1
|
Santema LL, Rotilio L, Xiang R, Tjallinks G, Guallar V, Mattevi A, Fraaije MW. Discovery and biochemical characterization of thermostable glycerol oxidases. Appl Microbiol Biotechnol 2024; 108:61. [PMID: 38183484 PMCID: PMC10771423 DOI: 10.1007/s00253-023-12883-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 10/10/2023] [Accepted: 10/20/2023] [Indexed: 01/08/2024]
Abstract
Alditol oxidases are promising tools for the biocatalytic oxidation of glycerol to more valuable chemicals. By integrating in silico bioprospecting with cell-free protein synthesis and activity screening, an effective pipeline was developed to rapidly identify enzymes that are active on glycerol. Three thermostable alditol oxidases from Actinobacteria Bacterium, Streptomyces thermoviolaceus, and Thermostaphylospora chromogena active on glycerol were discovered. The characterization of these three flavoenzymes demonstrated their glycerol oxidation activities, preference for alkaline conditions, and excellent thermostabilities with melting temperatures higher than 75 °C. Structural elucidation of the alditol oxidase from Actinobacteria Bacterium highlighted a constellation of side chains that engage the substrate through several hydrogen bonds, a histidine residue covalently bound to the FAD prosthetic group, and a tunnel leading to the active site. Upon computational simulations of substrate binding, a double mutant targeting a residue pair at the tunnel entrance was created and found to display an improved thermal stability and catalytic efficiency for glycerol oxidation. The hereby described alditol oxidases form a valuable panel of oxidative biocatalysts that can perform regioselective oxidation of glycerol and other polyols. KEY POINTS: • Rapid pipeline designed to identify putative oxidases • Biochemical and structural characterization of alditol oxidases • Glycerol oxidation to more valuable derivatives.
Collapse
Affiliation(s)
- Lars L Santema
- Molecular Enzymology, University of Groningen, Nijenborgh 4, 9747AG, Groningen, The Netherlands
| | - Laura Rotilio
- Department of Biology and Biotechnology, University of Pavia, via Ferrata 9, 27100, Pavia, Italy
| | - Ruite Xiang
- Barcelona Supercomputing Center (BSC), Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, 08034, Spain
| | - Gwen Tjallinks
- Molecular Enzymology, University of Groningen, Nijenborgh 4, 9747AG, Groningen, The Netherlands
| | - Victor Guallar
- Barcelona Supercomputing Center (BSC), Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, 08034, Spain.
| | - Andrea Mattevi
- Department of Biology and Biotechnology, University of Pavia, via Ferrata 9, 27100, Pavia, Italy.
| | - Marco W Fraaije
- Molecular Enzymology, University of Groningen, Nijenborgh 4, 9747AG, Groningen, The Netherlands.
| |
Collapse
|
2
|
Franceus J, Steynen M, Allaert Y, Bredael K, D'hooghe M, Desmet T. High-yield synthesis of 2-O-α-D-glucosyl-D-glycerate by a bifunctional glycoside phosphorylase. Appl Microbiol Biotechnol 2024; 108:55. [PMID: 38175244 DOI: 10.1007/s00253-023-12970-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 11/02/2023] [Accepted: 11/13/2023] [Indexed: 01/05/2024]
Abstract
Osmolytes are produced by various microorganisms as a defense mechanism to protect cells and macromolecules from damage caused by external stresses in harsh environments. Due to their useful stabilizing properties, these molecules are applied as active ingredients in a wide range of cosmetics and healthcare products. The metabolic pathways and biocatalytic syntheses of glycosidic osmolytes such as 2-O-α-D-glucosyl-D-glycerate often involve the action of a glycoside phosphorylase. Here, we report the discovery of a glucosylglycerate phosphorylase from carbohydrate-active enzyme family GH13 that is also active on sucrose, which contrasts the strict specificity of known glucosylglycerate phosphorylases that can only use α-D-glucose 1-phosphate as glycosyl donor in transglycosylation reactions. The novel enzyme can be distinguished from other phosphorylases from the same family by the presence of an atypical conserved sequence motif at specificity-determining positions in the active site. The promiscuity of the sucrose-active glucosylglycerate phosphorylase can be exploited for the high-yielding and rapid synthesis of 2-O-α-D-glucosyl-D-glycerate from sucrose and D-glycerate. KEY POINTS: • A Xylanimonas protaetiae glycoside phosphorylase can use both d-glycerate and fructose as glucosyl acceptor with high catalytic efficiency • Biocatalytic synthesis of the osmolyte 2-O-α-d-glucosyl-d-glycerate • Positions in the active site of GH13 phosphorylases act as convenient specificity fingerprints.
Collapse
Affiliation(s)
- Jorick Franceus
- Centre for Synthetic Biology (CSB), Department of Biotechnology, Ghent University, Coupure Links 653, B-9000, Ghent, Belgium
| | - Manon Steynen
- Centre for Synthetic Biology (CSB), Department of Biotechnology, Ghent University, Coupure Links 653, B-9000, Ghent, Belgium
| | - Yentl Allaert
- Centre for Synthetic Biology (CSB), Department of Biotechnology, Ghent University, Coupure Links 653, B-9000, Ghent, Belgium
| | - Kato Bredael
- SynBioC Research Group, Department of Green Chemistry and Technology, Ghent University, Coupure Links 653, B-9000, Ghent, Belgium
| | - Matthias D'hooghe
- SynBioC Research Group, Department of Green Chemistry and Technology, Ghent University, Coupure Links 653, B-9000, Ghent, Belgium
| | - Tom Desmet
- Centre for Synthetic Biology (CSB), Department of Biotechnology, Ghent University, Coupure Links 653, B-9000, Ghent, Belgium.
| |
Collapse
|
3
|
Allaert Y, Leyder A, Franceus J, Desmet T. Strategies for the synthesis of the osmolyte glucosylglycerate and its precursor glycerate. Appl Microbiol Biotechnol 2024; 108:297. [PMID: 38607564 PMCID: PMC11009771 DOI: 10.1007/s00253-024-13139-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 03/25/2024] [Accepted: 04/04/2024] [Indexed: 04/13/2024]
Abstract
Glycosidic osmolytes are widespread natural compounds that protect microorganisms and their macromolecules from the deleterious effects of various environmental stresses. Their protective properties have attracted considerable interest for industrial applications, especially as active ingredients in cosmetics and healthcare products. In that regard, the osmolyte glucosylglycerate is somewhat overlooked. Glucosylglycerate is typically accumulated by certain organisms when they are exposed to high salinity and nitrogen starvation, and its potent stabilizing effects have been demonstrated in vitro. However, the applications of this osmolyte have not been thoroughly explored due to the lack of a cost-efficient production process. Here, we present an overview of the progress that has been made in developing promising strategies for the synthesis of glucosylglycerate and its precursor glycerate, and discuss the remaining challenges. KEY POINTS: • Bacterial milking could be explored for fermentative production of glucosylglycerate • Glycoside phosphorylases of GH13_18 represent attractive alternatives for biocatalytic production • Conversion of glycerol with alditol oxidase is a promising strategy for generating the precursor glycerate.
Collapse
Affiliation(s)
- Yentl Allaert
- Centre for Synthetic Biology (CSB), Department of Biotechnology, Ghent University, Coupure Links 653, B-9000, Ghent, Belgium
| | - Arthur Leyder
- Centre for Synthetic Biology (CSB), Department of Biotechnology, Ghent University, Coupure Links 653, B-9000, Ghent, Belgium
| | - Jorick Franceus
- Centre for Synthetic Biology (CSB), Department of Biotechnology, Ghent University, Coupure Links 653, B-9000, Ghent, Belgium
| | - Tom Desmet
- Centre for Synthetic Biology (CSB), Department of Biotechnology, Ghent University, Coupure Links 653, B-9000, Ghent, Belgium.
| |
Collapse
|
4
|
Yi J, Wang Z, Li Z. Cascade Biotransformations for Enantioconvergent Conversion of Racemic Styrene Oxides to ( R)-Mandelic Acids. ACS Catal 2022. [DOI: 10.1021/acscatal.2c04472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Jieran Yi
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore
| | - Zilong Wang
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore
| | - Zhi Li
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore
| |
Collapse
|
5
|
Lima LMS, Okamoto DN, Passarini MRZ, Gonçalves SS, Goldman GH, Silveira MAV, Ramos PL, Cruz JB, Juliano M, Marcondes MFM, Vasconcellos SP. Enzymatic diversity of filamentous fungi isolated from forest soil incremented by sugar cane solid waste. ENVIRONMENTAL TECHNOLOGY 2022; 43:3037-3046. [PMID: 33826477 DOI: 10.1080/09593330.2021.1914179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 03/30/2021] [Indexed: 06/12/2023]
Abstract
Fungi are natural degraders of organic matter which can produce enzymes for many industrial and biotechnological applications. In this context, crude enzymatic extracts of fungal isolates were evaluated regarding their hydrolytic and ligninolytic abilities. The fungal strains were isolated from soil samples from Atlantic Rain Forest Park incremented with sugar cane biomass (filter cake), which allowed the selection of efficient lignocellulolytic enzymes. A total of 190 fungi were isolated and evaluated by endocellulase screenings. Thirteen fungi were selected about their hydrolytic and ligninolytic abilities. Among them, three isolates showed xylanolytic activity. Eleven of the isolates were selected by their cellulolytic abilities. Proteolytic enzymes were also detected for three fungi, allowing the classification as metalloprotease and serine protease. The isolates SPZPF3_47 (Mucor sp.), SPZPF1_129 (Byssochlamys nivea) and SPZPF1_141 (Paecilomyces saturatus) were selected for further investigation on their lignin peroxidase abilities. KM, Vmax and kcat apparent for lignin peroxidases were also determined. The strain of Mucor sp. (SPZPF3_47) was highlighted since this fungal genus was not well described about its isolation in the adopted conditions in our study, and showing ligninolytic abilities.
Collapse
Affiliation(s)
- Lidiane M S Lima
- Institute of Environmental, Chemical and Pharmaceutical Sciences, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Debora N Okamoto
- Institute of Environmental, Chemical and Pharmaceutical Sciences, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Michel R Z Passarini
- Latin American Institute of Life and Natural Sciences, Universidade Federal da Integração Latino-Americana, Foz do Iguaçu, Brazil
| | - Sarah S Gonçalves
- Health Science Center, Universidade Federal do Espírito Santo, Espírito Santo, Brazil
| | - Gustavo H Goldman
- Faculty of Pharmaceutical Sciences of Ribeirão Preto, Universidade de São Paulo, São Paulo, Brazil
| | - Marghuel A V Silveira
- Department of Biophysics, Paulista School of Medicine, Universidade Federal de São Paulo, São Paulo, Brazil
| | | | - João B Cruz
- São Paulo Zoo Park Foundation, São Paulo, Brazil
| | - Maria Juliano
- Department of Biophysics, Paulista School of Medicine, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Marcelo F M Marcondes
- Department of Biophysics, Paulista School of Medicine, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Suzan P Vasconcellos
- Institute of Environmental, Chemical and Pharmaceutical Sciences, Universidade Federal de São Paulo, São Paulo, Brazil
| |
Collapse
|
6
|
Wang Z, Li X, Li Z. Engineering of cascade reactions and alditol oxidase for high‐yielding synthesis of (R)‐phenylethanolamine from styrene, ʟ‐phenylalanine, glycerol or glucose. ChemCatChem 2022. [DOI: 10.1002/cctc.202200418] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Zilong Wang
- National University of Singapore Department of Chemical and Biomolecular Engineering SINGAPORE
| | - Xirui Li
- National University of Singapore Department of Chemical and Biomolecular Engineering SINGAPORE
| | - Zhi Li
- National University of Singapore Department of Chemical and Biomolecular Engineering 4 Engineering Drive 4, #03-03 117576 Singapore SINGAPORE
| |
Collapse
|
7
|
Zhou W, Tang X, Huang J, Wang J, Zhao J, Zhang L, Wang Z, Li P, Li R. Dual-imaging magnetic nanocatalysis based on Fenton-like reaction for tumor therapy. J Mater Chem B 2022; 10:3462-3473. [PMID: 35403639 DOI: 10.1039/d1tb02308j] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Sequential nano-catalytic therapy has emerged as a novel therapeutic modality for cancer treatment as it utilizes the unique tumor microenvironment for selective tumor treatment. This study reports a magnetic nanoparticle to achieve Fenton-like reaction and dual-imaging guidance/monitoring. Natural glucose oxidase (GOx) and superparamagnetic Fe3O4 nanoparticles have been integrated into poly(lactic-co-glycolic acid) (PLGA) to fabricate a sequential nanocatalyst (designated as GOx@PLGA-Fe3O4). This nanocatalyst can functionally deplete glucose in tumor tissues, producing a considerable amount of highly cytotoxic hydroxyl radicals via the sequential Fenton-like reaction, and meanwhile maximizing the potential imaging capability as a contrast agent for magnetic resonance imaging and photoacoustic imaging. By ribonucleic acid sequencing (RNA-seq) technology, GOx@PLGA-Fe3O4 nanoparticles are demonstrated to induce tumor cell death by inhibiting multiple gene regulation pathways involving tumor growth and recurrence. Therefore, this finding provides a novel strategy to achieve promising therapeutic efficacy by the rational design of multifunctional nanoparticles with various features, including magnetic targeting, sequential nano-catalytic therapy, and dual-imaging guidance/monitoring.
Collapse
Affiliation(s)
- Weicheng Zhou
- Department of Ultrasound, The Third Affiliated Hospital, Chongqing Medical University, Chongqing 400010, P. R. China
| | - Xinyi Tang
- Department of Ultrasound, The Third Affiliated Hospital, Chongqing Medical University, Chongqing 400010, P. R. China
| | - Ju Huang
- Department of Ultrasound, The Third Affiliated Hospital, Chongqing Medical University, Chongqing 400010, P. R. China
| | - Jingxue Wang
- Department of Ultrasound, The Third Affiliated Hospital, Chongqing Medical University, Chongqing 400010, P. R. China
| | - Jiawen Zhao
- Chongqing Key Laboratory of Ultrasound Molecular Imaging, Institute of Ultrasound Imaging, The Second Affiliated Hospital, Chongqing Medical University, Chongqing 400010, P. R. China
| | - Liang Zhang
- Chongqing Key Laboratory of Ultrasound Molecular Imaging, Institute of Ultrasound Imaging, The Second Affiliated Hospital, Chongqing Medical University, Chongqing 400010, P. R. China
| | - Zhigang Wang
- Chongqing Key Laboratory of Ultrasound Molecular Imaging, Institute of Ultrasound Imaging, The Second Affiliated Hospital, Chongqing Medical University, Chongqing 400010, P. R. China
| | - Pan Li
- Chongqing Key Laboratory of Ultrasound Molecular Imaging, Institute of Ultrasound Imaging, The Second Affiliated Hospital, Chongqing Medical University, Chongqing 400010, P. R. China
| | - Rui Li
- Department of Ultrasound, The Third Affiliated Hospital, Chongqing Medical University, Chongqing 400010, P. R. China
| |
Collapse
|
8
|
Zhang C, Chen Q, Fan F, Tang J, Zhan T, Wang H, Zhang X. Directed evolution of alditol oxidase for the production of optically pure D-glycerate from glycerol in the engineered Escherichia coli. J Ind Microbiol Biotechnol 2021; 48:6312499. [PMID: 34196357 PMCID: PMC8788829 DOI: 10.1093/jimb/kuab041] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Accepted: 06/26/2021] [Indexed: 11/16/2022]
Abstract
D-glycerate is an attractive chemical for a wide variety of pharmaceutical, cosmetic, biodegradable polymers, and other applications. Now several studies have been reported about the synthesis of glycerate by different biotechnological and chemical routes from glycerol or other feedstock. Here, we present the construction of an Escherichia coli engineered strain to produce optically pure D-glycerate by oxidizing glycerol with an evolved variant of alditol oxidase (AldO) from Streptomyces coelicolor. This is achieved by starting from a previously reported variant mAldO and employing three rounds of directed evolution, as well as the combination of growth-coupled high throughput selection with colorimetric screening. The variant eAldO3-24 displays a higher substrate affinity toward glycerol with 5.23-fold than the wild-type AldO, and a 1.85-fold increase of catalytic efficiency (kcat/KM). Then we introduced an isopropyl-β-D-thiogalactopyranoside (IPTG)-inducible T7 expression system in E. coli to overexpress the variant eAldO3-24, and deleted glucosylglycerate phosphorylase encoding gene ycjM to block the consumption of D-glycerate. Finally, the resulting strain TZ-170 produced 30.1 g/l D-glycerate at 70 h with a yield of 0.376 mol/mol in 5-l fed-batch fermentation.
Collapse
Affiliation(s)
- Chao Zhang
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 Xiqidao, Tianjin Airport Economic Park, Tianjin 300308, China.,College of Chemistry and Life Science, Changchun University of Technology, Jilin, Changchun 130012, China
| | - Qian Chen
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 Xiqidao, Tianjin Airport Economic Park, Tianjin 300308, China
| | - Feiyu Fan
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 Xiqidao, Tianjin Airport Economic Park, Tianjin 300308, China
| | - Jinlei Tang
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 Xiqidao, Tianjin Airport Economic Park, Tianjin 300308, China
| | - Tao Zhan
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 Xiqidao, Tianjin Airport Economic Park, Tianjin 300308, China
| | - Honglei Wang
- College of Chemistry and Life Science, Changchun University of Technology, Jilin, Changchun 130012, China
| | - Xueli Zhang
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 Xiqidao, Tianjin Airport Economic Park, Tianjin 300308, China
| |
Collapse
|
9
|
Lukito BR, Wang Z, Sundara Sekar B, Li Z. Production of (R)-mandelic acid from styrene, L-phenylalanine, glycerol, or glucose via cascade biotransformations. BIORESOUR BIOPROCESS 2021; 8:22. [PMID: 38650227 PMCID: PMC10992357 DOI: 10.1186/s40643-021-00374-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 02/19/2021] [Indexed: 02/07/2023] Open
Abstract
(R)-mandelic acid is an industrially important chemical, especially used for producing antibiotics. Its chemical synthesis often uses highly toxic cyanide to produce its racemic form, followed by kinetic resolution with 50% maximum yield. Here we report a green and sustainable biocatalytic method for producing (R)-mandelic acid from easily available styrene, biobased L-phenylalanine, and renewable feedstocks such as glycerol and glucose, respectively. An epoxidation-hydrolysis-double oxidation artificial enzyme cascade was developed to produce (R)-mandelic acid at 1.52 g/L from styrene with > 99% ee. Incorporation of deamination and decarboxylation into the above cascade enables direct conversion of L-phenylalanine to (R)-mandelic acid at 913 mg/L and > 99% ee. Expressing the five-enzyme cascade in an L-phenylalanine-overproducing E. coli NST74 strain led to the direct synthesis of (R)-mandelic acid from glycerol or glucose, affording 228 or 152 mg/L product via fermentation. Moreover, coupling of E. coli cells expressing L-phenylalanine biosynthesis pathway with E. coli cells expressing the artificial enzyme cascade enabled the production of 760 or 455 mg/L (R)-mandelic acid from glycerol or glucose. These simple, safe, and green methods show great potential in producing (R)-mandelic acid from renewable feedstocks.
Collapse
Affiliation(s)
- Benedict Ryan Lukito
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore, 117585, Singapore
| | - Zilong Wang
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore, 117585, Singapore
- Synthetic Biology for Clinical and Technological Innovation (SynCTI), Life Sciences Institute, National University of Singapore, Singapore, 117456, Singapore
| | - Balaji Sundara Sekar
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore, 117585, Singapore
- Synthetic Biology for Clinical and Technological Innovation (SynCTI), Life Sciences Institute, National University of Singapore, Singapore, 117456, Singapore
| | - Zhi Li
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore, 117585, Singapore.
- Synthetic Biology for Clinical and Technological Innovation (SynCTI), Life Sciences Institute, National University of Singapore, Singapore, 117456, Singapore.
| |
Collapse
|
10
|
Zhan T, Chen Q, Zhang C, Bi C, Zhang X. Constructing a Novel Biosynthetic Pathway for the Production of Glycolate from Glycerol in Escherichia coli. ACS Synth Biol 2020; 9:2600-2609. [PMID: 32794740 DOI: 10.1021/acssynbio.0c00404] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Glycolate is an important α-hydroxy acid with a wide range of industrial applications. The current industrial production of glycolate mainly depends on chemical synthesis, but biochemical production from renewable resources using engineered microorganisms is increasingly viewed as an attractive alternative. Crude glycerol is an abundant byproduct of biodiesel production and a widely investigated potential sustainable feedstock. Here, we constructed a novel biosynthetic pathway for the production of glycolate from glycerol in Escherichia coli. The pathway starts from the oxidation of glycerol to d-glycerate by alditol oxidase, followed by sequential enzymatic dehydrogenation and decarboxylation as well as reduction reactions. We screened and characterized the catalytic activity of candidate enzymes, and a variant of alditol oxidase from Streptomyces coelicolor A3(2), 2-hydroxyglutarate-pyruvate transhydrogenase from Saccharomyces cerevisiae, α-ketoisovalerate decarboxylase from Lactococcus lactis, and aldehyde dehydrogenase from Escherichia coli were selected and assembled to create an artificial operon for the biosynthetic production of glycolate from glycerol. We also characterized the native strong constitutive promoter Plpp from E. coli and compared it with the PT7 promoter, which was employed to express the artificial operon on the plasmid pSC105-ADKA. To redirect glycerol flux toward glycolate synthesis, we deleted key genes of the native glycerol assimilation pathways and other branches of native E. coli metabolism, and we introduced a second plasmid expressing Dld3 to reduce the accumulation of the intermediate d-glycerate. Finally, the engineered strain TZ-108 harboring pSC105-ADKA and pACYC184-Plpp-Dld3 produced 0.64 g/L glycolate in shake flasks, which was increased to 4.74 g/L in fed-batch fermentation. This study provides an alternative pathway for glycolate synthesis and demonstrates the potential for producing other commodity chemicals by redesigning glycerol metabolism.
Collapse
Affiliation(s)
- Tao Zhan
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Qian Chen
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Chao Zhang
- College of Chemistry and Life Sciences, Changchun University of Technology, Changchun, Jilin 130012, China
| | - Changhao Bi
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Xueli Zhang
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| |
Collapse
|
11
|
Abstract
Enzymatic methods for the oxidation of alcohols are critically reviewed. Dehydrogenases and oxidases are the most prominent biocatalysts, enabling the selective oxidation of primary alcohols into aldehydes or acids. In the case of secondary alcohols, region and/or enantioselective oxidation is possible. In this contribution, we outline the current state-of-the-art and discuss current limitations and promising solutions.
Collapse
|
12
|
Sutiono S, Teshima M, Beer B, Schenk G, Sieber V. Enabling the Direct Enzymatic Dehydration of d-Glycerate to Pyruvate as the Key Step in Synthetic Enzyme Cascades Used in the Cell-Free Production of Fine Chemicals. ACS Catal 2020. [DOI: 10.1021/acscatal.9b05068] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Samuel Sutiono
- Chair of Chemistry of Biogenic Resources, Campus Straubing for Biotechnology and Sustainability, Technical University of Munich, Schulgasse 16, 94315 Straubing, Germany
| | - Mariko Teshima
- Chair of Chemistry of Biogenic Resources, Campus Straubing for Biotechnology and Sustainability, Technical University of Munich, Schulgasse 16, 94315 Straubing, Germany
| | - Barbara Beer
- Chair of Chemistry of Biogenic Resources, Campus Straubing for Biotechnology and Sustainability, Technical University of Munich, Schulgasse 16, 94315 Straubing, Germany
| | - Gerhard Schenk
- School of Chemistry and Molecular Biosciences, The University of Queensland, 68 Copper Road, St. Lucia, Queensland 4072, Australia
- Sustainable Minerals Institute, The University of Queensland, 47 Staff House Road, St. Lucia, Queensland 4072, Australia
| | - Volker Sieber
- Chair of Chemistry of Biogenic Resources, Campus Straubing for Biotechnology and Sustainability, Technical University of Munich, Schulgasse 16, 94315 Straubing, Germany
- Catalytic Research Center, Technical University of Munich, Ernst-Otto-Fischer-Straße 1, 85748 Garching, Germany
- School of Chemistry and Molecular Biosciences, The University of Queensland, 68 Copper Road, St. Lucia, Queensland 4072, Australia
- Straubing Branch BioCat, Fraunhofer IGB, Schulgasse 11a, 94315 Straubing, Germany
| |
Collapse
|
13
|
Viña-Gonzalez J, Martinez AT, Guallar V, Alcalde M. Sequential oxidation of 5-hydroxymethylfurfural to furan-2,5-dicarboxylic acid by an evolved aryl-alcohol oxidase. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2019; 1868:140293. [PMID: 31676448 DOI: 10.1016/j.bbapap.2019.140293] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 10/09/2019] [Accepted: 10/10/2019] [Indexed: 02/08/2023]
Abstract
Furan-2,5-dicarboxylic acid (FDCA) is a building block of biodegradable plastics that can be used to replace those derived from fossil carbon sources. In recent years, much interest has focused on the synthesis of FDCA from the bio-based 5-hydroxymethylfurfural (HMF) through a cascade of enzyme reactions. Aryl-alcohol oxidase (AAO) and 5-hydroxymethylfurfural oxidase (HMFO) are glucose-methanol-choline flavoenzymes that may be used to produce FDCA from HMF through three sequential oxidations, and without the assistance of auxiliary enzymes. Such a challenging process is dependent on the degree of hydration of the original aldehyde groups and of those formed, the rate-limiting step lying in the final oxidation of the intermediate 5-formyl-furancarboxylic acid (FFCA) to FDCA. While HMFO accepts FFCA as a final substrate in the HMF reaction pathway, AAO is virtually incapable of oxidizing it. Here, we have engineered AAO to perform the stepwise oxidation of HMF to FDCA through its structural alignment with HMFO and directed evolution. With a 3-fold enhanced catalytic efficiency for HMF and a 6-fold improvement in overall conversion, this evolved AAO is a promising point of departure for further engineering aimed at generating an efficient biocatalyst to synthesize FDCA from HMF.
Collapse
Affiliation(s)
- Javier Viña-Gonzalez
- Department of Biocatalysis, Institute of Catalysis, CSIC, Cantoblanco, 28049 Madrid, Spain
| | - Angel T Martinez
- Biological Research Center, CSIC, Ramiro de Maeztu 9, 28040 Madrid, Spain
| | - Victor Guallar
- Barcelona Supercomputing Center, Jordi Girona 31, 08034 Barcelona, Spain; ICREA, Passeig Lluís Companys 23, 08010 Barcelona, Spain
| | - Miguel Alcalde
- Department of Biocatalysis, Institute of Catalysis, CSIC, Cantoblanco, 28049 Madrid, Spain.
| |
Collapse
|
14
|
Viña‐Gonzalez J, Jimenez‐Lalana D, Sancho F, Serrano A, Martinez AT, Guallar V, Alcalde M. Structure‐Guided Evolution of Aryl Alcohol Oxidase from
Pleurotus eryngii
for the Selective Oxidation of Secondary Benzyl Alcohols. Adv Synth Catal 2019. [DOI: 10.1002/adsc.201900134] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Javier Viña‐Gonzalez
- Department of Biocatalysis, Institute of CatalysisCSIC, Cantoblanco 28049 Madrid Spain Fax: (+31)-91 5854760; phone: (+34)-91 5854806
| | - Diego Jimenez‐Lalana
- Department of Biocatalysis, Institute of CatalysisCSIC, Cantoblanco 28049 Madrid Spain Fax: (+31)-91 5854760; phone: (+34)-91 5854806
| | - Ferran Sancho
- Barcelona Supercomputing Center Jordi Girona 31 08034 Barcelona Spain
| | - Ana Serrano
- Biological Research CenterCSIC Ramiro de Maeztu 9 28040 Madrid Spain
| | - Angel T. Martinez
- Biological Research CenterCSIC Ramiro de Maeztu 9 28040 Madrid Spain
| | - Victor Guallar
- Barcelona Supercomputing Center Jordi Girona 31 08034 Barcelona Spain
- ICREA Passeig Lluís Companys 23 08010 Barcelona Spain
| | - Miguel Alcalde
- Department of Biocatalysis, Institute of CatalysisCSIC, Cantoblanco 28049 Madrid Spain Fax: (+31)-91 5854760; phone: (+34)-91 5854806
| |
Collapse
|
15
|
Wongnate T, Surawatanawong P, Chuaboon L, Lawan N, Chaiyen P. The Mechanism of Sugar C−H Bond Oxidation by a Flavoprotein Oxidase Occurs by a Hydride Transfer Before Proton Abstraction. Chemistry 2019; 25:4460-4471. [DOI: 10.1002/chem.201806078] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 01/16/2019] [Indexed: 11/06/2022]
Affiliation(s)
- Thanyaporn Wongnate
- School of Biomolecular Science & EngineeringVidyasirimedhi Institute of Science and Technology (VISTEC), Wangchan Valley Rayong 21210 Thailand
| | - Panida Surawatanawong
- Department of Chemistry and Center of Excellence, for Innovation in ChemistryMahidol University Bangkok 10400 Thailand
| | - Litavadee Chuaboon
- Department of Biochemistry and Center for Excellence, in Protein and Enzyme Technology, Faculty of ScienceMahidol University Bangkok 10400 Thailand
| | - Narin Lawan
- Department of Chemistry, Faculty of ScienceChiang Mai University Chiang Mai 50200 Thailand
| | - Pimchai Chaiyen
- School of Biomolecular Science & EngineeringVidyasirimedhi Institute of Science and Technology (VISTEC), Wangchan Valley Rayong 21210 Thailand
| |
Collapse
|
16
|
Serrano A, Sancho F, Viña-González J, Carro J, Alcalde M, Guallar V, Martínez AT. Switching the substrate preference of fungal aryl-alcohol oxidase: towards stereoselective oxidation of secondary benzyl alcohols. Catal Sci Technol 2019. [DOI: 10.1039/c8cy02447b] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Using PELE computational simulations the ability to deracemize secondary benzylic alcohols was introduced (by I500M/F501W double mutation) in stereoselective AAO.
Collapse
Affiliation(s)
- Ana Serrano
- Centro de Investigaciones Biológicas
- CSIC
- E-28040 Madrid
- Spain
| | - Ferran Sancho
- Barcelona Supercomputing Center
- E-08034 Barcelona
- Spain
| | | | - Juan Carro
- Centro de Investigaciones Biológicas
- CSIC
- E-28040 Madrid
- Spain
| | - Miguel Alcalde
- Department of Biocatalysis
- Institute of Catalysis
- CSIC
- Madrid
- Spain
| | - Victor Guallar
- Barcelona Supercomputing Center
- E-08034 Barcelona
- Spain
- ICREA
- Barcelona
| | | |
Collapse
|
17
|
Birmingham WR, Turner NJ. A Single Enzyme Oxidative “Cascade” via a Dual-Functional Galactose Oxidase. ACS Catal 2018. [DOI: 10.1021/acscatal.8b00043] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- William R. Birmingham
- School of Chemistry, University of Manchester, Manchester Institute of Biotechnology, 131 Princess Street, Manchester M1 7DN, United Kingdom
| | - Nicholas J. Turner
- School of Chemistry, University of Manchester, Manchester Institute of Biotechnology, 131 Princess Street, Manchester M1 7DN, United Kingdom
| |
Collapse
|
18
|
Rational Engineering of a Flavoprotein Oxidase for Improved Direct Oxidation of Alcohols to Carboxylic Acids. Molecules 2017; 22:molecules22122205. [PMID: 29231859 PMCID: PMC6149797 DOI: 10.3390/molecules22122205] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 12/06/2017] [Accepted: 12/08/2017] [Indexed: 11/25/2022] Open
Abstract
The oxidation of alcohols to the corresponding carbonyl or carboxyl compounds represents a convenient strategy for the selective introduction of electrophilic carbon centres into carbohydrate-based starting materials. The O2-dependent oxidation of prim-alcohols by flavin-containing alcohol oxidases often yields mixtures of aldehyde and carboxylic acid, which is due to “over-oxidation” of the aldehyde hydrate intermediate. In order to directly convert alcohols into carboxylic acids, rational engineering of 5-(hydroxymethyl)furfural oxidase was performed. In an attempt to improve the binding of the aldehyde hydrate in the active site to boost aldehyde-oxidase activity, two active-site residues were exchanged for hydrogen-bond-donating and -accepting amino acids. Enhanced over-oxidation was demonstrated and Michaelis–Menten kinetics were performed to corroborate these findings.
Collapse
|
19
|
Matthews S, Tee KL, Rattray NJ, McLean KJ, Leys D, Parker DA, Blankley RT, Munro AW. Production of alkenes and novel secondary products by P450 Ole
T
JE
using novel H
2
O
2
‐generating fusion protein systems. FEBS Lett 2017; 591:737-750. [DOI: 10.1002/1873-3468.12581] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Revised: 01/23/2017] [Accepted: 01/26/2017] [Indexed: 11/09/2022]
Affiliation(s)
- Sarah Matthews
- Manchester Institute of Biotechnology Centre for Synthetic Biology of Fine and Speciality Chemicals (SYNBIOCHEM) School of Chemistry The University of Manchester UK
| | - Kang Lan Tee
- Manchester Institute of Biotechnology Centre for Synthetic Biology of Fine and Speciality Chemicals (SYNBIOCHEM) School of Chemistry The University of Manchester UK
| | - Nicholas J. Rattray
- Manchester Institute of Biotechnology Centre for Synthetic Biology of Fine and Speciality Chemicals (SYNBIOCHEM) School of Chemistry The University of Manchester UK
| | - Kirsty J. McLean
- Manchester Institute of Biotechnology Centre for Synthetic Biology of Fine and Speciality Chemicals (SYNBIOCHEM) School of Chemistry The University of Manchester UK
| | - David Leys
- Manchester Institute of Biotechnology Centre for Synthetic Biology of Fine and Speciality Chemicals (SYNBIOCHEM) School of Chemistry The University of Manchester UK
| | | | | | - Andrew W. Munro
- Manchester Institute of Biotechnology Centre for Synthetic Biology of Fine and Speciality Chemicals (SYNBIOCHEM) School of Chemistry The University of Manchester UK
| |
Collapse
|
20
|
Xue YP, Zeng H, Jin XL, Liu ZQ, Zheng YG. Enantioselective cascade biocatalysis for deracemization of 2-hydroxy acids using a three-enzyme system. Microb Cell Fact 2016; 15:162. [PMID: 27659410 PMCID: PMC5034429 DOI: 10.1186/s12934-016-0560-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Accepted: 09/14/2016] [Indexed: 11/10/2022] Open
Abstract
Background Enantiopure 2-hydroxy acids are key intermediates for the synthesis of pharmaceuticals and fine chemicals. We present an enantioselective cascade biocatalysis using recombinant microbial cells for deracemization of racemic 2-hydroxy acids that allows for efficient production of enantiopure 2-hydroxy acids. Results The method was realized by a single recombinant Escherichia coli strain coexpressing three enzymes: (S)-2-hydroxy acid dehydrogenase, (R)-2-keto acid reductase and glucose dehydrogenase. One enantiomer [(S)-2-hydroxy acid] is firstly oxidized to the keto acid with (S)-2-hydroxy acid dehydrogenase, while the other enantiomer [(R)-2-hydroxy acid] remains unchanged. Then, the keto acid obtained reduced to the opposite enantiomer with (R)-2-keto acid reductase plus cofactor regeneration enzyme glucose dehydrogenase subsequently. The recombinant E. coli strain coexpressing the three enzymes was proven to be a promising biocatalyst for the cascade bioconversion of a structurally diverse range of racemic 2-hydroxy acids, giving the corresponding (R)-2-hydroxy acids in up to 98.5 % conversion and >99 % enantiomeric excess. Conclusions In summary, a cascade biocatalysis was successfully developed to prepare valuable (R)-2-hydroxy acids with an efficient three-enzyme system. The developed elegant cascade biocatalysis possesses high atom efficiency and represents a promising strategy for production of highly valued (R)-2-hydroxy acids. Electronic supplementary material The online version of this article (doi:10.1186/s12934-016-0560-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ya-Ping Xue
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
| | - Hao Zeng
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
| | - Xiao-Lu Jin
- Yosemade Pharmaceutical Co. Ltd., Jinhua, 321025, People's Republic of China
| | - Zhi-Qiang Liu
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
| | - Yu-Guo Zheng
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China.
| |
Collapse
|
21
|
Pickl M, Fuchs M, Glueck SM, Faber K. Amination of ω-Functionalized Aliphatic Primary Alcohols by a Biocatalytic Oxidation-Transamination Cascade. ChemCatChem 2015; 7:3121-3124. [PMID: 26583050 PMCID: PMC4641459 DOI: 10.1002/cctc.201500589] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Indexed: 11/24/2022]
Abstract
Amination of non-activated aliphatic fatty alcohols to the corresponding primary amines was achieved through a five-enzyme cascade reaction by coupling a long-chain alcohol oxidase from Aspergillus fumigatus (LCAO_Af) with a ω-transaminase from Chromobacterium violaceum (ω-TA_Cv). The alcohol was oxidized at the expense of molecular oxygen to yield the corresponding aldehyde, which was subsequently aminated by the PLP-dependent ω-TA to yield the final primary amine product. The overall cascade was optimized with respect to pH, O2 pressure, substrate concentration, decomposition of H2O2 (derived from alcohol oxidation), NADH regeneration, and biocatalyst ratio. The substrate scope of this concept was investigated under optimized conditions by using terminally functionalized C4–C11 fatty primary alcohols bearing halogen, alkyne, amino, hydroxy, thiol, and nitrile groups.
Collapse
Affiliation(s)
- Mathias Pickl
- Department of Chemistry, Organic&Bioorganic Chemistry, University of Graz Heinrichstrasse 28, 8010, Graz (Austria) E-mail:
| | - Michael Fuchs
- Department of Chemistry, Organic&Bioorganic Chemistry, University of Graz Heinrichstrasse 28, 8010, Graz (Austria) E-mail:
| | - Silvia M Glueck
- Austrian Centre of Industrial Biotechnology (ACIB GmbH) Petersgasse 14, 8010, Graz (Austria) ; Department of Chemistry, Organic&Bioorganic Chemistry, University of Graz Heinrichstrasse 28, 8010, Graz (Austria) E-mail:
| | - Kurt Faber
- Department of Chemistry, Organic&Bioorganic Chemistry, University of Graz Heinrichstrasse 28, 8010, Graz (Austria) E-mail:
| |
Collapse
|
22
|
Pickl M, Fuchs M, Glueck SM, Faber K. The substrate tolerance of alcohol oxidases. Appl Microbiol Biotechnol 2015; 99:6617-42. [PMID: 26153139 PMCID: PMC4513209 DOI: 10.1007/s00253-015-6699-6] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Revised: 05/10/2015] [Accepted: 05/15/2015] [Indexed: 11/29/2022]
Abstract
Alcohols are a rich source of compounds from renewable sources, but they have to be activated in order to allow the modification of their carbon backbone. The latter can be achieved via oxidation to the corresponding aldehydes or ketones. As an alternative to (thermodynamically disfavoured) nicotinamide-dependent alcohol dehydrogenases, alcohol oxidases make use of molecular oxygen but their application is under-represented in synthetic biotransformations. In this review, the mechanism of copper-containing and flavoprotein alcohol oxidases is discussed in view of their ability to accept electronically activated or non-activated alcohols and their propensity towards over-oxidation of aldehydes yielding carboxylic acids. In order to facilitate the selection of the optimal enzyme for a given biocatalytic application, the substrate tolerance of alcohol oxidases is compiled and discussed: Substrates are classified into groups (non-activated prim- and sec-alcohols; activated allylic, cinnamic and benzylic alcohols; hydroxy acids; sugar alcohols; nucleotide alcohols; sterols) together with suitable alcohol oxidases, their microbial source, relative activities and (stereo)selectivities.
Collapse
Affiliation(s)
- Mathias Pickl
- Department of Chemistry, Organic & Bioorganic Chemistry, University of Graz, Heinrichstrasse 28, A-8010, Graz, Austria
| | | | | | | |
Collapse
|
23
|
Sivakumari T, Chadha A. Candida parapsilosis ATCC 7330 mediated oxidation of aromatic (activated) primary alcohols to aldehydes. RSC Adv 2015. [DOI: 10.1039/c5ra18532g] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A green, simple and high yielding [up to 86% yield] procedure is developed for the oxidation of aromatic (activated) primary alcohols to aldehydes using whole cells of Candida parapsilosis ATCC 7330.
Collapse
Affiliation(s)
| | - Anju Chadha
- Laboratory of Bioorganic Chemistry
- Department of Biotechnology
- IIT Madras
- Chennai 600 036
- India
| |
Collapse
|
24
|
|
25
|
The Oxidation of Thiols by Flavoprotein Oxidases: a Biocatalytic Route to Reactive Thiocarbonyls. Angew Chem Int Ed Engl 2014; 53:13206-9. [DOI: 10.1002/anie.201407520] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Revised: 09/09/2014] [Indexed: 11/07/2022]
|
26
|
Ewing TA, Dijkman WP, Vervoort JM, Fraaije MW, van Berkel WJH. The Oxidation of Thiols by Flavoprotein Oxidases: a Biocatalytic Route to Reactive Thiocarbonyls. Angew Chem Int Ed Engl 2014. [DOI: 10.1002/ange.201407520] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
27
|
Dijkman WP, Groothuis DE, Fraaije MW. Enzyme‐Catalyzed Oxidation of 5‐Hydroxymethylfurfural to Furan‐2,5‐dicarboxylic Acid. Angew Chem Int Ed Engl 2014; 53:6515-8. [DOI: 10.1002/anie.201402904] [Citation(s) in RCA: 213] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Indexed: 11/06/2022]
Affiliation(s)
- Willem P. Dijkman
- Molecular Enzymology Group, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 4, Groningen (The Netherlands) http://www.rug.nl/staff/m.w.fraaije/research
| | - Daphne E. Groothuis
- Molecular Enzymology Group, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 4, Groningen (The Netherlands) http://www.rug.nl/staff/m.w.fraaije/research
| | - Marco W. Fraaije
- Molecular Enzymology Group, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 4, Groningen (The Netherlands) http://www.rug.nl/staff/m.w.fraaije/research
| |
Collapse
|
28
|
Dijkman WP, Groothuis DE, Fraaije MW. Enzyme‐Catalyzed Oxidation of 5‐Hydroxymethylfurfural to Furan‐2,5‐dicarboxylic Acid. Angew Chem Int Ed Engl 2014. [DOI: 10.1002/ange.201402904] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Willem P. Dijkman
- Molecular Enzymology Group, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 4, Groningen (The Netherlands) http://www.rug.nl/staff/m.w.fraaije/research
| | - Daphne E. Groothuis
- Molecular Enzymology Group, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 4, Groningen (The Netherlands) http://www.rug.nl/staff/m.w.fraaije/research
| | - Marco W. Fraaije
- Molecular Enzymology Group, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 4, Groningen (The Netherlands) http://www.rug.nl/staff/m.w.fraaije/research
| |
Collapse
|
29
|
Sivakumari T, Preetha R, Chadha A. Enantioselective oxidation of secondary alcohols by Candida parapsilosis ATCC 7330. RSC Adv 2014. [DOI: 10.1039/c3ra46206d] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
30
|
He YC, Ma CL, Zhang X, Li L, Xu JH, Wu MX. Highly enantioselective oxidation of racemic phenyl-1,2-ethanediol to optically pure (R)-(-)-mandelic acid by a newly isolated Brevibacterium lutescens CCZU12-1. Appl Microbiol Biotechnol 2013; 97:7185-94. [PMID: 23760530 DOI: 10.1007/s00253-013-4989-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2013] [Revised: 05/06/2013] [Accepted: 05/07/2013] [Indexed: 01/06/2023]
Abstract
Enantioselective oxidation of racemic phenyl-1,2-ethanediol into (R)-(-)-mandelic acid by a newly isolated Brevibacterium lutescens CCZU12-1 was demonstrated. It was found that optically active (R)-(-)-mandelic acid (e.e.p > 99.9 %) is produced leaving the other enantiomer (S)-(+)-phenyl-1,2-ethanediol intact. Using fed-batch method, a total of 172.9 mM (R)-(-)-mandelic acid accumulated in the reaction mixture after the seventh feed. Moreover, oxidation of phenyl-1,2-ethanediol using calcium alginate-entrapped resting cells was carried out in the aqueous system, and efficient biocatalyst recycling was achieved as a result of cell immobilization in calcium alginate, with a product-to-biocatalyst ratio of 27.94 g (R)-(-)-mandelic acid g⁻¹ dry cell weight cell after 16 cycles of repeated use.
Collapse
Affiliation(s)
- Yu-Cai He
- Laboratory of Biochemical Engineering, College of Pharmaceutical and Life Sciences, Changzhou University, Changzhou 213164, China.
| | | | | | | | | | | |
Collapse
|
31
|
Asymmetric synthesis of d-glyceric acid by an alditol oxidase and directed evolution for enhanced oxidative activity towards glycerol. Appl Microbiol Biotechnol 2012; 96:1243-52. [DOI: 10.1007/s00253-012-3885-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2011] [Revised: 01/01/2012] [Accepted: 01/02/2012] [Indexed: 10/14/2022]
|
32
|
Winter RT, Heuts DPHM, Rijpkema EMA, van Bloois E, Wijma HJ, Fraaije MW. Hot or not? Discovery and characterization of a thermostable alditol oxidase from Acidothermus cellulolyticus 11B. Appl Microbiol Biotechnol 2012; 95:389-403. [PMID: 22231860 PMCID: PMC3371188 DOI: 10.1007/s00253-011-3750-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2011] [Revised: 11/01/2011] [Accepted: 11/17/2011] [Indexed: 11/26/2022]
Abstract
We describe the discovery, isolation and characterization of a highly thermostable alditol oxidase from Acidothermus cellulolyticus 11B. This protein was identified by searching the genomes of known thermophiles for enzymes homologous to Streptomyces coelicolor A3(2) alditol oxidase (AldO). A gene (sharing 48% protein sequence identity to AldO) was identified, cloned and expressed in Escherichia coli. Following 6xHis tag purification, characterization revealed the protein to be a covalent flavoprotein of 47 kDa with a remarkably similar reactivity and substrate specificity to that of AldO. A steady-state kinetic analysis with a number of different polyol substrates revealed lower catalytic rates but slightly altered substrate specificity when compared to AldO. Thermostability measurements revealed that the novel AldO is a highly thermostable enzyme with an unfolding temperature of 84 °C and an activity half-life at 75 °C of 112 min, prompting the name HotAldO. Inspired by earlier studies, we attempted a straightforward, exploratory approach to improve the thermostability of AldO by replacing residues with high B-factors with corresponding residues from HotAldO. None of these mutations resulted in a more thermostable oxidase; a fact that was corroborated by in silico analysis.
Collapse
Affiliation(s)
- Remko T. Winter
- Laboratory of Biochemistry, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Dominic P. H. M. Heuts
- Manchester Interdisciplinary Biocentre and Faculty of Life Sciences, University of Manchester, 131 Princess Street, Manchester, M1 7DN UK
| | - Egon M. A. Rijpkema
- Laboratory of Biochemistry, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Edwin van Bloois
- Laboratory of Biochemistry, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Hein J. Wijma
- Laboratory of Biochemistry, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Marco W. Fraaije
- Laboratory of Biochemistry, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| |
Collapse
|
33
|
Winter RT, van den Berg TE, Colpa DI, van Bloois E, Fraaije MW. Functionalization of oxidases with peroxidase activity creates oxiperoxidases: a new breed of hybrid enzyme capable of cascade chemistry. Chembiochem 2011; 13:252-8. [PMID: 22213198 DOI: 10.1002/cbic.201100639] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2011] [Indexed: 11/09/2022]
Abstract
The covalent flavoprotein alditol oxidase (AldO) from Streptomyces coelicolor A3(2) was endowed with an extra catalytic functionality by fusing it to a microperoxidase. Purification of the construct resulted in the isolation of a synthetic bifunctional enzyme that was both fully covalently flavinylated and heminylated: an oxiperoxidase. Characterization revealed that both oxidase and peroxidase functionalities were active, with the construct functioning as a single-component xylitol biosensor. In an attempt to reduce the size of the oxidase-peroxidase fusion, we replaced portions of the native AldO sequence with the bacterial cytochrome c CXXCH heme-binding motif. By mutating only three residues of the AldO protein we were able to create a functional oxidase-peroxidase hybrid.
Collapse
Affiliation(s)
- Remko T Winter
- Laboratory of Biochemistry, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | | | | | | | | |
Collapse
|
34
|
Affiliation(s)
- Nicholas J. Turner
- School of Chemistry, University of Manchester, Manchester Interdisciplinary Biocentre, 131 Princess Street, Manchester M1 7DN, U.K
| |
Collapse
|
35
|
Orbegozo T, de Vries JG, Kroutil W. Biooxidation of Primary Alcohols to Aldehydes through Hydrogen Transfer Employing Janibacter terrae. European J Org Chem 2010. [DOI: 10.1002/ejoc.201000260] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
36
|
|