1
|
Liu Z, Sun Y, Cai T, Yang H, Zhao J, Yin T, Hao C, Chen M, Shi W, Li X, Guan L, Li X, Wang X, Tang A, Chen O. Two-Dimensional Cs 2 AgIn x Bi 1- x Cl 6 Alloyed Double Perovskite Nanoplatelets for Solution-Processed Light-Emitting Diodes. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2211235. [PMID: 36906925 DOI: 10.1002/adma.202211235] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 02/21/2023] [Indexed: 05/12/2023]
Abstract
Lead-free double perovskites have emerged as a promising class of materials with potential to be integrated into a wide range of optical and optoelectronic applications. Herein, the first synthesis of 2D Cs2 AgInx Bi1- x Cl6 (0 ≤ x ≤ 1) alloyed double perovskite nanoplatelets (NPLs) with well controlled morphology and composition is demonstrated. The obtained NPLs show unique optical properties with the highest photoluminescence quantum yield of 40.1%. Both temperature dependent spectroscopic studies and density functional theory calculation results reveal that the morphological dimension reduction and In-Bi alloying effect together boost the radiative pathway of the self-trapped excitons of the alloyed double perovskite NPLs. Moreover, the NPLs exhibit good stability under ambient conditions and against polar solvents, which is ideal for all solution-processing of the materials in low-cost device manufacturing. The first solution-processed light-emitting diodes is demonstrated using the Cs2 AgIn0.9 Bi0.1 Cl6 alloyed double perovskite NPLs as the sole emitting component, showing luminance maximum of 58 cd m-2 and peak current efficiency of 0.013 cd A-1 . This study sheds light on morphological control and composition-property relationships of double perovskite nanocrystals, paving the way toward ultimate utilizations of lead-free perovskite materials in diverse sets of real-life applications.
Collapse
Affiliation(s)
- Zhenyang Liu
- Hebei Key Laboratory of Optic-Electronic Information and Materials, College of Physics Science and Technology, Hebei University, Baoding, 071002, China
- Department of Chemistry, Brown University, Providence, RI, 02912, USA
| | - Yingying Sun
- Hebei Key Laboratory of Optic-Electronic Information and Materials, College of Physics Science and Technology, Hebei University, Baoding, 071002, China
| | - Tong Cai
- Department of Chemistry, Brown University, Providence, RI, 02912, USA
| | - Hanjun Yang
- Department of Chemistry, Brown University, Providence, RI, 02912, USA
| | - JinXing Zhao
- Key Laboratory of Luminescence and Optical Information, Ministry of Education, School of Physical Science and Engineering, Beijing JiaoTong University, Beijing, 100044, China
| | - Tao Yin
- Hebei Key Laboratory of Optic-Electronic Information and Materials, College of Physics Science and Technology, Hebei University, Baoding, 071002, China
| | - Chaoqi Hao
- Hebei Key Laboratory of Optic-Electronic Information and Materials, College of Physics Science and Technology, Hebei University, Baoding, 071002, China
| | - Mingjun Chen
- Hebei Key Laboratory of Optic-Electronic Information and Materials, College of Physics Science and Technology, Hebei University, Baoding, 071002, China
| | - Wenwu Shi
- Department of Chemistry, Brown University, Providence, RI, 02912, USA
- Institute of Information Technology, Shenzhen Institute of Information Technology, Shenzhen, 518172, China
| | - Xiaoxiao Li
- Hebei Key Laboratory of Optic-Electronic Information and Materials, College of Physics Science and Technology, Hebei University, Baoding, 071002, China
| | - Li Guan
- Hebei Key Laboratory of Optic-Electronic Information and Materials, College of Physics Science and Technology, Hebei University, Baoding, 071002, China
| | - Xu Li
- Hebei Key Laboratory of Optic-Electronic Information and Materials, College of Physics Science and Technology, Hebei University, Baoding, 071002, China
| | - Xinzhong Wang
- Institute of Information Technology, Shenzhen Institute of Information Technology, Shenzhen, 518172, China
| | - Aiwei Tang
- Key Laboratory of Luminescence and Optical Information, Ministry of Education, School of Physical Science and Engineering, Beijing JiaoTong University, Beijing, 100044, China
| | - Ou Chen
- Department of Chemistry, Brown University, Providence, RI, 02912, USA
| |
Collapse
|
2
|
Li J, Deng X, Jin L, Wang Y, Wang T, Liang K, Yu L. Strong coupling of second harmonic generation scattering spectrum in a diexcitionic nanosystem. OPTICS EXPRESS 2023; 31:10249-10259. [PMID: 37157576 DOI: 10.1364/oe.485167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Diexcitonic strong coupling between quantum emitters and localized surface plasmon has attracted more attention recently because it can provide multiple qubit states for future quantum information technology at room temperature. In a strong coupling regime, nonlinear optical effects can offer new routes for developing quantum devices, but it is rarely reported. In this paper, we established the hybrid system consisting of J-aggregates-WS2-cuboid Au@Ag nanorods, which can realize diexcitonic strong coupling and second harmonic generation (SHG). We find that multimode strong coupling has been achieved not only in the fundamental frequency scattering spectrum but also in the SHG scattering spectrum. SHG scattering spectrum shows three plexciton branches, similar to the splitting in the fundamental frequency scattering spectrum. Furthermore, the SHG scattering spectrum can be modulated by tuning the armchair direction of the crystal lattice, pump polarization direction, and plasmon resonance frequency, which makes our system very promising in the quantum device at room temperature. Moreover, we develop coupled nonlinear harmonic oscillator model theory to explain the nonlinear diexcitonic strong coupling mechanism. The calculated results by the finite element method accord well with our theory. The nonlinear optical properties of the diexcitonic strong coupling can provide potential applications such as quantum manipulation, entanglement, and integrated logic devices.
Collapse
|
3
|
Pal M, Niv A. Parametric optical rectification due to the near-field interaction between nanosized metallic domains. OPTICS EXPRESS 2023; 31:4873-4883. [PMID: 36785444 DOI: 10.1364/oe.476346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 12/16/2022] [Indexed: 06/18/2023]
Abstract
In this paper, we study parametric optical rectification that is not due to material properties but emerges from the electrostatic near-field interaction between nanosized metallic domains. The ability to demonstrate this effect comes from samples based on a unique slab waveguide with deeply buried nanometer-thin metallic layers. These samples intensify the presumed rectification mechanism while suppressing competing effects. We describe three experiments that, combined, indicate a non-material-based nonlinear mechanism in our samples. The origin of the nonlinear mechanism responsible for rectification is elucidated by invoking a toy model whose sole nonlinearity comes from the interaction between strictly linear oscillators.
Collapse
|