; Shanghai Key Laboratory of Perioperative Stress and Protection, Shanghai, China
| | - Jingyi Wu
- Department of Anesthesiology, Zhongshan Hospital (Xiamen), Fudan University, Xiamen, China
| | - Jingwen Luo
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, China; Shanghai Key Laboratory of Perioperative Stress and Protection, Shanghai, China
| | - Ying Yue
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, China; Shanghai Key Laboratory of Perioperative Stress and Protection, Shanghai, China
| | - Yang Shen
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, China; Shanghai Key Laboratory of Perioperative Stress and Protection, Shanghai, China
| | - Yanghanzhao Wang
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, China; Shanghai Key Laboratory of Perioperative Stress and Protection, Shanghai, China
| | - Yuxin Shi
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, China; Shanghai Key Laboratory of Perioperative Stress and Protection, Shanghai, China
| | - Dan Wu
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, China; Shanghai Key Laboratory of Perioperative Stress and Protection, Shanghai, China
| | - Juan P Cata
- Department of Anesthesiology and Perioperative Medicine, The University of Texas-MD Anderson Cancer Center, Houston, TX, USA; Anesthesiology and Surgical Oncology Research Group, Houston, TX, USA
| | - Shuofei Yang
- Department of Vascular Surgery, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Pujian Road 160, Shanghai, 200127, China.
| | - Hao Zhang
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, China; Shanghai Key Laboratory of Perioperative Stress and Protection, Shanghai, China.
| | - Changhong Miao
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, China; Shanghai Key Laboratory of Perioperative Stress and Protection, Shanghai, China.
| |
Collapse
|
4
|
Liao J, Li X, Yang H, He W, Wang B, Liu S, Fan Y. Construction of a Curcumin‐Loaded PLLA/PCL Micro‐Nano Conjugated Fibrous Membrane to Synergistically Prevent Postoperative Adhesion From Multiple Perspectives. ADVANCED FUNCTIONAL MATERIALS 2024; 34. [DOI: 10.1002/adfm.202407983] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Indexed: 02/02/2025]
Abstract
AbstractPostoperative adhesion (POA) has emerged as a prevalent clinical challenge in soft tissue repair, emphasizing the critical need for preventive measures. However, the complex POA development process makes POA prevention from a single aspect insufficient. Hence, a curcumin‐loaded poly‐L‐lactic acid‐poly (caprolactone) micro‐nano conjugated fibrous membrane (PAPC MCFM (cur)) is engineered to synergistically prevent POA from multiple perspectives, in which poly (caprolactone) (PCL) nanofibers (118 ± 12 nm) with low orientation traverse the oriented poly‐L‐lactic acid (PLLA) microfibers (2.0 ± 0.3 µm). The PAPC MCFM not only significantly improves the mechanical properties of the anisotropic fibrous membrane (AIFM) that the modulus of elasticity and the tensile strength in the direction vertical to microfiber orientation increase by 4.5 and 13.0 times, respectively, but also can further enhance the “contact guidance effect” of AIFM, i.e., hindering fibroblast adhesion, proliferation, and differentiation to myofibroblast through inhibiting integrin β1 activation, vinculin expression and focal adhesion (FA) formation, and the nuclear localization activation of yes‐associated protein (YAP). Except for these effects, PAPC MCFM loading with 2.5 mg mL−1 curcumin can further prevent POA by delivering anti‐inflammatory, antioxidant, and antibacterial properties, and by suppressing fibrosis through decreased transforming growth factor‐β1(TGF‐β1) expression, showing effective POA prevention in rat abdominal cavity and rabbit dura mater models.
Collapse
Affiliation(s)
- Jie Liao
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education Beijing Advanced Innovation Center for Biomedical Engineering School of Biological Science and Medical Engineering Beihang University Beijing 100083 China
- Department of Biomedical Materials Science College of Biomedical Engineering Third Military Medical University Chongqing 400038 China
| | - Xiaoming Li
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education Beijing Advanced Innovation Center for Biomedical Engineering School of Biological Science and Medical Engineering Beihang University Beijing 100083 China
| | - Huiqi Yang
- Department of Hernia and Abdominal Wall Surgery Beijing Chao‐Yang Hospital Beijing 100043 China
| | - Wei He
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education Beijing Advanced Innovation Center for Biomedical Engineering School of Biological Science and Medical Engineering Beihang University Beijing 100083 China
| | - Bingbing Wang
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education Beijing Advanced Innovation Center for Biomedical Engineering School of Biological Science and Medical Engineering Beihang University Beijing 100083 China
| | - Shuyu Liu
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education Beijing Advanced Innovation Center for Biomedical Engineering School of Biological Science and Medical Engineering Beihang University Beijing 100083 China
| | - Yubo Fan
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education Beijing Advanced Innovation Center for Biomedical Engineering School of Biological Science and Medical Engineering Beihang University Beijing 100083 China
| |
Collapse
|