1
|
Chi H, Qiu Y, Ye X, Shi J, Li Z. Preparation strategy of hydrogel microsphere and its application in skin repair. Front Bioeng Biotechnol 2023; 11:1239183. [PMID: 37555079 PMCID: PMC10405935 DOI: 10.3389/fbioe.2023.1239183] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 07/12/2023] [Indexed: 08/10/2023] Open
Abstract
In recent years, hydrogel microsphere has attracted much attention due to its great potential in the field of skin repair. This paper reviewed the recent progress in the preparation strategy of hydrogel microsphere and its application in skin repair. In this review, several preparation methods of hydrogel microsphere were summarized in detail. In addition, the related research progress of hydrogel microspheres for skin repair was reviewed, and focused on the application of bioactive microspheres, antibacterial microspheres, hemostatic microspheres, and hydrogel microspheres as delivery platforms (hydrogel microspheres as a microcarrier of drugs, bioactive factors, or cells) in the field of skin repair. Finally, the limitations and future prospects of the development of hydrogel microspheres and its application in the field of skin repair were presented. It is hoped that this review can provide a valuable reference for the development of the preparation strategy of hydrogel microspheres and promote the application of hydrogel microspheres in skin repair.
Collapse
Affiliation(s)
- Honggang Chi
- The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, China
- The Second Clinical Medical College, Guangdong Medical University, Dongguan, China
| | - Yunqi Qiu
- The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, China
| | - Xiaoqing Ye
- The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, China
| | - Jielin Shi
- The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, China
| | - Ziyi Li
- The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, China
- The Second Clinical Medical College, Guangdong Medical University, Dongguan, China
| |
Collapse
|
2
|
Kilian D, Poddar A, Desrochers V, Heinemann C, Halfter N, Liu S, Rother S, Gelinsky M, Hintze V, Lode A. Cellular adhesion and chondrogenic differentiation inside an alginate-based bioink in response to tailorable artificial matrices and tannic acid treatment. BIOMATERIALS ADVANCES 2023; 147:213319. [PMID: 36758282 DOI: 10.1016/j.bioadv.2023.213319] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 12/30/2022] [Accepted: 01/27/2023] [Indexed: 02/04/2023]
Abstract
Many established bioinks fulfill important requirements regarding fabrication standards and cytocompatibility. Current research focuses on development of functionalized bioinks with an improved support of tissue-specific cell differentiation. Many approaches primarily depend on decellularized extracellular matrices or blood components. In this study, we investigated the combination of a highly viscous alginate-methylcellulose (algMC) bioink with collagen-based artificial extracellular matrix (aECM) as a finely controllable and tailorable system composed of collagen type I (col) with and without chondroitin sulfate (CS) or sulfated hyaluronan (sHA). As an additional stabilizer, the polyphenol tannic acid (TA) was integrated into the inks. The assessment of rheological properties and printability as well as hydrogel microstructure revealed no adverse effect of the integrated components on the inks. Viability, adhesion, and proliferation of bioprinted immortalized human mesenchymal stem cells (hTERT-MSC) was improved indicating enhanced interaction with the designed microenvironment. Furthermore, chondrogenic matrix production (collagen type II and sulfated glycosaminoglycans) by primary human chondrocytes (hChon) was enhanced by aECM. Supplementing the inks with TA was required for these positive effects but caused cytotoxicity as soon as TA concentrations exceeded a certain amount. Thus, combining tailorable aECM with algMC and balanced TA addition proved to be a promising approach for promoting adhesion of immortalized stem cells and differentiation of chondrocytes in bioprinted scaffolds.
Collapse
Affiliation(s)
- David Kilian
- Centre for Translational Bone, Joint and Soft Tissue Research, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Fetscherstrasse 74, 01307 Dresden, Germany
| | - Aayush Poddar
- Centre for Translational Bone, Joint and Soft Tissue Research, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Fetscherstrasse 74, 01307 Dresden, Germany
| | - Vanessa Desrochers
- Centre for Translational Bone, Joint and Soft Tissue Research, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Fetscherstrasse 74, 01307 Dresden, Germany
| | - Christiane Heinemann
- Institute of Materials Science, Max Bergmann Center of Biomaterials, Technische Universität Dresden, Budapester Strasse 27, 01069 Dresden, Germany
| | - Norbert Halfter
- Institute of Materials Science, Max Bergmann Center of Biomaterials, Technische Universität Dresden, Budapester Strasse 27, 01069 Dresden, Germany
| | - Suihong Liu
- Centre for Translational Bone, Joint and Soft Tissue Research, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Fetscherstrasse 74, 01307 Dresden, Germany; Rapid Manufacturing Engineering Center, School of Mechatronic Engineering and Automation, Shanghai University, Shanghai 200444, China
| | - Sandra Rother
- Institute of Materials Science, Max Bergmann Center of Biomaterials, Technische Universität Dresden, Budapester Strasse 27, 01069 Dresden, Germany; Center for Molecular Signaling (PZMS), Saarland University School of Medicine, Homburg, Saar, Germany
| | - Michael Gelinsky
- Centre for Translational Bone, Joint and Soft Tissue Research, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Fetscherstrasse 74, 01307 Dresden, Germany
| | - Vera Hintze
- Institute of Materials Science, Max Bergmann Center of Biomaterials, Technische Universität Dresden, Budapester Strasse 27, 01069 Dresden, Germany
| | - Anja Lode
- Centre for Translational Bone, Joint and Soft Tissue Research, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Fetscherstrasse 74, 01307 Dresden, Germany.
| |
Collapse
|
3
|
Samadi A, Moammeri A, Pourmadadi M, Abbasi P, Hosseinpour Z, Farokh A, Shamsabadipour A, Heydari M, Mohammadi MR. Cell Encapsulation and 3D Bioprinting for Therapeutic Cell Transplantation. ACS Biomater Sci Eng 2023; 9:1862-1890. [PMID: 36877212 DOI: 10.1021/acsbiomaterials.2c01183] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2023]
Abstract
The promise of cell therapy has been augmented by introducing biomaterials, where intricate scaffold shapes are fabricated to accommodate the cells within. In this review, we first discuss cell encapsulation and the promising potential of biomaterials to overcome challenges associated with cell therapy, particularly cellular function and longevity. More specifically, cell therapies in the context of autoimmune disorders, neurodegenerative diseases, and cancer are reviewed from the perspectives of preclinical findings as well as available clinical data. Next, techniques to fabricate cell-biomaterials constructs, focusing on emerging 3D bioprinting technologies, will be reviewed. 3D bioprinting is an advancing field that enables fabricating complex, interconnected, and consistent cell-based constructs capable of scaling up highly reproducible cell-biomaterials platforms with high precision. It is expected that 3D bioprinting devices will expand and become more precise, scalable, and appropriate for clinical manufacturing. Rather than one printer fits all, seeing more application-specific printer types, such as a bioprinter for bone tissue fabrication, which would be different from a bioprinter for skin tissue fabrication, is anticipated in the future.
Collapse
Affiliation(s)
- Amirmasoud Samadi
- Department of Chemical and Biomolecular Engineering, 6000 Interdisciplinary Science & Engineering Building (ISEB), Irvine, California 92617, United States
| | - Ali Moammeri
- School of Chemical Engineering, College of Engineering, University of Tehran, Enghelab Square, 16 Azar Street, Tehran 1417935840, Iran
| | - Mehrab Pourmadadi
- School of Chemical Engineering, College of Engineering, University of Tehran, Enghelab Square, 16 Azar Street, Tehran 1417935840, Iran
| | - Parisa Abbasi
- Department of Chemical and Petroleum Engineering, Sharif University of Technology, Azadi Avenue, Tehran 1458889694, Iran
| | - Zeinab Hosseinpour
- Biotechnology Research Laboratory, Faculty of Chemical Engineering, Babol Noshirvani University of Technology, Babol 4714871167, Mazandaran Province, Iran
| | - Arian Farokh
- School of Chemical Engineering, College of Engineering, University of Tehran, Enghelab Square, 16 Azar Street, Tehran 1417935840, Iran
| | - Amin Shamsabadipour
- School of Chemical Engineering, College of Engineering, University of Tehran, Enghelab Square, 16 Azar Street, Tehran 1417935840, Iran
| | - Maryam Heydari
- Department of Cell and Molecular Biology, Faculty of Biological Science, University of Kharazmi, Tehran 199389373, Iran
| | - M Rezaa Mohammadi
- Dale E. and Sarah Ann Fowler School of Engineering, Chapman University, Orange, California 92866, United States
| |
Collapse
|
4
|
Microfabrication methods for 3D spheroids formation and their application in biomedical engineering. KOREAN J CHEM ENG 2023. [DOI: 10.1007/s11814-022-1327-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|