1
|
Abstract
β-N-acetylhexosaminidases (EC 3.2.1.52) are retaining hydrolases of glycoside hydrolase family 20 (GH20). These enzymes catalyze hydrolysis of terminal, non-reducing N-acetylhexosamine residues, notably N-acetylglucosamine or N-acetylgalactosamine, in N-acetyl-β-D-hexosaminides. In nature, bacterial β-N-acetylhexosaminidases are mainly involved in cell wall peptidoglycan synthesis, analogously, fungal β-N-acetylhexosaminidases act on cell wall chitin. The enzymes work via a distinct substrate-assisted mechanism that utilizes the 2-acetamido group as nucleophile. Curiously, the β-N-acetylhexosaminidases possess an inherent trans-glycosylation ability which is potentially useful for biocatalytic synthesis of functional carbohydrates, including biomimetic synthesis of human milk oligosaccharides and other glycan-functionalized compounds. In this review, we summarize the reaction engineering approaches (donor substrate activation, additives, and reaction conditions) that have proven useful for enhancing trans-glycosylation activity of GH20 β-N-acetylhexosaminidases. We provide comprehensive overviews of reported synthesis reactions with GH20 enzymes, including tables that list the specific enzyme used, donor and acceptor substrates, reaction conditions, and details of the products and yields obtained. We also describe the active site traits and mutations that appear to favor trans-glycosylation activity of GH20 β-N-acetylhexosaminidases. Finally, we discuss novel protein engineering strategies and suggest potential “hotspots” for mutations to promote trans-glycosylation activity in GH20 for efficient synthesis of specific functional carbohydrates and other glyco-engineered products.
Collapse
|
2
|
β-N-Acetylhexosaminidases-the wizards of glycosylation. Appl Microbiol Biotechnol 2019; 103:7869-7881. [PMID: 31401752 DOI: 10.1007/s00253-019-10065-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 07/23/2019] [Accepted: 07/24/2019] [Indexed: 12/27/2022]
Abstract
β-N-Acetylhexosaminidases (EC 3.2.1.52) are a unique family of glycoside hydrolases with dual substrate specificity and a particular reaction mechanism. Though hydrolytic enzymes per se, their good stability, easy recombinant production, absolute stereoselectivity, and a broad substrate specificity predestine these enzymes for challenging applications in carbohydrate synthesis. This mini-review aims to demonstrate the catalytic potential of β-N-acetylhexosaminidases in a range of unusual reactions, processing of unnatural substrates, formation of unexpected products, and demanding reaction designs. The use of unconventional media can considerably alter the progress of transglycosylation reactions. By means of site-directed mutagenesis, novel catalytic machineries can be constructed. Glycosylation of difficult substrates such as sugar nucleotides was accomplished, and the range of afforded glycosidic bonds comprises unique non-reducing sugars. Specific functional groups may be tolerated in the substrate molecule, which makes β-N-acetylhexosaminidases invaluable allies in difficult synthetic problems.
Collapse
|
3
|
Parikka K, Master E, Tenkanen M. Oxidation with galactose oxidase: Multifunctional enzymatic catalysis. ACTA ACUST UNITED AC 2015. [DOI: 10.1016/j.molcatb.2015.06.006] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
4
|
Slámová K, Krejzová J, Marhol P, Kalachova L, Kulik N, Pelantová H, Cvačka J, Křen V. Synthesis of Derivatized Chitooligomers using Transglycosidases Engineered from the Fungal GH20 β-N-Acetylhexosaminidase. Adv Synth Catal 2015. [DOI: 10.1002/adsc.201500075] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
5
|
Rozbeský D, Ivanova L, Hernychová L, Grobárová V, Novák P, Černý J. Nkrp1 family, from lectins to protein interacting molecules. Molecules 2015; 20:3463-78. [PMID: 25690298 PMCID: PMC6272133 DOI: 10.3390/molecules20023463] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2014] [Revised: 02/06/2015] [Accepted: 02/11/2015] [Indexed: 11/25/2022] Open
Abstract
The C-type lectin-like receptors include the Nkrp1 protein family that regulates the activity of natural killer (NK) cells. Rat Nkrp1a was reported to bind monosaccharide moieties in a Ca2+-dependent manner in preference order of GalNac > GlcNAc >> Fuc >> Gal > Man. These findings established for rat Nkrp1a have been extrapolated to all additional Nkrp1 receptors and have been supported by numerous studies over the past two decades. However, since 1996 there has been controversy and another article showed lack of interactions with saccharides in 1999. Nevertheless, several high affinity saccharide ligands were synthesized in order to utilize their potential in antitumor therapy. Subsequently, protein ligands were introduced as specific binders for Nkrp1 proteins and three dimensional models of receptor/protein ligand interaction were derived from crystallographic data. Finally, for at least some members of the NK cell C-type lectin-like proteins, the “sweet story” was impaired by two reports in recent years. It has been shown that the rat Nkrp1a and CD69 do not bind saccharide ligands such as GlcNAc, GalNAc, chitotetraose and saccharide derivatives (GlcNAc-PAMAM) do not directly and specifically influence cytotoxic activity of NK cells as it was previously described.
Collapse
MESH Headings
- Animals
- Antigens, CD/chemistry
- Antigens, CD/immunology
- Antigens, CD/metabolism
- Antigens, Differentiation, T-Lymphocyte/chemistry
- Antigens, Differentiation, T-Lymphocyte/immunology
- Antigens, Differentiation, T-Lymphocyte/metabolism
- Humans
- Killer Cells, Natural/chemistry
- Killer Cells, Natural/immunology
- Killer Cells, Natural/metabolism
- Lectins, C-Type/chemistry
- Lectins, C-Type/immunology
- Lectins, C-Type/metabolism
- Male
- NK Cell Lectin-Like Receptor Subfamily B/chemistry
- NK Cell Lectin-Like Receptor Subfamily B/immunology
- NK Cell Lectin-Like Receptor Subfamily B/metabolism
- Oligosaccharides/chemistry
- Oligosaccharides/immunology
- Oligosaccharides/metabolism
- Protein Structure, Tertiary
- Rats
Collapse
Affiliation(s)
- Daniel Rozbeský
- Institute of Microbiology, v.v.i., Academy of Sciences of the Czech Republic, Vídeňská 1083, Prague 414220, Czech Republic.
- Department of Biochemistry, Faculty of Science, Charles University, Hlavova 8, Prague 212843, Czech Republic.
| | - Ljubina Ivanova
- Institute of Microbiology, v.v.i., Academy of Sciences of the Czech Republic, Vídeňská 1083, Prague 414220, Czech Republic.
| | - Lucie Hernychová
- Institute of Microbiology, v.v.i., Academy of Sciences of the Czech Republic, Vídeňská 1083, Prague 414220, Czech Republic.
- Department of Cell Biology, Faculty of Science, Charles University, Viničná 7, Prague 212843, Czech Republic.
| | - Valéria Grobárová
- Department of Cell Biology, Faculty of Science, Charles University, Viničná 7, Prague 212843, Czech Republic.
| | - Petr Novák
- Institute of Microbiology, v.v.i., Academy of Sciences of the Czech Republic, Vídeňská 1083, Prague 414220, Czech Republic.
- Department of Biochemistry, Faculty of Science, Charles University, Hlavova 8, Prague 212843, Czech Republic.
| | - Jan Černý
- Department of Cell Biology, Faculty of Science, Charles University, Viničná 7, Prague 212843, Czech Republic.
| |
Collapse
|
6
|
De Bruyn F, Maertens J, Beauprez J, Soetaert W, De Mey M. Biotechnological advances in UDP-sugar based glycosylation of small molecules. Biotechnol Adv 2015; 33:288-302. [PMID: 25698505 DOI: 10.1016/j.biotechadv.2015.02.005] [Citation(s) in RCA: 115] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Revised: 12/19/2014] [Accepted: 02/09/2015] [Indexed: 01/04/2023]
Abstract
Glycosylation of small molecules like specialized (secondary) metabolites has a profound impact on their solubility, stability or bioactivity, making glycosides attractive compounds as food additives, therapeutics or nutraceuticals. The subsequently growing market demand has fuelled the development of various biotechnological processes, which can be divided in the in vitro (using enzymes) or in vivo (using whole cells) production of glycosides. In this context, uridine glycosyltransferases (UGTs) have emerged as promising catalysts for the regio- and stereoselective glycosylation of various small molecules, hereby using uridine diphosphate (UDP) sugars as activated glycosyldonors. This review gives an extensive overview of the recently developed in vivo production processes using UGTs and discusses the major routes towards UDP-sugar formation. Furthermore, the use of interconverting enzymes and glycorandomization is highlighted for the production of unusual or new-to-nature glycosides. Finally, the technological challenges and future trends in UDP-sugar based glycosylation are critically evaluated and summarized.
Collapse
Affiliation(s)
- Frederik De Bruyn
- Centre of Expertise-Industrial Biotechnology and Biocatalysis, Department of Biochemical and Microbial Technology, Ghent University, Coupure links 653, 9000 Ghent, Belgium
| | - Jo Maertens
- Centre of Expertise-Industrial Biotechnology and Biocatalysis, Department of Biochemical and Microbial Technology, Ghent University, Coupure links 653, 9000 Ghent, Belgium
| | - Joeri Beauprez
- Centre of Expertise-Industrial Biotechnology and Biocatalysis, Department of Biochemical and Microbial Technology, Ghent University, Coupure links 653, 9000 Ghent, Belgium
| | - Wim Soetaert
- Centre of Expertise-Industrial Biotechnology and Biocatalysis, Department of Biochemical and Microbial Technology, Ghent University, Coupure links 653, 9000 Ghent, Belgium
| | - Marjan De Mey
- Centre of Expertise-Industrial Biotechnology and Biocatalysis, Department of Biochemical and Microbial Technology, Ghent University, Coupure links 653, 9000 Ghent, Belgium.
| |
Collapse
|
7
|
Rozbeský D, Krejzová J, Křenek K, Prchal J, Hrabal R, Kožíšek M, Weignerová L, Fiore M, Dumy P, Křen V, Renaudet O. Re-evaluation of binding properties of recombinant lymphocyte receptors NKR-P1A and CD69 to chemically synthesized glycans and peptides. Int J Mol Sci 2014; 15:1271-83. [PMID: 24445261 PMCID: PMC3907868 DOI: 10.3390/ijms15011271] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2013] [Revised: 12/19/2013] [Accepted: 01/03/2014] [Indexed: 01/20/2023] Open
Abstract
The binding of monosaccharides and short peptides to lymphocyte receptors (human CD69 and rat NKR-P1A) was first reported in 1994 and then in a number of subsequent publications. Based on this observation, numerous potentially high-affinity saccharide ligands have been synthesized over the last two decades in order to utilize their potential in antitumor therapy. Due to significant inconsistencies in their reported binding properties, we decided to re-examine the interaction between multiple ligands and CD69 or NKR-P1A. Using NMR titration and isothermal titration calorimetry we were unable to detect the binding of the tested ligands such as N-acetyl-d-hexosamines and oligopeptides to both receptors, which contradicts the previous observations published in more than twenty papers over the last fifteen years.
Collapse
Affiliation(s)
- Daniel Rozbeský
- Institute of Microbiology, Academy of Sciences of the Czech Republic, Vídeňská 1083, Prague 4 CZ14220, Czech Republic.
| | - Jana Krejzová
- Institute of Microbiology, Academy of Sciences of the Czech Republic, Vídeňská 1083, Prague 4 CZ14220, Czech Republic.
| | - Karel Křenek
- Institute of Microbiology, Academy of Sciences of the Czech Republic, Vídeňská 1083, Prague 4 CZ14220, Czech Republic.
| | - Jan Prchal
- Institute of Microbiology, Academy of Sciences of the Czech Republic, Vídeňská 1083, Prague 4 CZ14220, Czech Republic.
| | - Richard Hrabal
- Institute of Microbiology, Academy of Sciences of the Czech Republic, Vídeňská 1083, Prague 4 CZ14220, Czech Republic.
| | - Milan Kožíšek
- Institute of Microbiology, Academy of Sciences of the Czech Republic, Vídeňská 1083, Prague 4 CZ14220, Czech Republic.
| | - Lenka Weignerová
- Institute of Microbiology, Academy of Sciences of the Czech Republic, Vídeňská 1083, Prague 4 CZ14220, Czech Republic.
| | - Michele Fiore
- Institute of Microbiology, Academy of Sciences of the Czech Republic, Vídeňská 1083, Prague 4 CZ14220, Czech Republic.
| | - Pascal Dumy
- Institute of Microbiology, Academy of Sciences of the Czech Republic, Vídeňská 1083, Prague 4 CZ14220, Czech Republic.
| | - Vladimír Křen
- Institute of Microbiology, Academy of Sciences of the Czech Republic, Vídeňská 1083, Prague 4 CZ14220, Czech Republic.
| | - Olivier Renaudet
- Institute of Microbiology, Academy of Sciences of the Czech Republic, Vídeňská 1083, Prague 4 CZ14220, Czech Republic. ^
| |
Collapse
|
8
|
Desmet T, Soetaert W, Bojarová P, Křen V, Dijkhuizen L, Eastwick-Field V, Schiller A. Enzymatic glycosylation of small molecules: challenging substrates require tailored catalysts. Chemistry 2012; 18:10786-801. [PMID: 22887462 DOI: 10.1002/chem.201103069] [Citation(s) in RCA: 172] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Glycosylation can significantly improve the physicochemical and biological properties of small molecules like vitamins, antibiotics, flavors, and fragrances. The chemical synthesis of glycosides is, however, far from trivial and involves multistep routes that generate lots of waste. In this review, biocatalytic alternatives are presented that offer both stricter specificities and higher yields. The advantages and disadvantages of different enzyme classes are discussed and illustrated with a number of recent examples. Progress in the field of enzyme engineering and screening are expected to result in new applications of biocatalytic glycosylation reactions in various industrial sectors.
Collapse
Affiliation(s)
- Tom Desmet
- University of Ghent, Centre for Industrial Biotechnology and Biocatalysis, Gent, Belgium
| | | | | | | | | | | | | |
Collapse
|
9
|
Kupper CE, Rosencrantz RR, Henßen B, Pelantová H, Thönes S, Drozdová A, Křen V, Elling L. Chemo-enzymatic modification of poly-N-acetyllactosamine (LacNAc) oligomers and N,N-diacetyllactosamine (LacDiNAc) based on galactose oxidase treatment. Beilstein J Org Chem 2012; 8:712-25. [PMID: 23015818 PMCID: PMC3388858 DOI: 10.3762/bjoc.8.80] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2012] [Accepted: 04/12/2012] [Indexed: 01/02/2023] Open
Abstract
The importance of glycans in biological systems is highlighted by their various functions in physiological and pathological processes. Many glycan epitopes on glycoproteins and glycolipids are based on N-acetyllactosamine units (LacNAc; Galβ1,4GlcNAc) and often present on extended poly-LacNAc glycans ([Galβ1,4GlcNAc](n)). Poly-LacNAc itself has been identified as a binding motif of galectins, an important class of lectins with functions in immune response and tumorigenesis. Therefore, the synthesis of natural and modified poly-LacNAc glycans is of specific interest for binding studies with galectins as well as for studies of their possible therapeutic applications. We present the oxidation by galactose oxidase and subsequent chemical or enzymatic modification of terminal galactose and N-acetylgalactosamine residues of poly-N-acetyllactosamine (poly-LacNAc) oligomers and N,N-diacetyllactosamine (LacDiNAc) by galactose oxidase. Product formation starting from different poly-LacNAc oligomers was characterised and optimised regarding formation of the C6-aldo product. Further modification of the aldehyde containing glycans, either by chemical conversion or enzymatic elongation, was established. Base-catalysed β-elimination, coupling of biotin-hydrazide with subsequent reduction to the corresponding hydrazine linkage, and coupling by reductive amination to an amino-functionalised poly-LacNAc oligomer were performed and the products characterised by LC-MS and NMR analysis. Remarkably, elongation of terminally oxidised poly-LacNAc glycans by β3GlcNAc- and β4Gal-transferase was also successful. In this way, a set of novel, modified poly-LacNAc oligomers containing terminally and/or internally modified galactose residues were obtained, which can be used for binding studies and various other applications.
Collapse
Affiliation(s)
- Christiane E Kupper
- Laboratory for Biomaterials, Institute for Biotechnology and Helmholtz-Institute for Biomedical Engineering, RWTH Aachen University, Worringer Weg 1, Aachen, 52074, Germany
| | - Ruben R Rosencrantz
- Laboratory for Biomaterials, Institute for Biotechnology and Helmholtz-Institute for Biomedical Engineering, RWTH Aachen University, Worringer Weg 1, Aachen, 52074, Germany
| | - Birgit Henßen
- Laboratory for Biomaterials, Institute for Biotechnology and Helmholtz-Institute for Biomedical Engineering, RWTH Aachen University, Worringer Weg 1, Aachen, 52074, Germany
| | - Helena Pelantová
- Institute of Microbiology, Academy of Sciences of the Czech Republic, Videnska 1083, Prague 4, CZ 14220, Czech Republic
| | - Stephan Thönes
- Laboratory for Biomaterials, Institute for Biotechnology and Helmholtz-Institute for Biomedical Engineering, RWTH Aachen University, Worringer Weg 1, Aachen, 52074, Germany
| | - Anna Drozdová
- Institute of Microbiology, Academy of Sciences of the Czech Republic, Videnska 1083, Prague 4, CZ 14220, Czech Republic
| | - Vladimir Křen
- Institute of Microbiology, Academy of Sciences of the Czech Republic, Videnska 1083, Prague 4, CZ 14220, Czech Republic
| | - Lothar Elling
- Laboratory for Biomaterials, Institute for Biotechnology and Helmholtz-Institute for Biomedical Engineering, RWTH Aachen University, Worringer Weg 1, Aachen, 52074, Germany
| |
Collapse
|
10
|
Carbohydrate synthesis and biosynthesis technologies for cracking of the glycan code: recent advances. Biotechnol Adv 2012; 31:17-37. [PMID: 22484115 DOI: 10.1016/j.biotechadv.2012.03.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2011] [Revised: 03/06/2012] [Accepted: 03/20/2012] [Indexed: 12/22/2022]
Abstract
The glycan code of glycoproteins can be conceptually defined at molecular level by the sequence of well characterized glycans attached to evolutionarily predetermined amino acids along the polypeptide chain. Functional consequences of protein glycosylation are numerous, and include a hierarchy of properties from general physicochemical characteristics such as solubility, stability and protection of the polypeptide from the environment up to specific glycan interactions. Definition of the glycan code for glycoproteins has been so far hampered by the lack of chemically defined glycoprotein glycoforms that proved to be extremely difficult to purify from natural sources, and the total chemical synthesis of which has been hitherto possible only for very small molecular species. This review summarizes the recent progress in chemical and chemoenzymatic synthesis of complex glycans and their protein conjugates. Progress in our understanding of the ways in which a particular glycoprotein glycoform gives rise to a unique set of functional properties is now having far reaching implications for the biotechnology of important glycodrugs such as therapeutical monoclonal antibodies, glycoprotein hormones, carbohydrate conjugates used for vaccination and other practically important protein-carbohydrate conjugates.
Collapse
|
11
|
Slámová K, Bojarová P, Gerstorferová D, Fliedrová B, Hofmeisterová J, Fiala M, Pompach P, Křen V. Sequencing, cloning and high-yield expression of a fungal β-N-acetylhexosaminidase in Pichia pastoris. Protein Expr Purif 2012; 82:212-7. [PMID: 22266368 DOI: 10.1016/j.pep.2012.01.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2011] [Revised: 01/02/2012] [Accepted: 01/04/2012] [Indexed: 11/25/2022]
Abstract
The β-N-acetylhexosaminidase from Talaromyces flavus has a remarkable synthetic ability, processing even carbohydrates with various functionalities. Its broader use is partially hampered by low-yield production in the native fungus. Here, we present an optimized 3-day production of this enzyme in the eukaryotic host of Pichia pastoris, in ca 10-fold higher volume activity (10 U/ml) and close-to-perfect purity (one chromatographic step needed). Importantly, the recombinant enzyme features the same biochemical and catalytic properties, including the syntheses with derivatized carbohydrate substrates. This is the first example of the overexpression of a fungal β-N-acetylhexosaminidase by a single-cell producer in liquid medium. It represents a promising solution for wider biotechnological applications of this outstanding enzyme.
Collapse
Affiliation(s)
- Kristýna Slámová
- Institute of Microbiology, Center for Biocatalysis and Biotransformation, Academy of Sciences of the Czech Republic, Vídeňská 1083, CZ 14220, Prague 4, Czech Republic
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Drozdová A, Bojarová P, Křenek K, Weignerová L, Henßen B, Elling L, Christensen H, Jensen HH, Pelantová H, Kuzma M, Bezouška K, Krupová M, Adámek D, Slámová K, Křen V. Enzymatic synthesis of dimeric glycomimetic ligands of NK cell activation receptors. Carbohydr Res 2011; 346:1599-609. [DOI: 10.1016/j.carres.2011.04.043] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2011] [Revised: 04/20/2011] [Accepted: 04/27/2011] [Indexed: 10/18/2022]
|
13
|
Bojarová P, Slámová K, Křenek K, Gažák R, Kulik N, Ettrich R, Pelantová H, Kuzma M, Riva S, Adámek D, Bezouška K, Křen V. Charged Hexosaminides as New Substrates for β-N-Acetylhexosaminidase-Catalyzed Synthesis of Immunomodulatory Disaccharides. Adv Synth Catal 2011. [DOI: 10.1002/adsc.201100371] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
14
|
Ryšlavá H, Kalendová A, Doubnerová V, Skočdopol P, Kumar V, Kukačka Z, Pompach P, Vaněk O, Slámová K, Bojarová P, Kulik N, Ettrich R, Křen V, Bezouška K. Enzymatic characterization and molecular modeling of an evolutionarily interesting fungal β-N-acetylhexosaminidase. FEBS J 2011; 278:2469-84. [DOI: 10.1111/j.1742-4658.2011.08173.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
15
|
Monti D, Ottolina G, Carrea G, Riva S. Redox Reactions Catalyzed by Isolated Enzymes. Chem Rev 2011; 111:4111-40. [DOI: 10.1021/cr100334x] [Citation(s) in RCA: 174] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Daniela Monti
- Istituto di Chimica del Riconoscimento Molecolare, C.N.R., Via Mario Bianco 9, 20131 Milano, Italy
| | - Gianluca Ottolina
- Istituto di Chimica del Riconoscimento Molecolare, C.N.R., Via Mario Bianco 9, 20131 Milano, Italy
| | - Giacomo Carrea
- Istituto di Chimica del Riconoscimento Molecolare, C.N.R., Via Mario Bianco 9, 20131 Milano, Italy
| | - Sergio Riva
- Istituto di Chimica del Riconoscimento Molecolare, C.N.R., Via Mario Bianco 9, 20131 Milano, Italy
| |
Collapse
|
16
|
Slámová K, Bojarová P, Petrásková L, Křen V. β-N-Acetylhexosaminidase: What's in a name…? Biotechnol Adv 2010; 28:682-93. [DOI: 10.1016/j.biotechadv.2010.04.004] [Citation(s) in RCA: 123] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2010] [Revised: 04/17/2010] [Accepted: 04/24/2010] [Indexed: 01/28/2023]
|
17
|
Slámová K, Gažák R, Bojarová P, Kulik N, Ettrich R, Pelantová H, Sedmera P, Křen V. 4-Deoxy-substrates for β-N-acetylhexosaminidases: How to make use of their loose specificity. Glycobiology 2010; 20:1002-9. [DOI: 10.1093/glycob/cwq058] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
18
|
RETRACTED: Carboxylated calixarenes bind strongly to CD69 and protect CD69+ killer cells from suicidal cell death induced by tumor cell surface ligands. Bioorg Med Chem 2010; 18:1434-40. [DOI: 10.1016/j.bmc.2010.01.015] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2009] [Revised: 01/06/2010] [Accepted: 01/07/2010] [Indexed: 12/28/2022]
|
19
|
Bojarová P, Kren V. Glycosidases: a key to tailored carbohydrates. Trends Biotechnol 2009; 27:199-209. [PMID: 19250692 DOI: 10.1016/j.tibtech.2008.12.003] [Citation(s) in RCA: 123] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2008] [Revised: 12/03/2008] [Accepted: 12/12/2008] [Indexed: 10/21/2022]
Abstract
In recent years, carbohydrate-processing enzymes have become the enzymes of choice in many applications thanks to their stereoselectivity and efficiency. This review presents recent developments in glycosidase-catalyzed synthesis via two complementary approaches: the use of wild-type enzymes with engineered substrates, and mutant glycosidases. Genetic engineering has recently produced glucuronyl synthases, an inverting xylosynthase and the first mutant endo-beta-N-acetylglucosaminidase. A thorough selection of enzyme strains and aptly modified substrates have resulted in rare glycostructures, such as N-acetyl-beta-galactosaminuronates, beta1,4-linked mannosides and alpha1,4-linked galactosides. The efficient selection of mutant enzymes is facilitated by high-throughput screening assays involving the co-expression of coupled enzymes or chemical complementation. Selective glycosidase inhibitors and highly specific glycosidases are finding attractive applications in biomedicine, biology and proteomics.
Collapse
Affiliation(s)
- Pavla Bojarová
- Institute of Microbiology, Academy of Sciences of the Czech Republic, Center of Biocatalysis and Biotransformation, Vídenská 1083, CZ-142 20, Praha 4, Czech Republic
| | | |
Collapse
|
20
|
Bojarova P, Krenek K, Wetjen K, Adamiak K, Pelantova H, Bezouska K, Elling L, Kren V. Synthesis of LacdiNAc-terminated glycoconjugates by mutant galactosyltransferase - A way to new glycodrugs and materials. Glycobiology 2009; 19:509-17. [DOI: 10.1093/glycob/cwp010] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
21
|
Parikka K, Tenkanen M. Oxidation of methyl α-d-galactopyranoside by galactose oxidase: products formed and optimization of reaction conditions for production of aldehyde. Carbohydr Res 2009; 344:14-20. [DOI: 10.1016/j.carres.2008.08.020] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2008] [Revised: 08/03/2008] [Accepted: 08/18/2008] [Indexed: 11/27/2022]
|
22
|
Bojarová P, Křenek K, Kuzma M, Petrásková L, Bezouška K, Namdjou DJ, Elling L, Křen V. N-Acetylhexosamine triad in one molecule: Chemoenzymatic introduction of 2-acetamido-2-deoxy-β-d-galactopyranosyluronic acid residue into a complex oligosaccharide. ACTA ACUST UNITED AC 2008. [DOI: 10.1016/j.molcatb.2007.09.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
23
|
Krenek K, Kuldová M, Hulíková K, Stibor I, Lhoták P, Dudic M, Budka J, Pelantová H, Bezouska K, Fiserová A, Kren V. RETRACTED: N-Acetyl-d-glucosamine substituted calix[4]arenes as stimulators of NK cell-mediated antitumor immune response. Carbohydr Res 2007; 342:1781-92. [PMID: 17517383 DOI: 10.1016/j.carres.2007.04.026] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2007] [Revised: 04/18/2007] [Accepted: 04/26/2007] [Indexed: 10/23/2022]
Abstract
A series of calixarenes substituted with 2-acetamido-2-deoxy-beta-D-glucopyranose linked by a thiourea spacer was prepared and tested for binding activity to heterogeneously expressed activation receptors of the rat natural killer cells NKR-P1, and the receptor CD69 (human NK cells, macrophages). In the case of NKR-P1, the binding affinity of beta-D-GlcNAc-substituted calixarenes carrying two or four sugar units was in a good agreement with the inhibitory potencies of the linear chitooligomers (chitobiose to chitotetraose) reported previously. The influence of GlcNAc substitution of the calixarene skeleton on binding affinity for CD69 receptor was more profound and the 5,11,17,23-tetrakis[N-(2-acetamido-2-deoxy-beta-D-glucopyranosyl)-thioureido]-25,26,27,28-tetrapropoxycalix[4]arene (cone) (1) proved to be the best CD69 ligand identified to date. Lower GlcNAc substitution led to dramatic decrease of the binding activity (by about 1.5 order of magnitude per one GlcNAc unit). The immunostimulating activity results with the newly synthesized GlcNAc tetramers on calixarene scaffolds exhibited stimulation of natural cytotoxicity of human PBMC in concentrations 10(-4) and 10(-8)M. These calix-sugar compounds were superior to the previously tested PAMAM-GlcNAc(8)5.
Collapse
Affiliation(s)
- Karel Krenek
- Institute of Microbiology, Academy of Sciences of the Czech Republic, Vídenská 1083, 142 20 Praha 4, Czech Republic
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Carmona AT, Fialová P, Křen V, Ettrich R, Martínková L, Moreno-Vargas AJ, González C, Robina I. Cyanodeoxy-Glycosyl Derivatives as Substrates for Enzymatic Reactions. European J Org Chem 2006. [DOI: 10.1002/ejoc.200500755] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|